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contaminated soil
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Abstract

The accumulation of arsenic (As) in rice (Oryza sativa L) grain poses a significant health concern in Bangladesh.
To address this, we investigated the efficacy of various organic amendments and phytoremediation techniques in
reducing As buildup in O. sativa. We evaluated the impact of five doses of biochar (BC; BCy;: 0.1%, BC,,g: 0.28%,
BCps5: 0.55%, BC g, 0.82% and BC, ;: 1.0%, w/w), vermicompost (VC; VC, 5 1.0%, VC, g 1.8%, VC; 5 3.0%, VC, 5: 4.2%
and VCs o 5.0%, w/w), and floating duckweed (DW; DW, q;: 100, DW, ¢4 160, DW,s0: 250, DW3,0: 340 and DW
400 g m~?) on O, sativa cultivated in As-contaminated soil. Employing a three-factor five-level central composite
design and response surface methodology (RSM), we optimized the application rates of BC-VC-DW. Our findings
revealed that As contamination in the soil negatively impacted O. sativa growth. However, the addition of BC, VC,
and DW significantly enhanced plant morphological parameters, SPAD value, and grain yield per pot. Notably, a
combination of moderate BC-DW and high VC (BC, 5sVCsDW,,) increased grain yield by 44.4% compared to the
control (BC,VC,DW,). As contamination increased root, straw, and grain As levels, and oxidative stress in O. sativa
leaves. However, treatment BC, 5,VC,,DWs,, significantly reduced grain As (G-As) by 56%, leaf hydrogen peroxide
by 71%, and malondialdehyde by 50% compared to the control. Lower doses of BC-VC-DW (BC,¢VC, sDW,40)
increased antioxidant enzyme activities, while moderate to high doses resulted in a decline in these activities.
Bioconcentration and translocation factors below 1 indicated limited As uptake and translocation in plant tissues.
Through RSM optimization, we determined that optimal doses of BC (0.76%), VC (4.62%), and DW (290.0 g m~?)
could maximize grain yield (32.96 g pot™', 44% higher than control) and minimize G-As content (0.189 mg kg™ ',
54% lower than control). These findings underscore effective strategies for enhancing yield and reducing As
accumulation in grains from contaminated areas, thereby ensuring agricultural productivity, human health, and

long-term sustainability. Overall, our study contributes to safer food production and improved public health in As-
affected regions.
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Introduction

Arsenic (As), a metalloid, is known for its toxic nature
and can naturally occur in soils. Its carcinogenic and
poisonous properties make soil contamination with As a
serious risk to the environment, agriculture, and human
health [1, 2]. The utilization of As-contaminated ground-
water for irrigation and agricultural purposes, as well
as the use of agrochemicals and the disposal of mining
waste, have contributed to an increase in As concentra-
tion in agricultural soils [3]. This situation becomes more
problematic when arsenate enters the food chain, affect-
ing a wide range of plants and animals. High levels of As
have been detected in rice (Oryza sativa L.) grains irri-
gated with As-rich groundwater [4]. The accumulation of
contaminants in O. sativa grains and their consumption
pose significant health risks [5, 6]. This issue is particu-
larly severe for the people of Bangladesh, where per cap-
ita consumption of O. sativa is 400 g per day, constituting
over 80% of their caloric intake.

In addition to its detrimental effects on human health,
the adverse effects of As on plant growth and develop-
ment are well documented [7]. The As, even in small
amounts, hinders the growth of plants and interferes
with crucial activities such as photosynthesis and the
absorption of nutrients [8]. The signs of chlorosis and
necrosis are easily observed, indicating that As disrupts
the process of chlorophyll production and photosynthe-
sis. The As competes with important nutrients such as
phosphate, resulting in decreased absorption and trans-
location [9]. Additionally, oxidative stress induced by
reactive oxygen species due to As exposure, damages cel-
lular components [10]. Morphologically, plants exposed
to As show reduced leaf areas, stunted growth, and
abnormal root development. Furthermore, reproductive
processes are negatively impacted, resulting in decreased
rates of seed germination and pollen viability [11]. A
recent study conducted by Muehe et al. [12] anticipated
that the simultaneous occurrence of soil pollution with
As and future climate change would lead to a 39% reduc-
tion in crop output and a twofold increase in As levels in
O. sativa grains. Hence, understanding the response of
O. sativa to elevated levels of As can facilitate the devel-
opment of effective strategies to alleviate As toxicity on
the growth, productivity, and quality of O. sativa grains.
Ensuring sustainable O. sativa production is imperative
in the face of the ongoing climate issue.

To reduce As accumulation in O. sativa grain, numer-
ous interventions have been investigated, including
organic and inorganic amendments, phytoremediation
techniques, and emerging technologies such as seed
priming and nanotechnology [13-16]. Seed priming is

a technique that includes soaking seeds before plant-
ing them in order to improve their ability to germinate
and grow into seedlings, especially in challenging envi-
ronments. This process has the potential to decrease
the absorption of As by the seeds [16]. In similar ways,
nanotechnology presents new prospects for delivering
detoxifying agents to plants specifically, hence reduc-
ing the buildup of As in grains [13]. Biochar (BC), an
advanced substance with nanoscale capabilities, can
also be classified as part of this technological spectrum.
Recent research has discovered that BC can effectively
reduce the bioavailability and bioaccumulation of As and
other heavy metals [17]. This is accomplished by a variety
of physicochemical mechanisms, including adsorption,
precipitation, and complexation [18, 19]. Additionally,
the use of BC can also improve soil physicochemical
properties and reduce phytotoxicity, leading to either
maintained or increased crop yields [20, 21]. By com-
bining these novel approaches with conventional meth-
odologies, we can provide complete solutions to reduce
the toxicity of As in crops such as O. sativa. Like BC,
vermicomposting is also an eco-friendly way to improve
soil physicochemical and biological qualities, as well as
crop productivity. Vermicompost (VC) can efficiently
retain toxic metals from soil solutions and restrict the
transportation of As in O. sativa [22]. Furthermore, phy-
toremediation is receiving increasing attention as a viable
alternative for As remediation that is both cost-effective
and ecologically sustainable. Duckweed (DW) (Lemna
minor L.) has the greatest capacity to acquire As from
contaminated water, and its prevalence in flooded rice
fields is widespread in Bangladesh [23, 24].

