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Abstract 

Anabasis aphylla (A. aphylla), a species of the Amaranthaceae family, is widely distributed in northwestern China 
and has high pharmacological value and ecological functions. However, the growth characteristics are poorly 
understood, impeding its industrial development for biopesticide development. Here, we explored the regenerative 
capacity of A. aphylla. To this end, different lengths of the secondary branches of perennial branches were mowed 
at the end of March before sprouting. The four treatments were no mowing (M0) and mowing 1/3, 2/3, and the entire 
length of the secondary branches of perennial branches (M1–M3, respectively). Next, to evaluate the compensatory 
growth after mowing, new assimilate branches’ related traits were recorded every 30 days, and the final biomass 
was recorded. The mowed plants showed a greater growth rate of assimilation branches than un-mowed plants. 
Additionally, with the increasing mowing degree, the growth rate and the final biomass of assimilation branches 
showed a decreasing trend, with the greatest growth rate and final biomass in response to M1. To evaluate the mech-
anism of the compensatory growth after mowing, a combination of dynamic (0, 1, 5, and 8 days after mowing) 
plant hormone-targeted metabolomics and transcriptomics was performed for the M0 and M1 treatment. Overall, 
26 plant hormone metabolites were detected, 6 of which significantly increased after mowing compared with con-
trol: Indole-3-acetyl-L-valine methyl ester, Indole-3-carboxylic acid, Indole-3-carboxaldehyde, Gibberellin A24, Gib-
berellin A4, and cis (+)-12-oxo-phytodienoic acid. Additionally, 2,402 differentially expressed genes were detected 
between the mowed plants and controls. By combining clustering analysis based on expression trends after mowing 
and gene ontology analysis of each cluster, 18 genes related to auxin metabolism were identified, 6 of which were 
significantly related to auxin synthesis. Our findings suggest that appropriate mowing can promote A. aphylla growth, 
regulated by the auxin metabolic pathway, and lays the foundation for the development of the industrial value of A. 
aphylla.
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Introduction
Anabasis aphylla (A. aphylla), a species of the Amaran-
thaceae family that is widely distributed in northwestern 
China, including in Xinjiang, Gansu, and Qinghai [1], 
plays a key role in the ecological balance of arid areas 
by preventing wind erosion and combating desertifica-
tion[2, 3]. Additionally, A. aphylla has received increas-
ing research attention owing to its high ecological 
functions and pharmacological value [4, 5]. In the assimi-
late branches of A. aphylla, toxic alkaloids were observed 
to be enriched, for example, N-methylanabasine, ana-
basa-mine, isonicoteine [6], which are ideal candidates 
for biopesticides owing to their high antibacterial, fungal 
insecticidal activity. However, studies on A. aphylla have 
mostly focused on their seed germination [3], ecological 
protection [7], and chemical constituents [8]; thus, the 
growth characteristics are poorly understood, impeding 
its industrial development for biopesticide development.

Management of these perennial semi-shrubs involves 
similar measures, for example, mowing [9], irrigat-
ing [10], fertilizing [11], pest control [12], plowing and 
weeding [13], and frost prevention [14]. Mowing is a 
commonly used growth control method in agricultural 
production [15]. Proper mowing can stimulate plant 
growth and branching [16] and increase leaf area and 
photosynthetic efficiency, improving plant yield and 
quality [17, 18]. Compensatory growth, a maladaptive 
compensatory mechanism that reduces mowing stress 
[19–21], is an adaptive strategy for survival, reproduc-
tion, and growth [22]. Therefore, studying plant compen-
satory growth mechanisms is essential to understanding 
plant growth regulation and resource utilization effi-
ciency. Increasing evidence is showing that multiple hor-
mones, including cytokinins, auxins, and gibberellins, 
participate in plant compensatory growth after mowing 
[23–26].

