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Abstract
Background Japanese knotweed (Reynoutria japonica var. japonica), a problematic invasive species, has a wide 
geographical distribution. We have previously shown the potential for attenuated total reflection Fourier-transform 
infrared (ATR-FTIR) spectroscopy and chemometrics to segregate regional differentiation between Japanese 
knotweed plants. However, the contribution of environment to spectral differences remains unclear. Herein, 
the response of Japanese knotweed to varied environmental habitats has been studied. Eight unique growth 
environments were created by manipulation of the red: far-red light ratio (R: FR), water availability, nitrogen, and 
micronutrients. Their impacts on plant growth, photosynthetic parameters, and ATR-FTIR spectral profiles, were 
explored using chemometric techniques, including principal component analysis (PCA), linear discriminant analysis, 
support vector machines (SVM) and partial least squares regression. Key wavenumbers responsible for spectral 
differences were identified with PCA loadings, and molecular biomarkers were assigned. Partial least squared 
regression (PLSR) of spectral absorbance and root water potential (RWP) data was used to create a predictive model 
for RWP.

Results Spectra from plants grown in different environments were differentiated using ATR-FTIR spectroscopy 
coupled with SVM. Biomarkers highlighted through PCA loadings corresponded to several molecules, most 
commonly cell wall carbohydrates, suggesting that these wavenumbers could be consistent indicators of plant stress 
across species. R: FR most affected the ATR-FTIR spectra of intact dried leaf material. PLSR prediction of root water 
potential achieved an R2 of 0.8, supporting the potential use of ATR-FTIR spectrometers as sensors for prediction of 
plant physiological parameters.

Conclusions Japanese knotweed exhibits environmentally induced phenotypes, indicated by measurable 
differences in their ATR-FTIR spectra. This high environmental plasticity reflected by key biomolecular changes may 
contribute to its success as an invasive species. Light quality (R: FR) appears critical in defining the growth and spectral 
response to environment. Cross-species conservation of biomarkers suggest that they could function as indicators of 
plant-environment interactions including abiotic stress responses and plant health.
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Introduction
In the current period of unprecedented global environ-
mental change, the negative effects of invasive alien spe-
cies (IAS) are compounded [1–4]. They are a major driver 
of ecosystem degradation [5, 6], and can trigger complex 
socio-economic problems affecting human livelihoods 
and well-being [7–9]. Effective establishment in a non-
native environment by IAS is partly dependent on their 
ability to compete with native flora for key resources 
(light, nutrients, and water), the availability of which is 
limited [10, 11]. Human interference is creating new envi-
ronments such as those with fluctuating water availability 
[12] and high nitrogen ecosystems [13]. Whilst native 
plants may be more able to withstand drought [14], the 
versatility of IAS frequently earns them the advantage. 
As opportunists, a non-uniform distribution of nutrients 
often increases the competitive edge of invasive plants 
[14]. Japanese knotweed is an opportunistic invasive spe-
cies that is well-known for its expensive eradication and 
impact on property values in the United Kingdom [15]. 
It is able to take advantage of fluctuating resources, per-
haps because its nitrogen-use efficiency is superior to 
that of native plants [16]. Increased nitrogen availability 
exacerbates the impacts of invasive species on non-native 
species in aboveground competition [17], although nitro-
gen does not influence the consequences in belowground 
competition [18]. As an economically important weed, 
data on the growth response of Japanese knotweed under 
differing environmental conditions is of interest and was 
recently listed as a point of action in a Science and Tech-
nology Committee Report [19]. Invasive species may also 
respond to abiotic stress differently than native species, 
for example, Japanese knotweed is known to be very tol-
erant to abiotic stress, occupying extreme environments 
such as salt marshes [20] and metal-polluted soil [21, 
22]. It has successfully achieved a wide geographical dis-
tribution and colonises diverse habitats such as riparian 
wetlands, urban transport courses, and coastal areas [23, 
24]. Despite this variation in habitat, it exhibits minimal 
genetic variation in Central Europe [23], Norway [25] and 
the USA [24], and exists as a female clone in the United 
Kingdom from a single introduction [26, 27]. Phenotypic 
plasticity [28–35], efficient resource partitioning [36] and 
vegetative regeneration [37] allow clonal species such as 
Japanese knotweed to take advantage of a wide ecological 
niche regardless of their low genetic diversity.

