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Abstract
In the course of their life, plants face a multitude of environmental anomaly that affects their growth and 
production. In recent decades, lead (Pb) gained an increasing attention as it is among the most significant 
contaminants in the environment. Therefore, in this study the effects of Pb concentrations (0, 50 and 100 ppm) 
on Vicia faba plants and attempts to alleviate this stress using chitosan (Chs; 0 and 0.1%) were performed. The 
results validated that with increasing Pb concentrations, a decline in growth, pigments and protein contents was 
observed. In the same time, a significant upsurge in the stress markers, both malondialdehyde (MDA) and H2O2, 
was observed under Pb stress. Nonetheless, foliar spraying with Chs improves the faba bean growth, pigment 
fractions, protein, carbohydrates, reduces MDA and H2O2 contents and decreases Pb concentrations under Pb 
stress. Pb mitigation effects by Chs are probably related with the activity of antioxidant enzymes, phenylalanine 
ammonia lyase (PAL) and proline. The application of Chs enhanced the activities of peroxidase, catalase and PAL 
by 25.77, 17.71 and 20.07%, respectively at 100 ppm Pb compared to their control. Plant genomic material exhibits 
significant molecular polymorphism, with an average polymorphism of 91.66% across all primers. To assess the 
genetic distance created among treatments, the dendrogram was constructed and the results of the similarity 
index ranged from 0.75 to 0.95, indicating genetic divergence. Our research offers a thorough comprehension 
of the role of Chs in lessening the oxidative stress, which will encourage the use of Chs in agricultural plant 
protection.
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Introduction
Heavy metal pollution has increased globally with 
increasing economic growth, industrial productions, 
urban sewage, mining, and agricultural toxins [1, 2], and 
this pollution is emerging as a serious threat to agricul-
tural production [3]. Because these metals enter the 
human body through the food chain, heavy metal pol-
lution of the environment further jeopardises human 
welfare by lowering agricultural land productivity and 
reducing crop yields [1, 4]. Lead (Pb) is one of the most 
common heavy metal pollutants, highly phytotoxic and 
has no role in biological systems. Even though Pb is not 
a necessary element for plants or animals, both often 
absorb it readily. This metallic pollutant is released into 
the environment by burning fossil fuels, using agrochem-
icals, and manufacturing processes that produce Pb bat-
teries, fertilizers, and insecticides [5]. It can be found in 
soil as a mineral as well as in the atmosphere as dusts, 
fumes, mists, and vapors. Pb fumes combines with rain-
water to form Pb rich soil near roadsides and in turn it 
was taken by plants through their roots and leaves, even 
though it is not required as a nutrient [6].

Once inside the plant, Pb poisoning harms plants in a 
variety of ways from germination to yield development; 
its toxicity is contingent on both time and concentra-
tion. Higher exposure rates induce oxidative damage 
to plants as well as disturbances to the water and nutri-
tion relationships within the plant. The primary causes 
of decreased rates of plant growth and seed germina-
tion during stressful conditions include Pb interference 
with enzyme activities, membrane damage, and stoma-
tal closure as a result of abscisic acid induction and Pb’s 
negative connection with potassium in plants. As well, 
Pb caused structural alterations in the photosynthetic 
machinery and decreased green pigment biosynthesis, 
which delayed the metabolism of carbon [7]. Moreover, 
eating Pb-tainted food can cause severe health problems 
for people. Due to its non-biodegradable nature and easy 
entry into the food chain, it poses a risk to the health of 
both humans and animals [8]. When Pb is present, plants 
produce more reactive oxygen species (ROS), suffer oxi-
dative stress, and oxidize proteins, lipids, and nucleic 
acids [2, 4]. Plants have a number of defense mechanisms 
to deal with Pb toxicity when under Pb stress. These 
mechanisms include decreased absorption into the cell, 
complex formation-mediated sequestration of Pb into 
vacuoles, binding of Pb by amino acids, glutathione, and 
phytochelatins, and production of osmolytes. Further-
more, a secondary defense mechanism involves the acti-
vation of several antioxidants to counteract the increased 
creation of ROS caused by Pb [9].

Maintaining sustainable agriculture is the most impor-
tant issue of the century in order to feed the world’s 
growing population. In this respect, attempts to attenuate 

the stress of Pb on plants are essential especially if plant 
self-defense mechanisms are insufficient to mitigate Pb’s 
harmful effects. Recently, chitosan (Chs) has been shown 
in numerous studies to be able to form complexes with 
non-nutrient elemental ions, including heavy metals, 
owing to the presence of functional amino and hydroxyl 
groups [10, 11]. Since it is non-toxic, biodegradable, and 
biocompatible, this naturally occurring biopolymer has 
the potential to be an elicitor and biostimulant in agricul-
ture. Via the stress transduction route, it strengthens the 
physiological response and lessens the negative effects of 
abiotic stresses [10]. Chs is obtained from chitin which 
is the second most prevalent naturally occurring poly-
saccharide and composed of repeating unit of saccharide 
monomer of N-acetylglucosamine. After chitin is deacet-
ylated, Chs is obtained which is a linear polymer made 
of two subunits “D-glucosamine and N-acetyl-D-glucos-
amine” connected by glycosidic linkages [12]. According 
to Shamov et al. [13], the existence of this amine group 
makes it easier to modify structures and create functional 
derivatives. Applying different molecular weight Chs to a 
hydroponically produced edible rape plant (Brassica rapa 
L.) has been shown to mitigate the harmful effects of Cd 
[14]. Additionally, Chs was shown to be able to bind Ag, 
Zn, Cd, and Pb in rapeseed and perennial rye grass by 
Kamari et al. [15, 16].

Genomic information of medicinal and crop plant spe-
cies has increased rapidly in the past decade by using 
gene sequencing and molecular markers [17]. It has 
been reported that different markers might reveal differ-
ent classes of variation [18–20]. The advent of the poly-
merase chain reaction (PCR) favored the development of 
different molecular techniques such as random amplified 
of polymorphic DNA (RAPD), simple sequence repeats 
(SSR or microsatellite), sequence-tagged sites (STS), ran-
dom amplified microsatellite polymorphism (RAMP), 
single nucleotide polymorphism (SNP) and inter simple 
sequence repeat polymorphic DNA (ISSR) [21]. The ISSR 
may reveal a much higher number of polymorphic frag-
ments per primer than RAPD [22]. Assessment of genetic 
diversity is one of the main applications of ISSR markers 
[23, 24].