The aforementioned studies have demonstrated that 
transcriptomics and metabolomics are high-throughput 
technologies used widely across life sciences [27–29]. 
In plant science, transcriptome and metabolome tech-
niques are used to study the mechanisms through which 
plants adapt to environmental changes [27, 30, 31]. For 
example, mechanical damage may induce plant responses 
that lead to changes in gene transcription [32, 33] and 
material metabolism [34, 35]. These reactions minimize 
plant cell damage and mitigate the negative effects of 
mechanical damage to plants [36–38]. These findings 
highlight the crucial regulatory role of RNA [39, 40], as 
well as the essential roles of energy [41], metabolism [42], 
and hormones [36, 37] in the repair and growth of dam-
aged tissues. Simultaneous transcriptome and metabo-
lome analyses can interconnect information regarding 
gene expression and metabolic levels, unveiling the 

interactions and regulatory networks between these 
processes [43, 44]. This comprehensive approach can 
broaden our understanding of the mechanisms govern-
ing plant growth and repair after mechanical damage 
and highlight the synergistic interactions among RNA, 
metabolites, and hormones in these processes [45, 46].

In this study, we aimed to explore the regenerative 
capacity of A. aphylla as follows: at the end of March, 
different lengths of the secondary branches of perennial 
branches were mowed; subsequently, every 30 days, the 
new assimilate branches’ related traits were recorded; 
finally, to evaluate the mechanism of the compensatory 
growth after mowing, a combination of dynamic plant 
hormone-targeted metabolomics and transcriptom-
ics was performed. This study provides novel insights 
into increasing the number of perennial branches of A. 
aphylla, laying the foundation for the development of the 
industrial value of A. aphylla for biopesticide.

Materials and methods
Plant material
The experiment was conducted at the Forest Manage-
ment Station situated on the southwestern edge of the 
Gurbantunggut Desert (45°27′N, 85°0′E) in Karamay, 
Xinjiang, China, in 2021. The experimental materials 
were naturally growing A. aphylla semi-shrubs.

Experimental treatment
Before sprouting in the spring, treatments were imple-
mented at four mowing severities: (i) no mowing (M0); 
(ii) less-mowed (M1), 1/3 the length of the second-
ary branches of perennial branches were mowed; (iii) 
middle-mowed (M2), 2/3 the length of the secondary 
branches of perennial branches were mowed; and (iv) 
excessive-mowed (M3), for which, all secondary branches 
of perennial branches were mowed. The experimental 
design used a completely randomized pattern and three 
replicates for each treatment. Each treatment contained 
30 relatively uniform plants.

Phenotypic investigation
For phenotypic analysis, after the material treatment on 
March 25, 2021, the length and basal diameter of assimi-
lation branches on the plants were counted at 30-day 
intervals. After 150 days, we calculated the biomass of 
assimilation branches by mowing all new assimilation 
branches of the year.

Plant collection and tissue sample preparation
Before sprouting in the spring, perennial branch tips 
were collected from the M1 and M0 treatment groups 
at days 0, 1, 5, and 8, using a clean, sharp razor blade, 
after the former was mowed. Three biological repeats 
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were performed during each period. The collected tissue 
samples were immediately frozen in liquid nitrogen and 
stored at -80 °C in a freezer upon return to the labora-
tory. The collection of plant materials complied with rel-
evant institutional, national, and international guidelines 
and legislation.

Detection and analysis of plant hormone‑targeted 
metabolites
This experiment employed the UHPLC-MRM-MS/MS 
method [47] to detect and analyze a total of 88 plant 
hormone-targeted metabolites from 24 tissue samples. 
Qualitative and quantitative results for each sample were 
obtained using mass-spectrum data analysis. Data were 
dispersion-normalized for each metabolite, and metabo-
lites with missing values were removed, yielding a relative 
quantification of each metabolite. Principal component 
analysis and patterns of metabolite accumulation were 
also analyzed.

RNA isolation and detection
Total RNA was isolated from the aforementioned sam-
ples by using an RNA extraction kit (RN40; Aidlab Bio-
technologies, China) per the manufacturer’s instructions. 
RNA purity and concentration were determined using 
 NanoDropTM 2000 (Thermo Fisher Scientific,USA). RNA 
integrity was assessed using an Agient2100, LabChip GX 
(Platinum, Model Platinum Elmer LabChip GX, USA).

PacBio and Illumina Library construction and sequencing
High-quality RNA from stem tip tissues of 24 assimilated 
shoots, obtained from the mowed and control plants, was 
mixed in equal amounts. The mixed product was sub-
jected to damage repair, end repair, and ligation by using 
the SMRTbell Template Prep Kit, resulting in a long-read 
transcriptome library. The qualified library was combined 
with primers and polymerase by using the PacBio Bind-
ing Kit (PacBio, USA). The final reaction product was 
purified using AMpure PB Beads (PacBio) and sequenced 
using a PacBio Sequel II (PacBio) sequencing instrument.