Numerous studies have investigated the individual
effects of BC, VC, and DW on O. sativa cultivated in As-
contaminated soil, revealing their potential to mitigate As
buildup in the seedlings [23, 25, 26]. However, no study
has examined how these amendments work together to
minimize the negative effects of As in O. sativa, and their
ideal application rate to reduce As buildup is unknown.
In Bangladesh, where BC, VC, and DW are not only eco-
nomically accessible but also abundantly available, it is
crucial to investigate practical solutions that utilize these
cost-effective and locally abundant resources to effec-
tively mitigate the adverse impacts of As on O. sativa.
Given that O. sativa is a crop of great worldwide impor-
tance and a staple in Bangladesh, it is crucial to address
the issue of As contamination in O. sativa in order to
safeguard food security and public health.

Considering the above facts, we set our objectives (i) to
evaluate the efficiency of combined applications of BC,
VC, and DW on morpho-physiological and biochemical
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Table 1 Properties of soil samples, biochar, and vermicompost before application of fertilizer

Materials pH OM (%) 0OC (%) Total-N (%) Available P Exchangeable K Total As (mg kg")
Soil 52 2.58 15 0.129 23.1mgkg™! 0.28 (meq 100 g~ soil) 0.03
Biochar (BC) 11.01 7.28 0.626 0.81% 0.98% -
Vermicompost (VC) 73 1830 - 0.72 2513 mg kg’ 0.73 (meq 100 g~ soil) -
Table 2 The independent variables with their coded and actual values
Independent variables Codes Coded and actual values
-1.682 -1 0 +1 +1.682
Lowest dose Low dose Moderate dose High dose Highest dose
Biochar (BC) (%, w/w) A 0.1 0.28 0.55 0.82 1.0
Vermicompost (VC) (%, w/w) B 1.0 18 3.0 42 5.0
Duckweed (DW) (g m™) C 100 160 250 340 400

growth attributes of O. sativa in As-contaminated soil
and (ii) to identify the best BC-VC-DW combination that
can enhance O. sativa grain yield (GY) while reducing the
As content in the grains (G-As). Here, we hypothesize
that the strategic use of BC, VC, and DW will not only
improve the GY but also reduce the G-As content in the
O. sativa in As-contaminated soil. The findings of the
study could be an eco-friendly and low-cost technique
to reduce As content from the O. sativa grain and ensure
food security applicable in Bangladesh and worldwide.

Methodology

Pot experiment

The pot experiment was conducted in a plastic shed at
Sylhet Agricultural University, Bangladesh (24°54'33.12"
N, 91°54'7.2" E) (Fig. S1). Soil samples were collected
from the nearby area at a depth ranging from 0 to 15 cm.
These soil samples were then placed in a net house and
left to dry naturally. Prior to potting, soil was ground
manually and mixed well, and physical and chemical
properties were determined. The properties of soil, BC,
and VC before starting the experiment were presented in
Table 1.

The SL-8 H, a high-yielding hybrid variety of O. sativa
seed, was obtained from the Bangladesh Agricultural
Development Corporation (BADC) and utilized as the
test crop due to its widespread cultivation in the Sylhet
region, Bangladesh. Five kilograms of dry soil were placed
into each plastic pot, and varying concentrations of BC
and VC were added according to the experimental design.
The soil was then flooded with water and left overnight.
The following day, sodium arsenate (Na,HAsO,.7H,0)
was applied at a concentration of 20 mg kg™!, and the
pots were incubated for seven days before O. sativa seed-
lings were transplanted [27-29]. The soil was amended
with the recommended doses of urea (120 ppm), triple
superphosphate (25 ppm), potassium (40 ppm), sulfur
(12.5 ppm), and gypsum (120 ppm). The urea was applied
in three equal doses: one-third as a basal dose, and the
second and third applications were conducted at 30 days

(during the maximum tillering stage) and 70 days (dur-
ing the panicle initiation stage) after transplantation,
respectively. Two 45-day-old O. sativa seedlings were
transplanted into each pot, and varying concentrations of
DW were added. From the time of transplantation until
physiological maturity, the water level was maintained at
2—4 cm above the soil level in the pots using As-free tap
water. Throughout the growing season, several cross-cul-
tural interventions were implemented.

Experimental design

The response surface methodology (RSM) was employed
to optimize BC, VC, and DW application rates in order to
get maximum GY and minimum G-As in O. sativa. The
optimization process involved the selection of a central
composite design (CCD). The dependent or response
variables in the study comprised O. sativa GY, As con-
tent, and a variety of morpho-physiological and biochem-
ical growth indicators, while the independent variables
were BC, VC, and DW. We selected five different levels
(+1.682, +1, 0, -1, -1.682) of BC, VC, and DW (provided
in Table 2 and Fig. S2), and their application rates were
chosen based on the previous literature [30-32].

The number of experimental treatments, as deter-
mined by RSM, was 18, including the control (Presented
in Table 3). Three replicates of each treatment were con-
ducted, resulting in a total of 54 pots. These pots were
randomly arranged in the plastic shed.