Faba bean (Vicia faba L.) is the third- ranking among 
feed grain legume and it is an annual herb that is a mem-
ber of the Leguminosae (Fabaceae) family [25, 26]. It is 
one of the most significant crops grown in Egypt and 
the largest winter legume crop produced globally [27]. 
It sustains agriculture by fixing atmospheric nitrogen to 
improve soil fertility. Faba beans offer a consistent source 
of plant protein for humans and animals that can partially 
replace animal protein and help to reduce the negative 
environmental effects of consuming animal protein [28, 
29]. Given the numerous sources of Pb pollution that are 
necessary for modern human existence and the negligible 
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likelihood that Pb contamination will decrease anytime 
soon [30, 31], as well as the fact that plants growing by 
roadsides are exposed to high Pb levels due to their close 
proximity to cars that burn leaded fuel, the aim of the 
current investigation was to evaluate the impacts of foliar 
spray with various concentrations of Pb on the growth 
and physio-biochemical parameters of faba bean plants. 
Additionally, the potential advantages of utilizing Chs 
were examined through the assessment of antioxidant 
enzyme activity and genetic variations using ISSR mark-
ers, aiming to identify genetic markers associated with 
oxidative stress tolerance and assess the genetic response 
of faba bean plants to heavy metal stress induced by Pb 
and Chs exposure.

Materials and methods
Plant materials and treatment pattern
The experimentation was conducted in the Botany and 
Microbiology Department, Faculty of Science, Zagazig 
University. Seeds of faba bean were obtained after per-
mission from the Crop Institute, Agricultural Research 
Center, Giza, Egypt, then surface sterilization of the 
seeds was done with 1% (w/v) sodium hypochlorite 
(NaOCl) for 5 min. Sterilized seeds were sown in plastic 
pots filled with 5 kg soil. After two weeks, three Pb con-
centrations were administered (0, 50 and 100 ppm lead 
acetate) and Chs with 0.1% was foliar sprayed in three 
times at 3-day intervals. The experiment consisted of six 
treatments (each with three replications), three levels 
of Pb (0, 50 and 100 ppm) and two levels of Chs (0 and 
0.1%) (Table 1). Plants were picked up after 30 days from 
Pb and Chs application to assess morpho-biochemical 
and molecular indices.

Measurement of morphological parameters
Vicia faba plants, after being gathered, were cleaned 
with tap water to get rid of any remaining soil particles. 
Plant morphological characteristics were measured and 
documented, including shoot and root lengths as well 
as fresh and dry weights of the shoot and root. To test 
the aforementioned qualities, a random sample of three 
plants was selected from each treatment. Samples were 
weighed individually for both fresh and dry weights (FW 
and DW). For DW measurements, samples were stored 
in the oven for 72 h at 60 °C. Additionally, the number of 
leaves and branching was noted.

Measurement of biochemical traits
Chlorophyll a, b and carotenoid content
By extracting 100 mg of fresh faba bean leaves in 85% v/v 
cold acetone, quantities of carotenoids and chlorophyll 
(Chl) were extracted. The supernatant was collected by 
centrifuging the mixture at 7500  g for 10  min, and the 
absorption was measured using UV-Vis spectrophotome-
try (RIGOL, Model Ultra-3660) at 663, 644, and 452.5 nm 
[32]. Utilizing formulas designated by Lichtenthaler and 
Wellburn [33], the contents of photosynthetic pigments 
(carotenoids, Chl a, and b) were determined as and their 
concentration was expressed as mg/g FW.

Total soluble protein content
Fresh faba bean leaves (0.25  g) were ground in 5 mL of 
potassium phosphate buffer pH 7.0 to assess the total sol-
uble protein content. The homogenate was subsequently 
centrifuged for 30  min at 4  °C and 4500  g. Combined 
with a freshly prepared alkaline copper solution, 1 mL of 
solubilized protein was left for 10  min, followed by the 
addition of Folin-Ciocalteau reagent for 30 min and the 
absorbance was measured at 700 nm using UV-Vis spec-
trophotometry (RIGOL, Model Ultra-3660) [34]. The 
protein concentration was calculated using bovine serum 
albumen as a standard then expressed as mg/g FW.

Carbohydrates content
To quantify the amount of carbohydrates based on 
Dubois et al. [35], 100 mg of dried faba bean leaves were 
extracted with 2.5 N HCl. Then, 5% phenol and concen-
trated H2SO4 were combined with one mL of the extract, 
and the absorbance was measured at 490 nm using UV-
Vis spectrophotometry (RIGOL, Model Ultra-3660). The 
concentration of carbohydrate was expressed as mg/g 
DW using glucose as a standard curve.

Hydrogen peroxide (H2O2) and lipid peroxidation contents
Velikova et al. [36] provided the methodology for mea-
suring the H2O2 concentration of faba bean leaves. In 
summary, 0.25 g of fresh leaves were homogenized with 5 
mL of trichloroacetic acid (TCA, 0.1% w/v), and the mix-
ture was centrifuged at 7500 g for 15 min. At that point, 
0.5 mL of the supernatant was combined with 0.5 mL 
of potassium phosphate buffer and 1 mL of potassium 
iodide (1 M). Finally, the absorbance of the mixture was 
recorded at 390  nm and H2O2 was articulated as mg/g 
FW.

Heath and Packer’s [37] method of measuring malondi-
aldehyde (MDA) level was used to determine the degree 
of lipid peroxidation. After homogenizing fresh faba 
bean leaves in 0.1% TCA, the leaves were centrifuged for 
15  min at 7500  g. The supernatant was combined with 
0.5% thiobarbituric acid in a 20% TCA solution. The fin-
ished mixture was heated for 30  min at 95  °C and then 

Table 1  Treatments used in this study
T1st T2nd T3rd T4th T5th T6th

Control 0.1% 
Chs

50 ppm 
Pb

0.1% Chs + 50 
ppm Pb

100 
ppm 
Pb

0.1% 
Chs + 100 
ppm Pb
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was cooled and centrifuged for 15 min at 7500 g. Using 
UV-Vis spectrophotometry (RIGOL, Model Ultra-3660), 
the absorbance was measured at 532 and 600 nm, and the 
MDA content was computed and represented as nmol/g 
FW.