A spectrochemical method, attenuated total reflection 
Fourier-transform infrared (ATR-FTIR) spectroscopy, 
followed by chemometrics has been successfully applied 
to investigate plant response to abiotic [38–43] and biotic 

factors [44], as well as for monitoring plant health and 
development [45, 46]. In combination with chemometric 
techniques, such as support vector machines, the multi-
variate spectral dataset produced through infrared spec-
troscopy allows the rapid, marker-free, non-destructive 
analysis of biological samples [47]. The mid-infrared 
spectral profiles of plants from different growing regions 
can be distinguished with chemometric techniques 
despite the lack of genetic diversity in Japanese knotweed 
[48]. The relation between environment and differences 
in mid-infrared spectral profiles has allowed the dif-
ferentiation of plants, pollen, and plant products from 
different growing areas in numerous species [48–53]. 
Mid-infrared spectroscopy uses the absorption pattern 
of mid-infrared light by a sample to gain biochemical 
information. When light is passed through a sample, the 
chemical bonds within it absorb light energy at specific 
wavelengths (2.5–25 μm wavelengths or 4000–400 cm− 1 
wavenumbers). These wavelengths match the energy 
required to cause the different functional groups present 
in the sample to vibrate. When the light that has passed 
through the sample is measured, these wavelengths will 
not be present, as they have been absorbed by the sample. 
This information can be displayed as an absorbance spec-
trum [47]. Biological materials preferentially absorb light 
in the region of 1800–900 cm− 1 wavenumbers, known as 
the fingerprint region, which includes important infor-
mation about key biomolecules such as lipids, proteins, 
nucleic acids, and carbohydrates [47].

Although the biochemical differences induced by plant-
environment interactions can be detected by spectral 
analysis that allows discrimination between plants of 
different growing environments, it is not known which 
aspects of environmental conditions have the great-
est impact on plant spectral profiles. Here, a controlled 
study was performed to unpick which environmental 
factors have the greatest influence over spectral profiles 
of Japanese knotweed grown in eight unique environ-
ments which differ in red: far-red light ratio (R: FR), and 
the availability of water, nitrogen, and micronutrients, 
whilst maintaining comparative temperature, humidity, 
and photoperiod. This study indicated that the light envi-
ronment, in terms of the R: FR ratio, plays a key role in 
shaping the spectral profile of Japanese knotweed. Spec-
tral differences between plants of different treatment 
groups allowed the identification of several biomarkers 
of environmental effects, highlighting changes in com-
pounds such as cell wall carbohydrates. We hypothesise 
that wavenumbers which are conserved between species 
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could be used as indicators of plant health under abiotic 
stress.

Materials and methods
Plant growth.

With permission from Lancashire County Council, Jap-
anese knotweed rhizomes were extracted from Scorton 
Picnic Site, Preston, Lancashire, United Kingdom, PR3 
1BU, before transportation to Lancaster Environment 
Centre. The presence of Japanese knotweed at this site 
was identified by Thomas Myerscough of the Wyre Rivers 
Trust and this species identity was confirmed by Claire 
A Holden of Lancaster University. Ninety fragments 
of rhizome (10–50  g, volume 2–58 cm3) were planted 
in fertilized organic loam (John Innes No. 1, J. Arthur 
Bowers, UK) in cylindrical pots designed to tightly fit 
in a pressure chamber (Soil Moisture Equipment Corp., 
Santa Barbara, CA, USA) measuring 6.5 cm in diameter 
and 23  cm in length, with a volume of 763.2 cm3, and 
featured a stainless-steel mesh (0.7 mm aperture) at the 
base which assisted drainage. Pots were placed in one of 
two climate-controlled cabinets (Microclima 1750, Sni-
jders Scientific BV, Netherlands) at 80% humidity, 16 h of 
photoperiod, and 19/11°C day/night temperature where 
treatments were applied and plants were grown for a total 
of fifty days before harvesting. The long photoperiod and 
temperature range were selected to simulate an average 
British summer in the areas Japanese knotweed usually 
colonises, using a comparison of temperature maps from 
the Met Office [54] and a distribution map of Japanese 
knotweed in the British Isles [55].