A second-order polynomial model was used to fit the
experimental data:

Y = Byt BiA + BB + BiC + BoAB + BisAC + B BC + B A% + fnB? + BuC? (1)

Here, the variable Y is used to represent response vari-
ables, the constant coefficient is denoted by 3, the inter-
pret linear coefficients are denoted by B;, B,, and B, the
interaction coefficients are denoted by Bi,, B3, and Pys,
the quadratic coefficients are denoted by B;;, By, and Pgs,
and the coded values of BC, VC, and DW are denoted by
the letters A, B, and C respectively.
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Table 3 Treatment combinations and their experimental layout in the central composite design

Treatments Coded level of factors Quantity applied

Biochar (BC) Vermicompost (VC) Duckweed (DW) BC VvC DW

(%, w/w) (%, w/w) (gm)

1 Control (BC,VC,DW,) 0 0 0
2 BCy26VC1 sDW, g -1 -1 -1 028 18 160
3 BCysVC1 sDWig 1 -1 -1 082 18 160
4 BCy28VCsDW, g -1 1 -1 028 42 160
5 BCyg,VCy,DW ¢ 1 1 -1 0.82 4.2 160
6 BCyVC1 gDWayg -1 -1 1 028 18 340
7 BCyg,VCy gDWayg 1 -1 1 0.82 1.8 340
8 BCy,VCy,DWayy -1 1 1 0.28 4.2 340
9 BC2VCs:DWsyg 1 1 1 082 42 340
10 BC,,VC;DW,5 -1.682 0 0 0.10 3.0 250
11 BC,VCsDWae, 1682 0 0 1.00 30 250
12 BCy55VC,DWos, 0 1682 0 055 10 250
13 BCy55VCsDW,5 0 1.682 0 0.55 5.0 250
14 BCy55VC3DW, o 0 0 -1.682 055 30 100
15 BCy55VC3DW 00 0 0 1.682 0.55 3.0 400
16 BCy55VC3DWosy 0 0 0 055 30 250
17 BCy55VC3DWoe 0 0 0 055 30 250
18 BCy55VCsDW,50 0 0 0 0.55 3.0 250

*In above, BC, ,3 means biochar @ 0.28% w/w, VC,  means vermicompost @ 1.8% w/w, and DW,s, means duckweed @ 160 g m~

Assessment of morpho-physiological and biochemical
growth parameters

The growth of O. sativa was assessed by measuring vari-
ous parameters including shoot length (SL, cm), root
length (RL, cm), panicle length (PL, cm), grain yield g
pot™' (GY), number of filled grains panicle™! (NEG),
number of unfilled grains panicle™! (NUG), 1000-grain
weight (1000-GW, g), and above-ground biomass (ABG,
g), and below-ground biomass (BGB, g). The SL, RL, and
PL were measured by a meter scale. The ABG and BGB
were determined by subjecting plant samples to a dry-
ing process in an oven set at a temperature of 80 °C for
72 h [33]. The chlorophyll content of O. sativa was quan-
tified using the SPAD (Soil Plant Analysis Development)
method. The assessment was conducted using a portable
Minolta chlorophyll meter (SPAD-502, Osaka 590-8551,
Japan) [34].

To measure the As content (mg kg™ '), root, straw, and
grain samples underwent digestion using a mixture of
nitric acid (HNO,) and perchloric acid (HCIO,) in order
to measure the concentrations of As using a hydride gen-
eration atomic absorption spectrophotometer [35].

Hydrogen peroxide (H,0,, pmol g! FW) levels were
determined according to Velikova et al. [36]. Leaf tissues
(500 mg) were homogenized in the ice bath with 5 ml
0.1% (w/v) trichloroacetic acid (TCA). The homogenate
was centrifuged at 10,000 rpm for 15 min and 0.5 ml
of the supernatant was added to 0.5 ml 10 mM potas-
sium phosphate buffer (pH 7.0) and 1 ml 1 M Potassium
iodide, and the absorbance of the supernatants was read
at 390 nm. The malondialdehyde (MDA, pmol g™ FW)

content in leaf samples of O. sativa was estimated as
described by Roy et al. [37]. Extract (2 mL) was mixed
with an equal volume of 0.5% (w/v) 2-thiobarbituric acid
(TBA) (TBA, dissolved in 15% TCA), and the mixture
was heated for 30 min at 100 °C followed by cooling in an
ice bath. The mixture was then centrifuged at 10,000 rpm
for 10 min, and the absorbance of the supernatants was
read at 450, 532, and 600 nm using Pharmacia Ultra Spec
Pro UV/VIS spectrophotometer (Pharmacia, Cambridge,
England).

Fresh leaf samples were homogenized in a mortar
and pestle (ice-cold conditions) using 8 mL of 50 mM
sodium phosphate buffer (pH 7.8) and the homogenates
were centrifuged at 10,000 rpm for 20 min at 4 °C. The
supernatant was separated and used for the estimation
of enzyme activities [38]. The activity of superoxide dis-
mutase (SOD, EC 1.15.1.1, U g} FW) was assayed follow-
ing the method of Roy et al. [37]. In short, the reaction
mixture containing 3 mL of phosphate buffer (pH 7.8),
0.6 mL of 130 mM methionine buffer, 0.6 mL of 750 uM
nitroblue tetrazolium buffer, 0.6 mL of 100 uM EDTA-Na
buffer and 0.6 mL of 20 uM riboflavin was mixed with
0.2 mL of enzyme extract. The photoreduction of nitro-
blue tetrazolium was determined at 560 nm. The catalase
(CAT, EC 1.11.1.6, U min™* g™* FW) activity was mea-
sured based on the method of Beers and Sizer [39]. In
brief, 100 pL enzyme extract was mixed with a reaction
mixture (2.6 mL) containing 100 mM phosphate buffer
(pH 7.0) and 20 mM H,0O,. The reduction in H,0, was
monitored at 240 nm. Enzyme activity was expressed
as CAT U min™ g' FW. Ascorbate peroxidase (APX)
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activity was determined by measuring the reduction of
ascorbic acid [40]. Briefly, 0.1 mL of enzyme extract was
mixed with 2.9 mL of 50 mM phosphate buffer (pH 7.0)
having 0.5 mM ascorbic acid and 0.1 mM H,0,. The
reduction of ascorbic acid was obtained by recording the
decrease of absorbance at 290 nm.