Proline content
Using the Bates et al. [38] method to measure proline 
concentration, 0.25  g of faba bean leaf samples were 
homogenized in 10 mL of aqueous sulfosalicylic acid (3%) 
in an ice bath and the mixture was centrifuged (7500 g, 
4  °C) to obtain the supernatant. In summary, 2 mL acid 
ninhydrin and 2 mL glacial acetic acid were added to 2 
mL supernatant, thoroughly mixed, and incubated at 
100 °C for one hour. Once the reaction was halted in an 
ice bath, 4 mL of toluene were added and well combined. 
Following the measurement of the mixture absorbance 
at 520 nm, the concentration was determined as µmol/g 
FW.

Antioxidant enzymes activity
Samples of faba bean fresh leaves (1  g) under different 
treatments were extracted using 10 mL 50 mM potas-
sium phosphate buffer pH 7.0 containing 0.1 mM EDTA 
and 1% polyvinyl pyrrolidone [39]. At 4  °C, the homog-
enate was centrifuged for 10  min at 7500  g, after cen-
trifugation, the supernatant was collected to evaluate the 
activity of catalase (CAT) and peroxidase (POX). By mea-
suring H2O2 consumption at 240 nm, CAT (EC 1.11.1.6) 
activity was ascertained [40]. Additionally, pyrogallol was 
used as the substrate, and the increase in absorbance at 
470 nm was used to measure POX (EC 1.11.1.7) activity 
[41].

Phenylalanine ammonia lyase (PAL) activity
According to McCallum and Walker [42], PAL (EC 4.3. 
1.24) activity of faba bean enzyme extract was measured 
using phenylalanine as a substrate. L-phenylalanine was 

added to a 0.06  M borate buffer and crude enzyme to 
start the reaction. For 30 min, tubes were incubated and 
at 290  nm, the absorbance was measured to assess the 
PAL activity.

Pb concentration
After washing the plant sample under tap water and dry-
ing it for 48 h at 60°C in the oven, the concentration of 
Pb in the shoots was determined. The dry sample was 
weighed and then crushed with a mortar and pestle to 
a fine powder, and mixed using a wet digestion process 
with a concentration of H2SO4: H2O2 (2:1 v/v) [43]. The 
Pb concentration was determined spectrophotometri-
cally at the Faculty of Veterinary Medicine’ Central Lab, 
Zagazig University, using Inductively Coupled Plasma 
Spectrometry (ICPS) and was calculated [44] according 
to the following equation:

	
Concentration =

ICPS reading × total volume (mL)
Weight of sample (g)

Measurement of molecular indices
DNA based molecular marker
DNA extraction  Genomic DNA was extracted and puri-
fied from the young leaves of the faba bean plants using 
the genomic plant DNA extraction Kit, following the 
manufacturer’s protocol (Intron biotechnology, Korea).

ISSR fingerprinting
Ten ISSR primers were screened for DNA fingerprinting; 
only 6 primers were amplified across all species of which 
were polymorphic. The name, sequence, and annealing 
temperature of the primers are given in Table  2. In the 
amplification reactions of genomic DNA, a total of 20 
µL reaction mix was prepared (10 µL Thermo Scientific 
Maxima Hot Start PCR Master Mix (2X), 2 µL primer, 1 

Table 2  The code and sequences of the ten ISSR primers, number of polymorphic (unique, non-unique bands) and monomorphic 
bands generated by the ISSR analysis the studied samples
No Primes and number of their amplification DNA bands Types of amplified bands % of 

Poly-
mor-
phism

Primer 
code

Primer 
sequence

Amplicon 
lengths 
(bp)

Total 
no. of 
DNA 
bands

% of 
amplified 
bands

Mono-
morphic 
bands

Polymorphic bands Total no. of 
mono- and 
polymorphic 
bands

Unique 
band

Non-unique Poly-
mor-
phic 
bands

1 ISSR-1 (AC)8GG 300–800 18 14.75 1 1 11 12 13 92.3
2 ISSR-2 (CTC)6 200–800 21 17.21 1 2 4 6 7 85.7
3 ISSR-3 (TG)8AA 100–900 30 24.59 1 0 7 7 8 87.5
4 ISSR-4 (AG)8T 300–900 17 13.93 0 3 10 13 13 100
5 ISSR-5 (TG)8AA 300–700 18 14.75 0 3 11 14 14 100
6 ISSR-6 (CA)8T 200–700 18 14.75 0 3 6 9 9 100
Total DNA bands 122 100 3 12 49 61 64 95.31
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µL template DNA and 7 distilled water). Amplification 
conditions were “Initial strand separation step of 5 min 
at 94°C followed by 35 cycles each consisting of a dena-
turing step of 1 min. at 94°C, annealing step of 1 min. at 
57°C and an extension step of 1.30 min. at 72°C. The last 
cycle was followed by 5 min. extension at 72°C to allow 
complete extension of the PCR products with a final hold 
at 4°C till electrophoresis. 20 µL of the PCR-products of 
each primer loaded into the wells of agarose gel (1%). The 
ISSR fingerprinting was visualized and photographed 
using a Gel Documentation and Analysis Systems and 
illustrated obviously using matrix plot. All reactions were 
repeated at least twice to check the reproducibility of the 
banding patterns [45].

Data analysis of ISSR
For data analysis, each band generated by ISSR was con-
sidered as single gene locus and amplified DNA products 
were scored based on the presence (1) or absence (0) of 
a DNA band for each primer. Polymorphic DNA bands 
(unique and non-unique) and monomorphic bands were 
also scored, and DNA polymorphism generated by ISSR 
were estimated based on the number of polymorphic 
(unique and non-unique DNA bands), and monomorphic 
DNA bands, and the molecular sizes of bands as well as 
band intensities for each sample.