A total of 1 μg RNA per sample was used as the input 
material to generate Illumina sequencing libraries by 
using the VAHTS Universal V6 RNA-seq Library Prep 
Kit for Illumina (New England Biolabs, USA). Index 
codes were added to attribute sequences to each sam-
ple. The quality of each library was then checked using 
the Qsep-400 (BiOptic Inc., Taiwan) method. The Illu-
mina Novaseq 6000 platform (Illumina, USA) was used 
to sequence the qualified library.

Transcriptome assembly and gene functional annotation
The raw reads were processed into circular consen-
sus (CCS) reads using an adaptor. Next, full-length, 

non-chimeric transcripts were identified by searching for 
the polyA tail signal and the 5’ and 3’ cDNA primers in 
CCS. First, the full-length sequences from the same tran-
script were clustered; next, similar full-length sequences 
were clustered to obtain a consistent sequence. Con-
sistent sequences were corrected to obtain high-quality 
sequences for subsequent analyses. Iso-Seq high-quality 
FL transcripts were used to remove redundancies by 
using a cluster database at high identity with tolerance. 
Non-redundant transcripts, measured using full-length 
transcriptome sequencing, were used as references for 
sequence alignment and subsequent analyses.

Gene function was annotated based on the following 
databases: NCBI non-redundant protein sequences (NR), 
protein family (Pfam), Clusters of Orthologous Groups 
(COG), Eukaryotic Orthologous Groups (KOG), a man-
ually annotated and reviewed protein sequence data-
base (Swiss-Prot), the Kyoto Encyclopedia of Genes and 
Genomes (KEGG), and gene ontology (GO).

Differential gene expression analysis
The generated final Clean Illumina sequencing data 
were mapped to non-redundant transcripts obtained 
using full-length transcriptome sequencing. The expres-
sion level of each gene was calculated using the software 
RSEM and converted into fragments per kilobase per 
million fragments based on the read counts.

To identify differentially expressed transcripts at dif-
ferent developmental stages of A. aphylla after mow-
ing, we compared T1 and CK1, T5, and CK5, and T8 
and CK8. The selection of differentially expressed genes 
(DEGs) was based on specific criteria. Subsequently, the 
DEGs were subjected to Mfuzz [48] clustering analysis 
to examine their expression patterns over time. During 
this analysis, we focused on clusters that exhibited rela-
tively stable transcript levels at different time points in 
the natural assimilation branches and similar or opposite 
patterns as target metabolites in the mowed assimilation 
branches, which were considered key candidate clusters. 
GO functional enrichment analysis was performed for 
genes in each module. Plant hormone-related genes and 
their corresponding transcription factors were selected 
for further analysis.

Screening hub genes based on correlation analysis
To reveal the association between key genes and target 
metabolites, we used Spearman’s correlation coefficient 
for correlation analysis between gene expression and 
metabolic abundance. Finally, hub genes were further fil-
tered based on absolute correlation (> 0.7) and adjusted P 
value (< 0.01).
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Data analysis
Data processing and management were conducted using 
Microsoft Excel (Microsoft Office Excel 2019, Micro-
soft Corporation) and the R statistical language (version 
4.3.2). Phenotypic data analysis and visualization were 
executed using the R software package ggplot2 [49], 
leveraging its basic functionalities within the RStudio 
integrated development environment (RStudio, Boston, 
USA). Differential expression analysis was performed 
using the limma package [50] in R, with the selection of 
DEGs based on specific criteria: a false discovery rate < 
0.01, fold change (FC) ≥ 2, and adjusted P value < 0.05. 
Visualization of the GO functional enrichment analysis 
outcomes was achieved in a word cloud created using the 
R package wordCloud [51]. Additionally, the study incor-
porated the cluster database at high identity with toler-
ance tool for the clustering of high-similarity sequences 
with an identity > 0.99. The correlation plot between key 
genes and target metabolites was generated employing 
Cytoscape (version 3.10.1, Cytoscape Consortium).