The Bioconcentration factor (BCF) and translocation
factor (TF) were calculated according to Sikdar et al. [41].
The BCF root (BCF-R), BCF straw (BCE-S), BCF grain
(BCE-@G), TF root-straw (TFr-s), TF root-grain (TFr-g)
were calculated as follows: As, . /As i, ASg.../As

soil? straw’ soil’
ASgrain/ ASgoit ASgran/ ASyoor and ASypyn/As

straw grain root*

Data analysis

The optimal BC, VC, and DW rates were obtained
through the utilization of Design Expert statistical soft-
ware version 11 (Stat-Ease, USA). This was accomplished
by combining an optimization process with the derrin-
ger’s desired function approach. Principal component
analysis of the several growth traits was carried out using
Origin 2018 (OriginLab Inc, USA). A heatmap was gen-
erated using the online program package available at
https://biit.cs.ut.ee/clustvis.

Results

The addition of a high amount of BC, VC, and DW
enhanced the shoot length of O. sativa (SL) compared to
control. More specifically, the BC,4,VC,,DW;,, treat-
ment significantly (p<0.05) increased SL by 19.4% com-
pared to control (Fig. 1a and Fig. S3). The use of BC, VC,
and DW in various treatments significantly increased O.
sativa root length (RL) by 0.2-44.5% compared to con-
trol seedlings (except BC,,sVC, sDW,,,) (Fig. 1b). In
comparison with control, treatments BC, 4,VC, ,DW ¢,
BC.5,VC1sDW340 BCj55VCy,DW3y0 and BC,VC;DW 5
significantly (p<0.05) increased panicle length (PL) by
30.8, 30.1, 41.3 and 36.3%, respectively (Fig. 1c). The
application of BC, VC, and DW had a notable impact on
the SPAD value, resulting in an increase of 15.6-29.6%
compared to the control treatment (Fig. 1d). The addi-
tion of high BC-VC and low DW (BC4,VC,,DW )
significantly (p<0.05) increased above-ground biomass
(AGB) by 27% compared to control (Fig. le). The addi-
tion of BC, VC, and DW considerably boosted below-
ground biomass (BGB) in O. sativa seedlings, rising by
4.3-62.6% compared to control seedlings (except for
BCy4sVC; sDWy,,) (Fig. 1f).

We observed that the addition of BC, VC, and DW sig-
nificantly increased O. sativa grain yield (GY) pot™, with
BCy55VCs;DW 5, showing the highest increase, measur-
ing 44.4% higher than the control seedlings (Fig. 2a).
The treatment BC,3,VC,,DW;,, significantly (p<0.05)
increased the number of filled grain panicle’ (NFG)
by 15.7% compared to control, while BC,;;VC;DW 4,
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displayed the lowest number (7.6) of unfilled grain
panicle! (NUG) (Fig. 2b-c). Seedlings exposed to
BC 8,V Cy2DW 60 BCogVC1sDW 340, BCj 7V Cy,DW3gg
and BC,VC,DC,y, presented a significant (p<0.05)
enhancement in 1000-grain weight (1000-GW), which
were 20.8, 16.2, 21.7 and 21.0% higher, respectively, than
the control (Fig. 2d).

The As content in O. sativa root (R-As), straw (S-As),
and grain (G-As) was significantly reduced in all treat-
ments when compared with control. For example,
under treatment BC,4,VC,,DW,,, O. sativa exhib-
ited remarkable declines in R-As by 41%, S-As by 60%,
and G-As content by 56%, relative to control (Fig. 3a-
¢). All combinations of BC, VC, and DW treatments
caused a significant (p<0.05) decline in H,0, and
MDA contents; however, the plants that were exposed
to high (BCy4,VC,,DW;,,) and moderate levels
(BCy55VC30DWy5) of BC, VC, and DW showed a greater
decline of H,0O, and MDA contents over the control
(Fig. 3d and e). When O. sativa seedlings were subjected
to treatments BC;, ,4VC, {DW ¢, BC 55VC,,DW ¢, and
BC, 55 VC;DW g their levels of SOD, CAT, and APX dra-
matically increased in their leaves compared to the con-
trol group; all other treatments caused a notable decline
in these activities (Fig. 3f-h).

Our results indicate a decrease in the BCF-R, BCE-
S, BCE-G, TFr-s, and TFr-g values with the application
of BC, VC, and DW. A remarkable decline in BCF-R
(19-47%), BCEF-S (43-60%), BCF-G (22-56%), TFr-s
(26-44%), and TFr-g (12-29%) was observed across treat-
ments compared to the control (Table 4). Furthermore,
all BCF and TF values, except BCE-R, are lower than 1
(Table 4). We also observed that soil pH increased by
1.72-33.1% across the various treatments compared to
the control (Table 4).