Clustering dendrogram analysis, scattering diagram, and 
genetic similarity matrix
The genetic relationships were assessed based ISSR fin-
gerprinting. The clustering of the examined accessions 
was performed based on squared Euclidean distance to 
produce a distance tree using the PAST-pc Version 4.22 
developed by Hammer et al. [46]. In addition, a Princi-
pal Component Analysis (PCA) in the PAST-pc was used 
to construct scattering diagram of the examined samples 
[46, 47]. Genetic similarity among species was calculated 
according to Dice similarity coefficient [48, 49].

Statistical data analysis and figures
A two-way factorial (3 × 2) with three replications was 
used for data analysis. Using SPSS software, the variables 
were compared across treatments, and at the 95% prob-
ability level, the means of each treatment were exam-
ined using one-way ANOVA and Duncan’s multiple 
range tests. Mean ± standard error (SE) was the data’s 
expression.

Results and discussion
Morphological parameters of chs-treated faba bean plants 
under pb stress
The effect of Chs (0.1%) and Pb concentrations (50 and 
100 ppm) on growth attributes of faba bean plants was 
shown in Table  3; Fig.  1. The results showed that the 
growth parameters were significantly (p < 0.05) inhibited 
with Pb exposure; where, the shoot length decreased by 
18.86 and 24.53%, and shoot FW declined by 33.64 and 
62.35% under 50 and 100 ppm Pb, respectively, over their 
respective control ones. Additionally, the decline was 
greater at the highest (100 ppm) than at the lowest (50 
ppm) Pb concentration. Similar to this, rising Pb concen-
trations in tomatoes had a detrimental effect on the fresh 
and dry biomass of the roots, shoots, and leaves [50]. 
Furthermore, Lamhamdi et al. [51] reported that there is 
a definite growth inhibition in spinach plants subjected 
to 15 mM Pb, where spinach FW and DW decreased by 
28% and 29%, respectively, when compared with controls 
and they explained that these symptoms can be essen-
tially attributed to macro-elements shortage (K, P, Ca and 
Mg), where their uptake was inhibited under Pb expo-
sure. Furthermore, it’s possible that Pb’s inhibitory effects 
on growth and biomass production are due to effects on 
plant metabolic pathways [52]. Based on studies con-
ducted by Mukherji and Maitra [53] and Burzynski and 
Jakob [54], Pb-induced promotion of indole-3-acetic acid 
(IAA) oxidation is the main source of cell growth inhi-
bition. Additionally, as shown by an Avena coleoptile 
experiment [55], Pb interferes with auxin-regulated cell 
elongation.

Table 3  Effect of Chs application on growth parameters of V. faba plants under different Pb concentrations
Parameters 
treatments

Shoot length 
(cm)

Root length 
(cm)

Shoot FW (g) Root FW (g) Shoot DW (g) Root DW
(g)

Leaves 
number

Branch-
ing 
number

T1 53 ± 1.402b 15 ± 0.391b 53.5 ± 1.415b 5.05 ± 0.134b 7.603 ± 0.228b 1.526 ± 0.0403c 36 ± 0.952b 3 ± 0.079b
T2 70 ± 1.851a 20 ± 0.529a 61.9 ± 1.637a 9.11 ± 0.241a 11.48 ± 0.344a 2.039 ± 0.0539a 45 ± 1.191a 4 ± 0.105a
T3 43 ± 1.131d 12 ± 0.317c 35.5 ± 0.939d 3.85 ± 0.102d 5.895 ± 0.176c 1.2259 ± 0.032d 24 ± 0.635d 2 ± 0.059c
T4 48 ± 1.269c 14 ± 0.371b 43.31.1456c 4.43 ± 0.117c 6.261 ± 0.187c 1.9048 ± 0.051b 31 ± 0.821c 3 ± 0.079b
T5 40 ± 1.058d 10 ± 0.264d 20.14 ± 0.53e 2.80 ± 0.074e 3.78 ± 0.1134e 0.9762 ± 0.0258e 19 ± 0.502e 2 ± 0.053c
T6 44 ± 1.164cd 12.5 ± 0.331c 33.00 ± 0.87d 3.10 ± 0.082e 4.764 ± 0.143d 1.2614 ± 0.033d 25 ± 0.661d 2 ± 0.053c
Results are the mean of three replicates ± SE. Bold different letters in the same column indicate significant differences between the treatments and control plants 
(p < 0.05) as measured by Duncan test. T1, T3 and T5 represent V. faba plants grown under 0, 50 and 100 ppm Pb concentrations, while T2, T4 and T6 represent V. faba 
plants foliar sprayed by Chs under 0, 50 and 100 ppm Pb concentrations. FW: fresh weight, DW: dry weight
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Noticeably, the growth of faba bean plants was sig-
nificantly impacted by the application of Chs (Table  3). 
Observation of growth parameters in this table indi-
cated that application of Chs was able to increase the 
percentage of shoot length, FW and DW by 32.07, 15.7 
and 50.9% respectively compared to control. Under Pb 
stress, faba bean plants treated with Chs improved the 
shoot length by 11.62 and 10% at 50 and 100 ppm Pb in 
comparison to Pb-stressed plants respectively. Our find-
ings concur with those of Suptijah et al. [56] and Chen et 
al. [57], who reported that Chs spraying had the greatest 
impact on all plant growth parameters, including height, 
the number of branches and leaves, the length and width 
of the leaves, and the FW and DW of the plants. Also, 
foliar application of Chs (0.2–0.4  g/L), increased plant 
growth attributes in two species of sweet basil (Ocimum 
ciliatum and O. basilicum) as stated by Pirbalouti et al. 
[58]. Sheikha and AL-Malki [59] found that the length 
and weight of the bean (Phaseolus vulgaris) shoot and 
root were increased with Chs application. According to 
Guan et al. [60], Chs increases the availability and uptake 
of water and other necessary nutrients by modifying the 
osmotic pressure of individual cells, hence stimulating 
plant development. Enhancing antioxidant levels and 

enzyme activity also helps decrease the build-up of dam-
aging free radicals (ROS). According to some studies [61, 
62], applying Chs improved the transportation of nitro-
gen in the leaves, which helped plants grow and develop. 
It also increased the activity of key enzymes involved in 
nitrogen metabolism, such as glutamine synthetase, and 
nitrate reductase. Moreover, according to Uthairatanakij 
et al. [63], it was found that Chs may stimulate the syn-
thesis of gibberellins, a plant hormone, and encourage 
growth and development via a signalling pathway linked 
to auxin biosynthesis.