Results
Phenotypic analysis of compensatory growth of A. aphylla
For the exploration of the regenerative capacity of A. 
aphylla, treatments were performed at four mowing 
degrees before sprouting in the spring, using uniform 
plants (Supplementary figure S1). To compare the impact 
of the treatments, we used a global ANOVA test. In A. 
aphylla, the mowed plants showed a greater basal diam-
eter (Fig. 1A) and longer branches (Fig. 1B) of assimila-
tion branches than un-mowed plants from 60 days after 
treatment, especially in the latter stages. Additionally, M1 
resulted in significantly (P < 0.05) thicker basal diameter 
and longer branches of assimilation branches than the 
other two treatments. Finally, the biomasses of assimi-
lation branches of the four treatments at 150 days were 
measured, and the biomass of assimilation branches was 
greater for the mowed than un-mowed plants (Fig.  1C, 
P < 0.001). Notably, with the increasing mowing degree, 
the biomass of assimilation branches showed a decreas-
ing trend. In summary, M1 (i.e., mowing 1/3 the length 
of the secondary branches of perennial branches mowed) 
stimulated A. aphylla to strengthen its compensatory 
growth effect and produce the maximum biomass of 
assimilation branches; therefore, we used M1 treatment 
to uncover the mechanism of compensatory growth.

Phytohormone‑targeted metabolite analysis 
of assimilation branches in A. aphylla after mowing
Phytohormones play important roles in plant acclima-
tion and the repair of mechanical injuries. To determine 
whether phytohormones are involved in the regulation 
of compensatory growth in A. aphylla, we performed 

phytohormone-targeted metabolite analysis by using 
tissue samples from the assimilation branches of leaf-
less horsetail after the cutting treatment at specific time 
intervals (0, 1, 5, and 8 s) using the UHPLC-MRM-MS/
MS method; assimilation branches without mowing were 
used as controls. Twenty-six metabolites were identi-
fied: nine indole derivatives, five cytokinin derivatives 
and related compounds, three gibberellin derivatives, five 
jasmonate derivatives, and four other metabolites. Princi-
pal component analysis (Supplementary figure S2) based 
on metabolite levels revealed that the 24 tissue samples 
were separated into 2 distinct clusters: mowing samples 
and controls. Additionally, under mowing conditions, 
the metabolite accumulation patterns in the assimilation 
branches exhibited a more pronounced spatial separa-
tion than that under the controls (Supplementary figure 
S2). Moreover, the differential accumulated metabolite 
analysis identified 16, 19, and 22 differential accumulated 
metabolites on days 1, 5, and 8, respectively. The analysis 
of the metabolite accumulation patterns (Supplementary 
figure S3) demonstrated that six metabolites were signifi-
cantly upregulated compared with those of the natural 
assimilation branches: Indole-3-acetyl-L-valine methyl 
ester (IAA-Vel-me; Fig.  2A), Indole-3-carboxylic acid 
(ICA; Fig.  2B), Indole-3-carboxaldehyde (I3C; Fig.  2C), 
Gibberellin A24 (Fig.  2D), Gibberellin A4 (Fig.  2E), 
and cis (+)-12-oxo-phytodienoic acid (OPDA; Fig.  2F). 
Among the six metabolites, IAA-Vel-me is the precursor 
form of IAA [52, 53], and ICA and I3C are the metabo-
lite products of IAA [54, 55]. Gibberellin A4 is an active 
gibberellin in plants [56], and Gibberellin A24 is a direct 
metabolite of Gibberellin A1[57]. OPDA serves as a bio-
synthetic precursor of jasmonic acid [58].

RNA sequencing, de novo assembly, and functional 
annotation
To identify the key genes involved in the compensa-
tory growth of A. aphylla, we sequenced RNA from 24 
mixed samples of assimilation branches at four time 
points. A total of 267,802,289 bp of clean data contain-
ing 129,314 CCS reads was obtained from the PacBio 
sequencing platform, and the mean read length of the 
CCS was 2070 bp (Supplementary table  S1). By detect-
ing the positional relationships of the inserted sequences, 
we obtained 111,432 full-length non-chimeric reads, 
accounting for 86.17% of the total number of CCS 
sequences (Supplementary table  S2). Similar sequences 
were clustered in the IsoSeq module of SMRTLink, and 
each cluster represented a consensus isoform. A total 
of 63,353 consensus sequences were clustered with a 
mean read length of 1,661 bp, including 36,350 high-
quality isoforms and three low-quality isoforms. Con-
sensus sequences were polished using Quiver to obtain 
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63,350 high-quality sequences (Supplementary table S3). 
Finally, low-quality consensus sequences were corrected 
using Illumina short reads. After removing redundant 
sequences, a total of 48,763 transcript sequences were 
obtained.