Interactive effects of BC, VC, and DW on GY and G-As of O.
sativa using RSM

Utilizing RSM, 3D surface plots were made to look into
how BC, VC, and DW interact with each other to affect
the GY and G-As of O. sativa. The relationship between
the two variables (x and y) and their impact on GY and
G-As in the z-axis is depicted in Figs. 4a—f and 5a-f. Each
figure illustrates the impact of two factors while main-
taining the third factor at a central level.

The interactive effect of BC, VC, and DW over GY
displayed that under As contaminated soil, the GY of O.
sativa increased linearly with the mutual increase of BC
and VC additions (Fig. 4a and b). Interactive effects of
DW x BC (Fig. 4c and d) and DW x VC (Fig. 4e and f)
showed that the GY initially increased with the increase
of DW concentrations up to a certain level (250 g m™),
whereas it started to decline with the increase of DW
above this level. However, GY consistently increased with
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Fig. 1 Depicts the effects of various biochar-vermicompost-duckweed (BC-VC-DW) regimes on (a) shoot length (SL), (b) root length (RL), (c) panicle
length (PL), (d) SPAD, (e) above-ground biomass (AGB), and (f) below-ground biomass (BGB) of O. sativa seedlings. Bars with distinct small letters indicate
significant differences at p <0.05. The values represent the mean +standard error (n=3)

the increase in BC and VC additions, regardless of DW
level.

All three factors considerably decreased the G-As con-
tent in O. sativa. Figure 5a-f showed that G-As content
markedly increased with the decrease of BC, VC, and
DW doses. The RSM plot demonstrates that G-As con-
tent was found to be 0.187 mg kg with the addition of
VC from 2.6 to 4.7% and BC from 0.55 to 1.0% (Fig. 5a—
b). The addition of DW from 230 to 400 g m™ and BC
from 0.48 to 1.0% also has a remarkable effect on decreas-
ing the G-As content, which was 0.182 mg kg (Fig. 5¢c—
d). Similarly, supplementation of DW from 240 to 390 g
m™? and VC from 2.6 to 4.6% resulted in 0.188 mg kg™ As
in the O. sativa grain (Fig. 5e—f).

The regression coefficients in Table S1 provide the sig-
nificance and nature of the effects of the factors (BC, VC,
DW) on the different growth responses of O. sativa. Posi-
tive coefficients indicate a positive relationship between
the factor and the response variable, while negative coef-
ficients indicate a negative relationship. The positive
coeflicients for (3;, B,, and B; suggest that the additions of
BC, VC, and DW have synergistic effects on the growth
traits of O. sativa. Specifically, BC and VC additions
exhibit synergistic effects on several growth parameters
such as SL, RL, PL, SPAD, GY, NFG, NUG, 1000-GW,
AGB, and BGB. However, they have antagonistic effects
on some other parameters. Similarly, DW additions have
synergistic effects on certain growth parameters like SL,
RL, PL, NFG, and 1000-GW, but antagonistic effects on
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Fig. 2 Depicts the effects of various biochar-vermicompost-duckweed (BC-VC-DW) regimes on (a) grain yield pot ™', (b) number of filled grain panicle™',
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(c) number of unfilled grain panicle™' and (d) 1000 grain weight of O. sativa seedlings. Bars with distinct small letters indicate significant differences at

p <0.05.The values represent the mean +standard error (n=3)

other parameters. The coefficients 3,5, B;5, and B, repre-
sent the interaction effects BC x VC, BC x DW, and VC
x DW, respectively, on various growth traits of O. sativa
(Table S1).

Principal component analysis and heatmap methods

The first seven principal components (PCs) of principal
component analysis (PCA) were associated with eigen
values above one, and the first two PCs explained 76.15%
(PC1=65.42% and PC2=10.73%) of the total variation
(Fig. 6a).

Figure 6a showed that increases in BC and VC doses
caused a clear separation of PC1, with the high BC-VC-
containing treatments positioned on the left side of the
PC1 positively connected with BGB, AGB, pH, GY, RL,
PL, 1000-GW, SPAD, SL, and NFG, and negatively cor-
related with the contents of R-As, S-As, G-As, BCF-
R, BCF-G, BCF-S, TFr-s, TFr-g, H,0,, and MDA, and
activities of SOD, CAT, and APX. Whereas the lowest BC
and VC-containing treatments were located on the right
side of PC1 and demonstrated positive associations with
plant As content, ROS, and antioxidant enzyme activities
(Fig. 6a).

The heatmap analysis revealed two primary clus-
ters, which corresponded to the BC,4,VC, :DW g,
BC, 55 VC;DW 00 control, BCy,5VC, sDW o
BC55VCiDWas0, BCpogVCyDWigg BCpagVCi sDW3yg
and BC,;VC;DW,, on the right, while the remaining
treatments were located on the left side (Fig. 6b). Treat-
ments with low SL, RL, GY, SPAD, NFG, pH, PL, 1000-
GW, AGB, and BGB, and high R-As, S-As, G-As, BCF-R,
BCE-G, BCE-S, TFr-s, TFr-g, H,0,, MDA, and antioxi-
dant enzyme activities clustered on the right. In contrast,
the treatments grouped together on the left because they
had low levels of As accumulation, H,O,, MDA contents,
antioxidant enzyme activities, and high levels of morpho-
logical growth traits (Fig. 6b).