Effect of chs application on photosynthetic pigments of faba 
bean plants under pb stress
It is impossible to exaggerate the significance of Chl con-
tent in determining a plant’s ability to participate in pho-
tosynthetic activities [64]. Furthermore, carotenoids are 
an important type of endogenous antioxidant pigment 
that help to quench ROS and so stop lipid membranes 
from peroxidizing. Both Chl and carotenoid pigments 
can be used to notice different stages of plant perfor-
mances [65]. The negative effects that Pb has on faba 
bean vegetative growth mainly result from its effect on 
photosynthetic pigments. According to the findings listed 

Fig. 1  Effect of Chs application on V. faba plants grown under different Pb concentrations. T1: Control, T2: Chs, T3: 50 ppm Pb, T4: Chs + 50 ppm Pb, T5: 
100 ppm Pb, T6: Chs + 100 ppm Pb
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in Table  4, both Pb concentrations exhibited inhibit-
ing effects on the faba bean plants’ Chl and carotenoids. 
Table 4 shows that at 50 and 100 ppm Pb treatment, the 
content of Chl a and b fell considerably (p ≤ 0.05) com-
pared to the control by 39.71, 68.57%, and 40.2, 63.5%, 
respectively. The total Chl (Chl a + b) and carotenoid con-
tent also declined significantly by 39.8, 66.96%, and 39.9, 
56.9%, respectively. Our findings concurred with those 
reported for Jatropa curcas and Coronopus didymus 
[66, 67]. This could be because Pb inhibits the processes 
that negatively affect plant vegetative growth; disrup-
tion of the ultrastructure of the chloroplast, obstruc-
tion of electron transport, inhibition of the Calvin cycle 
enzymes, reduced uptake of vital elements like Mg and 
Fe, and induced CO2 deficiency as a result of stomatal 
closure [9]. Additionally, it prevents the action of essen-
tial enzymes involved in the manufacture of Chl, such as 
protochlorophyllide reductase and aminolevulinate dehy-
dratase, while it also stimulates the activity of chlorophyl-
lase [68, 69].

Clearly, it is evident that applying Chs greatly reduced 
the impact of Pb on pigment fractions, demonstrating the 
tremendous improvement Chs had on these measured 
variables. Chs application to faba bean plants increased 
Chl a (38.1%), Chl b (64.6%) and carotenoids (49.6%) 
in comparison to their respective controls in non-Pb 
stressed plants (Table  4). Also, under Pb stress (100 
ppm), Chs increased Chl a (42.6%), Chl b (39.9%) and 
carotenoids (26.5%) compared to 100 ppm Pb stressed 
plants only. An increase in the Chl content in plants has 
been confirmed by Dzung et al. [70] and Salachna and 
Zawadzińska [71] who reported that spraying of cof-
fee and corm seedlings with Chs solutions enhanced the 
content of Chl and carotenoids in leaves in comparison 
to the control. Related study by Khan et al. [72] reported 
that the application of Chs increased photosynthesis in 
the leaves of soybean. Moreover, foliar application of Chs 
enhanced the Chl content under Ni stress [69] and Cd 
[73]. The increase of the Chl content as a result of appli-
cation of Chs may be caused by plants’ enhanced uptake 
of nutrients, which occurred in the study by Nguyen 
Van et al. [74] on coffee seedlings where the authors 

demonstrated that after spraying the seedlings with Chs, 
an increase of the content of nitrate, phosphorus and 
potassium in leaves was observed. Moreover, Mukhtar 
Ahmed et al. [75] reported that two mechanisms were 
responsible for the positive effects of Chs on the content 
of Chl: suppression of the transcript level of chlorophyl-
lase, a component of the catabolic pathway of Chl, and 
stimulation of the expression of genes involved in the 
biosynthesis pathway of Chl.

Changes in protein and carbohydrate contents in faba bean 
plants as affected by Chs application under normal and Pb 
stress condition
In this experiment, faba bean plants under Pb stress 
had lower protein content (Fig. 2a). Similar results were 
obtained by Sidhu et al. [67] who discovered a slight 
decrease in protein content in Coronopus didymus L after 
exposure to 2900  mg kg− 1 Pb. Related study by Bhar-
wana et al. [76] demonstrated that the addition of Pb at 
both 50 and 100 µM to nutrient solution significantly 
reduced soluble protein content in both roots and leaves 
of the cotton plants. This observation could be explained 
by Pb-induced protein degradation, a reduction in pro-
tein synthesis during Pb stress, or by the breakdown of 
proteins by protease activity, which raises the degree of 
protein denaturation. Additionally, it has been shown 
that Pb stress in plants causes the production of ROS, 
which directly alter and modify proteins by oxidizing side 
chains of amino acids [77], potentially leading to protein 
fragmentation. Furthermore, J. curcas [66] and Cera-
tophyllum demersum [77] have previously been found 
to exhibit decreased protein content in response to Pb. 
However, the application of Chs significantly increased 
the protein content in faba bean plants under normal 
condition and Pb stress. Similarly, Fouda et al. [78] con-
firmed an increase in protein content in faba bean plants 
under drought stress. Strong interactions between the 
negatively charged phosphate groups of nucleic acids 
and Chs can induce specific changes in the expression 
and function of proteins implicated in the stress response 
[79]. The current findings are consistent with earlier 
research on the impact of Chs on Curcuma longa [80].