For the 48,763 transcripts, the COG, KOG, GO, KEGG, 
and NR databases were used as references for func-
tional annotation. A total of 40,893 unigenes were suc-
cessfully annotated, including 16,431 (40.18%) by COG, 
24,800 (60.65%) by KOG, 29,595 (72.37%) by GO, 18,160 
(44.41%) by KEGG, and 40,663 (99.42%) by NR databases 

(Supplementary table  S4). Moreover, the 16,431 uni-
genes annotated by COG were subdivided into 24 COG 
categories (Fig. 3A), among which, the cluster “Transla-
tion, ribosomal structure and biogenesis” was the larg-
est group (1952 unigenes), followed by “Carbohydrate 
transport and metabolism” (1785 unigenes). The 24,800 
unigenes annotated by KOG were classified into 25 KOG 
categories (Fig. 3B), among which, the largest cluster was 
“General function prediction only” (3,799 unigenes), fol-
lowed by “Posttranslational modification, protein turno-
ver, chaperones” (2,590 unigenes). A total of 29,595 GO 

Fig. 1 Impact of mowing treatments on growth and development of assimilation branches in A. aphylla. Note: A) base diameter of assimilation 
branches; B) length of assimilation branches; C) biomass of assimilation branches. Different lowercase letters indicate significant differences (P < 
0.05); *** indicates significant correlation at 0.001 level
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annotated unigenes were distributed under three major 
GO categories: biological processes, cellular compo-
nents (CC), and molecular functions (MF) (Fig.  3C). 
For biological processes, the metabolic process (16,267) 
and cellular process (14,946) were the most signifi-
cantly enriched terms; for CC, cell (15,012) and cell part 
(14,984) were the most significantly enriched terms; and 
for molecular function, binding (14,780) and catalytic 
activity (15,579) were the most significantly enriched 
terms. Functional annotation information of the assem-
blies included unigene protein and COG functional cat-
egories. KEGG pathway and enrichment analysis showed 
that 18,160 unigenes were significantly assigned to 129 
enriched pathways. The top five pathways, from small-
est to largest gene number, were “Carbon metabolism,” 
“Ribosome,” “Biosynthesis of amino acids,” “Protein pro-
cessing in endoplasmic reticulum,” and “Spliceosome,” 
wherein 936, 839, 715, 641, and 609 related genes were 

enriched in these pathways, respectively (Supplementary 
table S5). Finally, the annotated genes in the NR database 
were aligned with Chenopodium quinoa (22.85%) and 
Beta vulgaris (21.01%) (Supplementary figure S4). Simi-
larly, the Pfam and Swiss-Port databases were used for 
annotation, as the supplementary information.

Analysis of differentially expressed genes (DEGs)
Next-generation sequencing yielded a total of 
156,663,187,812 bp clean data from 24 sequencing 
libraries (Supplementary Table  S6), including three 
biological replicates of mowed and natural assimila-
tion branches at four time points. Sequence align-
ment between clean reads obtained by next-generation 
sequencing and non-redundant transcripts measured 
30.94–50.83% uniquely mapped reads, 11.47–8.13% 
multiple aligned reads, and 0.04–21.58% too many mul-
tiple aligned reads, indicating that the transcriptome 

Fig. 2 Analysis of target metabolite accumulation patterns of A) Indole-3-acetyl-L-valine methyl ester, B) Indole-3-carboxylic acid, C) 
Indole-3-carboxaldehyde, D) Gibberellin A24, E) Gibberellin A4, and F) cis (+)-12-Oxophytodienoic acid. Note: *, **, and *** indicate significance at P 
< 0.05, P < 0.01, and P < 0.001, respectively. The vertical line represents the standard deviation
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data were used efficiently in this study (Supplementary 
table S7). With FC ≥ 1 and false discovery rate < 0.01 
as screening conditions, 6,928 (3,705 up- regulated, 
and 3,223 down-regulated; Fig.  4A), 26,024 (3,705 up- 
regulated, and 3,223 down-regulated; Fig.  4B), and 
20,793 (3,705 up- regulated, and 3,223 down-regu-
lated; Fig. 4C) DEGs were identified in the assimilation 
branches between mowed and natural conditions at 
days 1, 5, and 8, respectively. The three groups of DEGs 

were intersected to screen 2,402 genes (Fig.  4D) that 
were simultaneously differentially expressed.