Fitting the RSM and identification of optimum BC, VC, and
DW combination

ANOVA suggested quadratic, 2FI, and linear models for
various growth parameters. Table S2 demonstrates that
all models had P-values below 0.05 and lack-of-fit F-val-
ues greater than 0.05, indicating their statistical validity.
Differences between the adjusted R* and predicted R®
values were within 0.2 of each other, except for SL and
NUG, suggesting a robust correlation between them [42].
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Fig. 3 Depicts the effects of various biochar-vermicompost-duckweed (BC-VC-DW) regimes on the contents of (a) root-As (R-As), (b) straw-As (S-As),
(©) grain-As (G-As), (d) hydrogen peroxide (H,0,), () malondialdehyde (MDA), and activities of (f) superoxide dismutase (SOD), (g) catalase (CAT), and
(h) ascorbate peroxidase (APX) in O. sativa leaves. Bars with distinct small letters indicate significant differences at p<0.05. The values represent the

mean +standard error (n=3)

We employed a response surface methodology to
determine the optimal application doses of BC, VC, and
DW to maximize GY and minimize G-As in O. sativa
(Fig. 7). We maintained G-As at their minimum level

while maximizing GY. Other parameters were kept
within their ranges during analysis (Fig. 7). Following
these conditions, the software generated 43 solutions.
Among them, solution no. 1, with a desirability score of
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Table 4 Effects of various biochar-vermicompost-duckweed (BC-VC-DW) regimes on the Bioconcentration Factor (BCF), Translocation
Factor (TF) of O. sativa and soil pH. Different letters (a, b, ¢, etc)) indicate significant differences at P<0.05, according to LSD test (n=3).
BCF root (BCF-R), BCF straw (BCF-S), BCF grain (BCF-G), TF root-straw (TFr-s) and TF root-grain (TFr-g)

Treatments BCF-R BCF-S BCF-G TFr-s TFr-g Soil pH

CK (BCVC,DW,) 1.506+0.04a 0.225+0.005a 0.02+0.001a 0.171+£0.01a 0.015+0.001a 523+0.12b

BCy2VC, sDWigo 1.255+0.02b 0.129+0.003b 0.016+0.001b 0.102+001b 0.013+0.001ab 552+0.09ab
BCy,VCy sDW,go 1.086+0.02d 0.11+0.002def 0.014£0.001bcde 0.114£001b 0.013+0.001ab 6.38+0.06ab
BCy28VC,5DW g 1.242+0.02b 0.122+0.003bc 0.014+0.001bcd 0.101+0.01b 0.011+0.001b 5.87+0.07ab
BCy2VC1DWog0 0.868+0.02efg 0.099+0.001fgh 0.012+0.001cdefg 0.123+001b 0.013+0.001ab 6.71+0.14ab
BCy,8VCy gDWayg 1.238+0.02b 0.114+0.003cde 0.013£0.001bcdef 0.098+0.01b 0.011+0.001b 545+0.14ab
BCpg,VC, sDWsyg 0.896+0.01efg 0.099+0.001gh 0.01+0.001efg 0.1+0.02b 0.012+0.001ab 6.46+0.09ab
BCy5VCy,DWayg 1.147+0.02bcd 0.106+0.002efg 0.012+0.001cdefg 0.11+0.01b 0.011£0.001b 5.81+0.13ab
BChg,VCs,DWayg 08+001¢g 0.091+0.002 h 0.009+0.001 g 0.1+£0.02b 0.011+0.001b 6.54+0.09ab
BCy,VC3DWos, 1.223+0.02bc 0.119+0.001bcd 0.014+0.001bc 0.114+001b 0.012+0.001ab 532+0.13ab
BC,VC;DW,g, 0.937+0.07ef 0.097 +£0.002gh 0.011£0.002defg 0.108+0.01b 0.011+0.002b 6.96+0.17a

BCy55sVC,DWos 1.109+0.03 cd 0.12+0.001bcd 0.015+0.001bc 0.092+0.01b 0.013+0.001ab 6.08+0.12ab
BCy55VCsDW,sg 0.839+0.02 fg 0.096+0.002gh 0.011+0.002efg 0.105+001b 0.013+0.002ab 6.37+0.15ab
BCy55VCsDW g 1.198+0.01bcd 0.12+0.005bcd 0.015+0.001bc 0.092£0.02b 0.012+0.001ab 6.27+0.11ab
BCy55VC3DW,0 0.86+0.02¢efg 0.106 +0.004efg 0.01+0.001efg 0.101+001b 0.012+0.001ab 6.21+0.12ab
BCy55VCDW s 0.953+£0.03ef 0.096 +0.006gh 0.01+0.001 fg 0.104£0.07b 0.011£0.001b 6.22+0.13ab
BCy55VC;DWaeg 0927 +0.03ef 0.098+0.007gh 00140001 g 0.104+001b 0.011+0.001b 624+0.11ab
BCy55VC3DW,eg 0.965+0.03e 0.097 +0.008gh 0.01+0.002efg 0.107+001b 0.011+0.002b 6.26+0.12ab

0.976, was selected (Fig. 7). Ultimately, we found that
utilizing BC (0.76%), VC (4.62%), and DW (290.0 g m™)
led to higher GY (32.96 g pot™") and lower G-As content
(0.189 mg kg™**) in O. sativa (Fig. 7).

Discussion

Arsenic (As) pollution poses a critical environmental
and public health concern in Bangladesh, particularly
due to the widespread contamination of groundwater.
The extensive use of contaminated groundwater for irri-
gation exacerbates the issue because As accumulates
in the soil and affects crops, notably O. sativa. The O.
sativa has a propensity for absorbing As from both soil
and water, making it susceptible to contamination. Given
Bangladesh’s heavy reliance on O. sativa production for
sustenance, this contamination presents a significant
risk to public health. The long-term consumption of As-
contaminated O. sativa can lead to serious health prob-
lems [43]. Furthermore, As inhibits the biomass growth
and yield of O. sativa, compounding the agricultural and
health challenges [11]. To address these issues, the pres-
ent study was undertaken to investigate the effects of
different combinations of BC, VC, and DW in improv-
ing the physio-morphological growth and grain yield of
O. sativa while reducing the concentration of As in the
grain.