Table 4  Effect of Chs application on pigment fractions (µg/mg FW) of V. faba plants under different Pb concentrations
Parameters
treatments

Chl a Chl b Total Chl Carotenoids Total pigments

T1 1.677 ± 0.044b 0.762 ± 0.021b 2.440 ± 0.064b 1.288 ± 0.034b 3.728 ± 0.0986b
T2 2.318 ± 0.061a 1.255 ± 0.033a 3.573 ± 0.094a 1.928 ± 0.051a 5.501 ± 0.1455ab
T3 1.012 ± 0.0267c 0.455 ± 0.012c 1.468 ± 0.038c 0.774 ± 0.021c 2.242 ± 0.0593c
T4 1.614 ± 0.042b 0.734 ± 0.019b 2.348 ± 0.062b 1.216 ± 0.032b 3.565 ± 0.0943b
T5 0.528 ± 0.0139e 0.278 ± 0.007e 0.806 ± 0.021e 0.554 ± 0.014d 1.361 ± 0.0361e
T6 0.753 ± 0.0199d 0.389 ± 0.011d 1.143 ± 0.031d 0.701 ± 0.0185c 1.843 ± 0.0487d
Results are the mean of three replicates ± SE. Bold different letters in the same column indicate significant differences between the treatments and control plants 
(p < 0.05) as measured by Duncan test. T1, T3 and T5 represent V. faba plants grown under 0, 50 and 100 ppm Pb concentrations, while T2, T4 and T6 represent V. faba 
plants foliar sprayed by Chs under 0, 50 and 100 ppm Pb concentrations
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Plants must regulate their sugar metabolism in order 
to adapt to environmental stressors [81]. According to 
our findings, tissues of faba bean plants accumulated 
carbohydrates at both 50 and 100 mM Pb concentra-
tions (Fig. 2b). These results were consistent with earlier 
research, which suggested that under Pb stress, Corono-
pus didymus [67] and Brassica campestris [82] had higher 
carbohydrate contents. Increased levels of carbohydrates 
in plant tissues have been documented in the literature 
when heavy metals are present. Additionally, Mahajan et 
al. [83] found that exposure to Cr increased the amount 
of carbohydrates in Zea mays leaves. Curiously, in both 
Pb-stressed and normal faba bean plants, exogenous Chs 
treatment enhanced carbohydrate accumulation. The 
buildup of carbohydrates in the leaves of creeping bent-
grass was observed in a related study by Geng et al. [81], 
which was explained by the possibility that Chs might be 
converted to other sugars and pyruvate, which is involved 
in the tricarboxylic acid cycle. According to Li et al. [84], 
many genes involved in the transport and metabolism of 

carbohydrates were found to be upregulated in the leaves 
of white clover plants treated with Chs. Sugars build up 
in plant cells in response to abiotic stress as crucial sig-
naling molecules for osmolytes, energy supply, and stress 
signal transduction [85].

Oxidative damage, proline and scavenging defense enzymes 
of faba bean plants as affected by Chs application and Pb 
stress
The degree of cell membrane damage can be determined 
using MDA, a significant byproduct of lipid peroxida-
tion in the cell membrane [86, 87]. The effect of Chs and 
different Pb concentrations on generation of H2O2 and 
lipid peroxidation in faba bean is presented in Fig. 3. In 
the present study, Pb stress significantly increased H2O2 
which resulted into lipid peroxidation in faba bean plants 
(Fig. 3a and b). The increase in H2O2 and MDA contents 
by Pb (100 ppm) was, respectively, 61.57 and 62.68% 
compared to the control. According to earlier study by 
Singh et al. [82], Pb is known to cause oxidative stress 

Fig. 3  Effect of Chs application on (a) lipid peroxidation (malondialdehyde, MDA) and (b) hydrogen peroxide (H2O2) contents of V. faba plants grown 
under different Pb concentrations. T1, T3 and T5 represent V. faba plants grown under 0, 50 and 100 ppm Pb concentrations, while T2, T4 and T6 represent 
V. faba plants foliar sprayed by Chs under 0, 50 and 100 ppm Pb concentrations. Results are the mean of three replicates ± SE. Different letters above bars 
indicate significant differences between the treatments and control plants (p < 0.05) as measured by Duncan test

 

Fig. 2  Effect of Chs application on (a) protein and (b) carbohydrates contents of V. faba plants grown under different Pb concentrations. T1, T3 and T5 
represent V. faba plants grown under 0, 50 and 100 ppm Pb concentrations, while T2, T4 and T6 represent V. faba plants foliar sprayed by Chs under 0, 50 
and 100 ppm Pb concentrations. Results are the mean of three replicates ± SE. Different letters above bars indicate significant differences between the 
treatments and control plants (p < 0.05) as measured by Duncan test
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even in minute levels by causing an excess of ROS to be 
produced. Because of an imbalance between the produc-
tion and neutralization of ROS by antioxidant systems, 

plant cells produce an excess of ROS as a response to 
heavy metal toxicity. DNA damage, mitochondrial dys-
function, and damage to cell membranes are caused by 
these free radicals when they react (oxidize) with differ-
ent components of cells, such as proteins, lipids and fatty 
acids [9, 77].

Most intriguingly, foliar Chs application decreased 
MDA buildup in Pb-stressed plants, indicating that Chs 
can potentially mitigate the negative consequences of 
Pb stress by reducing lipid peroxidation. According to 
research studies by Zong et al. [73] in Brassica rapa, Zou 
et al. [88] in T. aestivum and Yang et al. [89] in Malus 
domestica, Chs significantly decreased the level of MDA 
during salt, drought, and Cd stress, respectively. The 
observation demonstrated that Chs may diminish the 
negative responses of ROS for membranes and lower the 
accumulation of H2O2 and MDA; maybe via stimulating 
the ROS forage enzymes. Chs-treated plants were able to 
reduce oxidative stress by producing enzyme activities in 
safflower (Carthamus tinctorius L.) and sunflower (Heli-
anthus annuus L.) [90].