Identification of the hub genes
The DEGs were divided into seven clusters by using 
Mfuzz cluster analysis based on the expression profiles of 
these genes (Fig. 5A). A total of 212, 308, 302, 619, 296, 
517, and 148 DEGs were incorporated into clusters 1–7, 
respectively. Temporal trends in gene expression were 

Fig. 3 Gene functional annotation and histograms of Clusters of Orthologous Groups (COG). A eukaryotic orthologous groups (KOG); B) gene 
ontology (GO); and C) functional annotations
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further examined using best-fit lines generated using a 
standard linear model (Fig.  5B). Regarding the mowed 
plants, modules 1, 3, and 7 exhibited comparable pat-
terns, where gene expression was consistently downregu-
lated on days 1 and 5, followed by an upregulation trend 
on day 8; the control showed a relatively stable trend. 

Modules 4 and 6 showed a similar trend between the 
mowed and control plants, showing a decrease on day 1, 
followed by upregulation on day 5 and downregulation on 
day 8. Module 5 showed a slight decrease in gene expres-
sion on day 1 and a continuous increase in expression on 
days 5 and 8; the expression of the control showed a large 

Fig. 4 Comparative transcriptomics analysis between assimilation branches of mowed and natural plants. Note: Assimilation branches of mowed 
and natural at days 0, 1, 5, and 8 (renamed T0, T1, T5, T8, and CK0, CK1, CK5, and CK8, respectively) were used for second-generation sequencing. In 
A–C, blue dots represent downregulated differentially expressed genes, red dots represent upregulated differentially expressed genes, and black 
dots represent non-differentially expressed genes. A Differentially expressed transcript volcano map of CK1 versus T1; B) differentially expressed 
transcript volcano map of CK5 versus T8; C) differentially expressed transcript volcano map of CK8 versus T8; D) Venn diagram showing the number 
of unshared and shared DEGs through paired comparison

(See figure on next page.)
Fig. 5 Classification and annotation of differentially expressed genes. Note: A) Mfuzz analysis of the 2,402 DEGs identified from the Venn diagram 
in Fig. 4. Seven clusters were identified based on the expression profiles of the DEGs, and heatmaps were generated for gene expression based 
on fragments per kilobase per million fragments; B) Line plots showing the transcription trends of seven gene clusters from hierarchical clustering 
and the number of genes in each cluster. Natural- and mowed-type transcription trends are represented by solid red and blue lines, respectively. 
C) GO enrichment word cloud for each cluster
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Fig. 5 (See legend on previous page.)
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fluctuation. Simultaneously, we performed GO enrich-
ment analysis using the genes individually assigned to 
each of these modules (Fig.  5C). Notably, only genes in 
the cyan module were enriched in hormone regulatory 
pathways, such as auxin-activated signaling pathways and 
cellular responses to auxin stimuli. Subsequently, based 
on the semantics of the GO annotations (GO: 0009733, 
0071365, and 0009734), 18 genes related to auxins in the 
cyan module were identified as key genes (Supplemen-
tary table S8).

To identify the relationship between key genes and 
auxin derivatives, we conducted a correlation analysis 

between key genes and auxin derivatives. As shown in 
Fig.  6, there was a significant correlation between the 
metabolic abundance of ICA and I3C and the expres-
sion of the 18 key genes. ICA and I3C showed strong 
negative correlations with the expression of the six 
key genes (absolute value of the correlation coefficient 
> 0.7, P < 0.01): PB_BC37_transcript_892, PB_BC37_
transcript_930, PB_BC37_transcript_5985, PB_BC37_
transcript_13039, PB_BC37_transcript_27545, and 
PB_BC37_transcript_35225. Among them, three genes 
(PB-BC37_transcript_5985, PB-BC37_transcript_13039, 
and PB-BC37_transcript_35225) belong to the Auxin/

Fig. 6 Correlation analysis of target metabolites and key genes. Note: The line connecting two parameters indicates significant correlations; line 
thickness represents the absolute magnitude of the correlation coefficient. The black line represents negative correlations. The circles represent 
nodes with several connections: red circles represent target metabolites, and blue circles represent key genes
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IAA (AUX/IAA) family of genes: two genes (PB-BC37_
transcript_892, and PB-BC37_transcript_930) are 
auxin transcription factors containing B3 DNA-binding 
domains (belonging to the B3 superfamily of transcrip-
tion factors, which also includes the AUX/IAA family); 
and one gene (PB_BC37_transcript_27545) is a mem-
brane transport protein. Therefore, the six key genes 
were considered hub genes that regulate auxin metabo-
lism (Supplementary table S9).