The study found that the addition of BC, VC, and DW
significantly improved the morphological growth param-
eters of O. sativa, such as plant height, root length, and
panicle length (Fig. 1). The BC can modify soil physio-
chemical properties [44], increase nutrient and water
retention [45], inhibit harmful bacteria, absorb metal

ions and pesticides, and increase soil pH, nutritional sta-
tus, and cationic exchange capacity (CEC) [46]. The VC
also plays a vital role in enhancing O. sativa growth due
to increased nutrient availability in the soil [47]. Previous
studies have shown that earthworms from VC enhance
nitrogen levels and increase nutrient access to plants,
promoting vegetative growth [48, 49].

In addition, we noticed that the combination of BC
and VC considerably increased the soil pH (Table 4). The
increase in pH can have several beneficial impacts on
soil chemistry and plant growth. Elevated soil pH levels
can reduce the solubility and movement of harmful sub-
stances such as As by facilitating the creation of less solu-
ble arsenate compounds [50]. The alteration in pH might
reduce the availability and absorption of As by plants, as
evidenced by a decrease in As levels in the roots, straw,
and grain of O. sativa with all amendment treatments in
comparison to those without any amendments (Table 4;
Figs. 3a-c and 5a-f). Moreover, the decrease in As uptake
by plants following BC and VC treatments, suggesting a
shift in the redox status of As within the soil-plant eco-
system towards less bioavailable forms [51]. This reduc-
tion can be attributed to factors such as the creation of
reducing conditions, adsorption of As onto treatment
materials, soil health, microbial activity enhancement,
and complexation of As with organic matter present
in VC [52]. Furthermore, the elevated pH caused by
the addition of BC and VC may result in the formation
of insoluble compounds, causing As to precipitate and
making it less accessible for plants to absorb [53]. The
PCA and heatmap also illustrate a negative association
between high BC and VC content and As levels in O.
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vermicompost on O. sativa grain yield (GY) g pot™'

sativa. Moreover, DW is known for absorbing many pol-
lutants, including As. The DW in As-contaminated water
absorbs and reduces As, which may improve O. sativa
growing in As-contaminated soil [54].

The observed increase in SPAD values following the
incorporation of BC and VC signifies a positive influence
on enhancing chlorophyll content in O. sativa grown in
As-contaminated soil. This enhancement can be attrib-
uted to several mechanisms associated with BC and VC

amendments. Firstly, BC and VC can influence soil pH
and ion exchange processes, with BC potentially increas-
ing soil pH while VC buffers pH fluctuations. Optimal
soil pH is crucial for chlorophyll synthesis as it affects
the availability of essential nutrients like nitrogen and
magnesium. Additionally, the high CEC of BC enhances
nutrient retention and availability, further supporting
chlorophyll production [55], as we noticed in the pres-
ent study. This aligns with findings from previous studies
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that have demonstrated the role of compost and BC in
increasing physiological activity and total chlorophyll
concentrations in leaves [56]. The interactive effects of
BC, VC, and DW on morphological growth and chloro-
phyll content in O. sativa were further supported by PCA
analyses, heatmap, and interaction table, providing com-
prehensive evidence of their synergistic benefits (Fig. 6
and Table S1).

The interaction effect of BC, VC, and DW exhibited
that the grain yield of O. sativa steadily enhanced with
the increase of BC and VC levels in As-contaminated soil,
regardless of DW concentrations (Fig. 4a-f). The PCA
analysis, heatmaps, and regression coefficient values also
showed that high dosages of BC and VC-treated O. sativa
seedlings increased grain yield and yield-contributing
features. The improved photosynthesis was linked to the
increased production of O. sativa grain under As stress
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morphological and physiological growth responses of O. sativa
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[57]. The present research showed that BC, VC, and DW
applications substantially increased the SPAD value of
chlorophyll content, which plays a significant role in
improving the net photosynthetic rate (Fig. 1d). Con-
sidering the various nutrients in BC, VC, and DW, we
assumed that nutrients such as N, P, K, Fe, Mn, Cu, and
Mg from these organic fertilizers uptaken by O. sativa
could improve photosynthesis and consequently enhance
grain yield. The results of our research are consistent with
earlier studies that have demonstrated that the adminis-
tration of organic fertilizer at appropriate quantities can
increase the levels of pigments and improve the yield of
different plants under As stress [58, 59].

The As induces oxidative damage in plant leaves, as
indicated by elevated levels of MDA and increased pro-
duction of reactive oxygen species (ROS), including H,O,
[60]. In comparison to the control treatment, all com-
binations of BC, VC, and DW treatments significantly