Based on the current findings (Fig. 4a–c), it was shown 
that the exogenous application of Chs greatly enhanced 

Fig. 5  Effect of Chs application on Pb concentration in shoots V. faba 
grown under different Pb concentrations. T1, T3 and T5 represent V. faba 
plants grown under 0, 50 and 100 ppm Pb concentrations, while T2, T4 and 
T6 represent V. faba plants foliar sprayed by Chs under 0, 50 and 100 ppm 
Pb concentrations. Results are the mean of three replicates ± SE. Different 
letters above bars indicate significant differences between the treatments 
and control plants (p < 0.05) as measured by Duncan test

 

Fig. 4   Effect of Chs application on the activity of (a) catalase (CAT), (b) peroxidase (POX), (c) phenylalanine ammonia lyase (PAL) and (d) proline contents 
of V. faba plants grown under different Pb concentrations. T1, T3 and T5 represent V. faba plants grown under 0, 50 and 100 ppm Pb concentrations, while 
T2, T4 and T6 represent V. faba plants foliar sprayed by Chs under 0, 50 and 100 ppm Pb concentrations. Results are the mean of three replicates ± SE. Dif-
ferent letters above bars indicate significant differences between the treatments and control plants (p < 0.05) as measured by Duncan test
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antioxidative enzyme activity. CAT, POX and PAL are 
important enzymes which have a significant impact on 
the plant’s ability to adapt and, ultimately, survive under 
Pb stress. The present investigation revealed a notewor-
thy increase (p < 0.05) in the activity of these enzymes 
(Figs. 4 and 6) in response to Pb with further augumenta-
tion in their activities with Chs application in faba bean 
tissues. Chs application played a key role in enhancing 
antioxidant activity and in turn lessening MDA during 
Ni, Cd and drought stress as stated by Sadeghipour [69], 
Zong et al. [73] and Yang et al. [89], respectively. Accord-
ing to Xie et al. [91], Chs’s abundant active hydroxyl and 
amino groups, which can react with ROS to form stable 
and relatively nontoxic macromolecular radicals, are pri-
marily responsible for its antioxidant properties. Ru et al. 
[92] suggest that Chs’s upregulated gene expression may 
also play a role in these properties. CAT converts H2O2 
to H2O and O2 while POX breaks down H2O2 to produce 
phenoxy compounds, which then polymerize to produce 
lignans, a part of the cell wall [93]. POX is also involved 
in the biosynthesis of lignin, which has the potential to 
serve as a physical barrier against the toxicity of heavy 
metals [94]. According to Romanazzi et al. [95], Chs 
elevated PAL, which triggered the pathway leading to 
the synthesis of phenol. Related study by Khan et al. [72] 
showed transcriptional activation of gene encoding PAL 
was induced by Chs. The negative effects of MDA on the 
cell membrane can be reduced by the combined action of 
CAT, POX, and PAL.

To counteract the detrimental consequences of Pb 
stress, faba bean plants besides activating their enzy-
matic antioxidant defense, several osmolytic cytosolutes 
with coordinated antioxidant capacity such as proline 

was accumulated. In this investigation, it was found that 
Pb-stressed faba bean plants had higher proline con-
tent and the foliar application of Chs caused further rise 
in its content under normal and Pb stress conditions 
(Fig. 4d). Proline accretion has previously been shown to 
be a hidden predictor of stress tolerance [96]. As a stress-
responsive amino acid, an accretion of proline is sup-
posed to keep plant tissues safe from osmotic stress and 
this is achieved by accruing fluids that are in balance with 
osmoregulation, chelating and detoxifying metals, pro-
tecting enzymes, controlling cytosolic acidity, setting up 
the machinery for protein synthesis, and capturing ROS 
[97]. Our results are in line with Bistgani et al. [98] where 
the main causes of Chs’ compensatory action in lessening 
the detrimental effects of stress circumstances were pro-
line accumulation and lipid peroxidation level reduction, 
which enhanced the integrity of thyme leaves’ cell mem-
branes and stimulated osmotic adjustment. Additionally, 
our findings align with those of Sadeghipour [69], who 
noted that exogenously applied Chs had a positive effect 
on raising proline levels in soybeans under Ni toxicity 
and attributed the increased proline content under Ni 
toxicity to the hydrolysis of proteins caused by oxidative 
stress, as well as to the inhibition of proline degradation 
or the enhancement of de novo proline synthesis [99].

Pb concentration in faba bean shoots as affected by Chs 
application under pb stress
When faba bean plants were exposed to 50 and 100 ppm 
of Pb, their Pb concentration increased dramatically. Data 
graphed in Fig. 5 revealed an increase of 19.45 and 27.23 
of Pb in faba bean shoot at 50 and 100 ppm compared 
to control. Although Pb is non-essential, plants absorb 

Fig. 6  Heatmap constructed between different measured parameters. T1, T3 and T5 represent V. faba plants grown under 0, 50 and 100 ppm Pb concen-
trations, while T2, T4 and T6 represent V. faba plants foliar sprayed by Chs under 0, 50 and 100 ppm Pb concentrations

 



Page 11 of 16Abdelhameed et al. BMC Plant Biology          (2024) 24:557 

it easily leading to an increase in its concentration. The 
plants take up the Pb from the atmospheric air through 
cellular respiration, where the large surface area of plant 
leaves permits the absorption of Pb ions from polluted 
air via cuticle and stomata causing chlorosis in leaves 
[100]. In line with our results, Ansari et al. [2] reported 
that Pb concentration of shoot and root of Lallemantia 
iberica increased with increasing Pb levels. Neverthe-
less, interesting results were obtained with Chs treated 
plants where the foliar application of Chs decreased the 

Pb concentration in plants as shown in Figs.  5 and 6. 
Under Pb stress conditions, Chs application was success-
ful (p ≤ 0.05) and led to about 8.46% (at 50 ppm Pb) and 
10.43% (at 100 ppm Pb) decreases in comparison to those 
of Pb treated plants only (Fig. 5). Zong et al. [14] reported 
that foliar application of different molecular weight Chs 
alleviate toxic effects of Cd in a hydroponically grown 
edible rape (Brassica rapa L.). Furthermore, consistent 
with this study’s findings, Chs treatment decreased the 
accumulation of Cd in radish [101] and Ni in soybean 

Fig. 7  (a) The Inter Simple Sequence Repeats (ISSR) products of genomic DNA extracted from leaves of V. faba plants using six primers, where arrow indi-
cating appearance or disappearance of bands (b) Matrix plot constructed using the Past-pc showing band number of amplified DNA markers produced 
by ISSR marker, C1-C3 for (AC)8GG, C4-C9 for (CTC)6, C10 to C14 for (TG)8AA, C15-C18 for (AG)8T, C19-C21 for (TG)8AA and C22-C27 for (CA)8T. T1, T3 and 
T5 represent V. faba plants grown under 0, 50 and 100 ppm Pb concentrations, while T2, T4 and T6 represent V. faba plants foliar sprayed by Chs under 0, 
50 and 100 ppm Pb concentration
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[69] and this may be due to that Chs can form complexes 
with a series of heavy metals because of the presence 
of amino and hydroxyl groups [102] so, it reduces the 
absorption and transfer of these metals to plants.