Discussion
Proper mowing promotes the growth of A. aphylla.
After mowing, the lateral buds were exported to the 
assimilation branches [59]. This phenomenon may be 
caused by the breaking of the apical dominance, which 
promotes the biomass of the plant [60]. In this study, 
mowed plants showed a greater growth rate of assimila-
tion branches than un-mowed plants. Additionally, with 
the increasing mowing degree, the growth rate and the 
final biomass of assimilation branches showed a decreas-
ing trend, with M1 resulting in the greatest growth rate 
and final biomass. Our results are consistent with those 
in the literature for other plants [60–62].

Auxin and gibberellin metabolic pathways are key 
to the post‑mow compensatory growth process of A. 
aphylla.
Shoot branching is another complex growth regulatory 
process [63, 64]. In this study, we focused on the roles of 
auxin and gibberellin in post-mow compensatory growth. 
Shoot meristems influence each other’s growth, a phe-
nomenon particularly evident in apical dominance [65]. 
Auxin maintains apical dominance, inhibiting the out-
growth of lateral buds [62, 66]. When the apical meris-
tem is cut, apical dominance is suppressed, triggering 
lateral bud development [62]. Studies have shown that 
auxins tend to control cytokinin biosynthesis to regulate 
lateral bud elongation for a short time [23]. When the 
growth advantage of lateral buds is established, the auxin 
content in the lateral buds increases, further promot-
ing the growth of lateral buds [67], which also explains 
the increased abundances of IAA-Vel-me, ICA, and I3C. 
Additionally, gibberellin is a group of key hormones that 
regulate many aspects of plant growth and development 
[68]. Specifically, gibberellin is a positive regulator of 
shoot branching in woody plants [24]; thus, a high con-
centration of GA increases the number of stimulated 
lateral buds [24]. This conclusion is consistent with our 
results.

Hub genes are the key genes involved in auxin regulation
Gene transcription is a signal transduction switch that 
directly regulates plant growth and development [69, 70]. 

In this study, we identified six hub genes involved in the 
post-mow compensatory growth process, three of which 
were AUX/IAA family members. The AUX/IAA gene 
family functions as a repressor, working in conjunction 
with the receptor (F-box protein) and transcriptional 
activator, auxin response factor (ARF), to regulate auxin 
perception and the expression of auxin-regulated genes 
[71–73]. Auxin-mediated transcriptional regulation is 
exclusively dependent on the function of AUX/IAA [74]. 
AUX/IAA family proteins bind to ARFs, inhibiting them 
and preventing the expression of auxin-responsive genes 
[75]. In the presence of elevated auxin levels, ubiquitina-
tion of AUX/IAA proteins typically transforms inhibitory 
ARF-AUX/IAA complexes into activated ARF complexes 
[76], which promotes the upregulation of auxin-related 
genes [77]. The decreased levels of AUX/IAA tran-
scripts create a feedback mechanism that counteracts the 
increased stability of AUX/IAA [78]. That is, when the 
expression of the AUX/IAA family members is downreg-
ulated, auxin synthesis is promoted, serving as a negative 
feedback regulator of auxin signaling. The down-regu-
lated expression of the three AUX/IAA family genes in 
our study promoted the production of IAA and subse-
quently enhanced the compensatory growth of horsetails.

Conclusions
In summary, the secondary branch mowing of A. 
aphylla in the spring significantly accelerated growth 
and increased biomass, especially the treatment of 
mowing 1/3 the length of the secondary branches, 
which is regulated by auxin metabolic pathways. Addi-
tionally, the hub genes involved in the auxin metabolic 
pathways, which encoded AUX/IAA family proteins, 
were identified. Together, these findings can be used to 
inform A. aphylla cultivation and management strate-
gies, which lay the foundation for the development of 
the industrial value of A. aphylla. A limitation of this 
study is that no data were collected on in  vitro auxin 
treatment. In further research, we plan to study the 
effect of in  vitro auxin spray on the compensatory 
growth of A. aphylla and elucidate the functions of 
candidate genes related to auxin metabolism.
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