reduced H,O, and MDA levels in O. sativa seedling
leaves (Fig. 3d-e). Oxidative stress in plants, leading to
irreversible damage to membrane structures through
lipid peroxidation, is associated with the presence of
MDA and H,0, [33, 38]. Shabbir et al. [61] demonstrated
that arsenic significantly exacerbates oxidative stress,
resulting in substantial damage to membrane structures
and cell death in plants. However, the application of BC
and other organic fertilizers led to a notable decrease in
H,0, and MDA levels, thereby enhancing membrane
stability. According to Siddiqui et al. [62], H,O, poses
greater harm when converted into highly toxic hydroxyl
anions. Therefore, it is essential to convert these ROS
into non-toxic compounds to support plant survival
[43]. This conversion process is facilitated by numerous
antioxidant enzymes found in different cellular compart-
ments [63, 64].
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The BC, VC, and DW have demonstrated significant
potential in alleviating the negative effects of As-con-
tamination on O. sativa seedlings, particularly through
modulation of antioxidant enzyme activities. The BC
application has been shown to enhance activities of key
antioxidant enzymes such as SOD, CAT, and APX in the
leaves of O. sativa seedlings grown in As-contaminated
soils, aiding in the scavenging of ROS and reducing oxida-
tive damage [61, 65]. Similarly, VC, rich in organic matter
and beneficial microorganisms, can enhance antioxidant
enzyme activities in rice seedlings under As stress, con-
tributing to ROS detoxification and cellular protection
[57]. This suggests that increased antioxidant enzyme
activity could serve as a response mechanism to enhance
As stress tolerance in plants. Antioxidant enzymes are
overproduced under As stress to reduce ROS to non-
toxic levels [42]. Enhanced antioxidant enzyme activities
remove excess ROS, accelerate the immune system, and
decrease the negative effect of stress conditions on differ-
ent plant species [32, 66]. Findings of the current study
from PCA, heatmap, and regression coefficient value also
indicated that H,O, and MDA contents and the activi-
ties of SOD, CAT, and APX in the O. sativa seedlings are
positively correlated with the high BC-VC-containing
treatments and negatively correlated with the low BC-VC
containing treatments.

The bioconcentration factor (BCF) and translocation
factor (TF) values are crucial indicators of the uptake
and movement of metals by plants [67]. Understand-
ing these values is essential for assessing the status and
dynamics of As transfer from soil to plants [68]. Our
experimental data revealed a decrease in BCF values for
roots, straw, and grain as the levels of BC, VC, and DW
increased, compared to the control (Table 4). The appli-
cation of BC and VC likely contributed to a significant
reduction in metal availability, leading to lower BCF val-
ues [68]. This reduction in metal accumulation is attrib-
uted to the ability of BC and VC to immobilize metals,
thus decreasing their concentrations in plant tissues by
enhancing overall biomass [69]. Similarly, the TF (TFr-s
and TFr-g) consistently decreased with increasing incor-
poration of BC, VC, and DW. This indicates that the use
of these amendments resulted in the immobilization of
As in roots, thereby hindering its subsequent uptake and
translocation to straw and grain. Furthermore, when BC,
VC, and DW are employed in cultivating O. sativa in As-
contaminated soil, several changes in soil parameters are
expected. The BC aids in reducing As absorption by O.
sativa plants through As adsorption, potentially lower-
ing post-harvest soil As levels [70]. The VC enhances soil
fertility by supplying essential plant nutrients, improving
soil structure, and promoting microbial activity, which
can aid in immobilizing and degrading As in post-harvest
soil [25]. Additionally, DW, known for its ability to absorb
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heavy metals, could have sequestered As from the soil,
thereby reducing As levels in post-harvest soil. Together,
these amendments positively influence soil parameters
by increasing nutrient availability, stimulating microbial
activity, improving soil structure, and potentially mitigat-
ing As contamination. This creates a conducive environ-
ment for crop growth while minimizing the risk of As
accumulation in O. sativa seedlings.

The primary aim of this study is to determine the opti-
mal combination of BC, VC, and DW that can effectively
reduce the As content in O. sativa grains while maintain-
ing grain yield. Our findings indicate that under the con-
ditions of BC (0.76%), VC (4.62%), and DW (290.0 g m™?),
we achieved the desired outcome, with the As content in
O. sativa grains measuring 0.189 mg kg~' (Fig. 7). This
level falls below the maximum inorganic As level per-
mitted in husked O. sativa, as established by the Codex
Alimentarius [71]. Given its potential practical implica-
tions, we suggest that the combined application of the
aforementioned optimal doses of BC, VC, and DW could
be recommended for O. sativa cultivation in As-contami-
nated areas. This approach holds promise for reducing As
accumulation in O. sativa grains, thereby enhancing food
quality and safety. However, additional field experiments
are required to validate these results before making any
recommendations, ensuring the findings’ reliability and
reproducibility across diverse agricultural settings.

Conclusions

Our study highlights the significant potential of BC, VC,
and DW in mitigating As contamination effects on O.
sativa cultivation. We have demonstrated their efficacy
in enhancing key agronomic parameters, such as plant
height, panicle length, and SPAD value, leading to a sub-
stantial increase in grain yield per pot. Moreover, these
amendments show promise in reducing the detrimental
effects of As, as evidenced by improvements in param-
eters like the number of filled grain panicles per plant
and 1000-grain weight, ultimately addressing a critical
concern in As-contaminated agricultural soils. Addition-
ally, our investigation reveals a reduction in oxidative
stress, indicated by decreased levels of H,O, and MDA in
leaves, also the As content in root, straw and grain. Uti-
lizing RSM, we have identified an optimal composition of
BC, VC, and DW that maximizes grain yield while mini-
mizing As concentration in O. sativa grains. However,
it's important to acknowledge some limitations in our
study, such as the small-scale experimental setup and the
need for additional validation in field conditions. Future
research should concentrate on understanding under-
lying mechanisms, performing long-term field experi-
ments, and investigating synergistic effects with various
amendments to improve O. sativa cultivation in As-con-
taminated soils. Overall, our research contributes to the
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current understanding and provides a basis for develop-
ing safer agricultural practices in areas affected by As and
other heavy metals.

Abbreviations

AS Arsenic

BC Biochar

VC Vermicompost

DW Duckweed

O. sativa Oryza sativa

GY Grain Yield

G-As Grain As

RSM Response Surface Methodology
cCcb Central Composite Design

SL Shoot Length

RL Root Length

PL Panicle Length
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PCA Principal component analysis
ROS Reactive oxygen species
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