Genomic DNA profiling by ISSR in faba bean shoots as 
affected by Chs application under Pb stress
Inter simple sequence DNA (ISSR) has shown effective 
in verifying genetic homogeneity in plants exposed to 
various kinds of heavy metals and abiotic stressors [103–
106]. This technique was performed to evaluate the effect 

Fig. 8  (a) UPGAMA Distance tree based on Euclidean, constructed using the Past-pc, showing the genetic distance between different treatments. (b) PCA 
constructed using the Past-pc showing band number of amplified DNA markers produced by ISSR marker. C1-C3 for (AC)8GG, C4-C9 for (CTC)6, C10 to 
C14 for (TG)8AA, C15-C18 for (AG)8T, C19-C21 for (TG)8AA and C22-C27 for (CA)8T. T1, T3 and T5 represent V. faba plants grown under 0, 50 and 100 ppm 
Pb concentrations, while T2, T4 and T6 represent V. faba plants foliar sprayed by Chs under 0, 50 and 100 ppm Pb concentrations
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of different concentration of Pb and Chs on the genetic 
material of faba bean cultivated plants in comparison to 
control. About ten primers were used for evaluating the 
genetic polymorphism in faba bean fresh leaves as shown 
in Table (2), only six primer give reproducible bands 
appeared in (Fig. 7- a and b). The code and sequences of 
the ten ISSR primers were listed in Table (2).

In total, one hundred and twenty-two (122) ampli-
fied DNA bands were scored after using the six primers. 
These six primers generated a total number of 64 mono-
and polymorphic DNA bands with a high polymorphism 
value of 95.31%. The highest polymorphism values of 
100% were scored at primer- M2NL-4, M2NL-5, and 
M2NL-6. In contrast, the lowest polymorphism value of 
66.60% was scored at primer-ISSR-5 and ISSR-6. These 
polymorphisms are based on specific random sequences, 
the sort of DNA bands (unique, non-unique, and 
monomorphic), their intensity, and their length, rang-
ing between 0.2 and 0.9 Kbp. ISSR-5amplified the most 
bands (14), whereas ISSR-2 amplified the fewest bands 
(7) and this agreed with Labra et al. [107] and Al-Qurainy 
[108] where they found that ISSR analysis indicated that 
heavy metals showed genotoxicity at high concentrations 
induced DNA changes in different target sequences.

The PAST software-based clustering analysis utilizing 
the Euclidean equation generated two significant data-
base-based clusters, I and II (Fig.  8a). The first (I) clus-
ter was split into two subclusters, T1 and T2, the second 
cluster (II) comprised four treatments, T3 and T4 in same 
group and T5 and T6 in another group. PCA scatter plot 
constructed using the PAST-pc 4.2 software showing the 
relationships among the examined treatments based on 
ISSR fingerprinting polymorphism (Fig.  8b). The exam-
ined treatments were differentiated into three subgroups 
by the PCA scatter plot, identical to their separation in 
the clustering analysis.

Genetic similarities were computed using the Kulczy-
uski-similarity index value. The maximum genetic simi-
larity between both 50 mM pb and 0.1% Chs + 50 mM Pb 
was 0.97, while the minimum genetic similarity between 
0.1% Chs and 100 mM Pb was 0.75 (Table 5). The results 
showed that new DNA bands are emerging in the ISSR 
profile, and that the absence of typical bands can be 
interpreted as a mutation. This is most likely the result 

of genetic variation produced by rearrangements or DNA 
damage [106, 109]. ISSR primers led to differences in the 
amount of variation observed among genotypes, and as 
a result of genetic drift caused by Pb toxicity, it is antici-
pated that genetic diversity will decline over time [110].

Conclusion
The study concludes that excess Pb severely affects 
plants’ morphology and physio-biochemistry, leading to 
the deficiency of food security and economic losses. The 
results demonstrated that with increasing Pb concen-
trations, there was a reduction in growth, pigments and 
proteins contents. In the same time, a significant increase 
in the stress markers, both MDA and H2O2, was observed 
under 50 and 100 ppm Pb. The self-defense system of the 
plant is not adequate to reduce the negative effects of Pb. 
The foliar application of Chs improves the tolerance of 
faba bean plants to Pb stress by significantly improving 
the faba bean growth, pigment fractions, protein, carbo-
hydrates, reducing MDA and H2O2 contents and decreas-
ing Pb concentrations. Pb mitigation effects by Chs are 
probably related with the activity of antioxidant enzymes, 
PAL and proline. Also, ISSR analysis outlines distinct 
genetic clusters and subgroups corresponding to differ-
ent treatments and the genetic similarity reflecting the 
variability in genetic response among treatments. Based 
on the obtained results, we recommended spraying faba 
bean plants with Chs under Pb stress to enhance plant 
physiological, biochemical and molecular parameters 
and offset this stress. In the future, we looking forward 
to investigate the specific genetic mechanisms underly-
ing heavy metal tolerance in faba bean plants, including 
identifying candidate genes and pathways involved in 
stress response and also explore the potential of heavy 
metal-tolerant varieties for phytoremediation purposes, 
including their ability to accumulate and detoxify heavy 
metals from contaminated soils.
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CAT	� Catalase
Chl	� Chlorophyll
Chs	� Chitosan
DW	� Dry weight
FW	� Fresh weight
ISSR	� Inter simple sequence repeat
MDA	� Malondialdehyde

Table 5  Similarity index calculated by Kulczyuski index for ISSR primer code in the studied samples, values represented as similarity 
index %
Samples Control 0.1% Chs 50 ppm Pb 0.1% Chs + 50 ppm Pb 100 ppm Pb 0.1% Chs + 100 ppm Pb
Control 1
0.1% Chs 0.90909091 1
50 ppm Pb 0.76363636 0.85909091 1
0.1% Chs + 50 ppm Pb 0.79112554 0.88419913 0.97619048 1
100 ppm Pb 0.80808081 0.75757576 0.79166667 0.82539683 1
0.1% Chs + 100 ppm Pb 0.83373206 0.83373206 0.87236842 0.90225564 0.86549708 1
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