Treatments.
Rhizome fragments were divided into eight treatment 

groups to give an even split of rhizome masses in each 
group. The treatments applied were: Light Control ‘LC’, 
Light Drought ‘LD’, Light Nitrogen ‘LN’, Light Low Nutri-
ent ‘LLN’, Shade Control ‘SC’, Shade Drought ‘SD’, Shade 
Nitrogen ‘SN’, and Shade Low Nutrient ‘SLN’. In both 
cabinets, the light emitted from the two high-pressure 
sodium lamps (SON-T 400  W, Philips Lighting, Eind-
hoven, The Netherlands) was reduced using a LEE 209 
filter (LEE Filters Worldwide, Andover, Hampshire, UK). 
In one cabinet, a matrix of far-red LEDs (EPILEDS, 740–
745  nm) distributed in five rows 30  cm apart was used 
to decrease the R: FR to simulate shading (see Supple-
mentary Figure S1 for the spectrum produced by the 
LEDs alone). Wavelengths emitted were measured using 
an UPRtek (Taiwan) PG100N light spectrometer. The 
combined light conditions (see Supplementary Table S1) 
resulted in a ‘light’ treatment with a R: FR of 5.6 and a 
‘shade’ treatment with a R: FR of 0.4 (see Supplementary 
Figure S1 for the spectral profile). Plants were redistrib-
uted weekly within each cabinet to minimise positional 
effects from the LED matrix pattern. The R: FR of natural 

sunlight during the day is approximately 1.15 (Smith H, 
1982) and the R: FR of 0.4 in the shade treatment was 
chosen to replicate that found within vegetative canopies 
[56]. In both cases, the photosynthetic photon flux den-
sity (PPFD) was between 124.7 and 189.8 µmol∙m− 2∙s− 1 
which is typical of growth cabinet studies [57–60].

Plants were regularly provided with water (75 cm3 
pot− 1 48 h− 1), apart from LD and SD in which water was 
withheld for 7 days prior to harvest. Once a week, four 
groups (LC, LD, SC, SD) were watered with 75 mL Hoa-
gland solution to provide both nitrogen and micronu-
trients, see Supplementary Table S2 for details. LN and 
SN were fed with the commonly used agricultural dose 
of 50 kg ha− 1 year− 1 [61]; this was scaled down for a pot 
diameter of 6.2 cm and applied across a split-dose at 21 
and 23 days to prevent leaching. Groups LLN and SLN 
were provided only with water and received no additional 
nitrogen or micronutrients.

Physiological and photosynthetic measurements.
The following non-destructive measurements were 

taken the day prior to harvest: shoot height, number of 
leaves, stem diameter using a Vernier calliper, and chlo-
rophyll concentration using Apogee chlorophyll concen-
tration meter (Apogee Instruments Inc, Logan, Utah, 
USA). Preliminary observations of well-watered plants 
showed that stomatal conductance was maximal during 
the interval four to eight hours following the light switch 
on in the Snijder cabinets and dropped sharply after 
ten hours of light exposure, therefore, this interval was 
selected for measurements. Before measurements were 
taken, whole plant transpiration was calculated by com-
parison of initial and final pot weights. The pot surface 
was covered with duct tape to minimize soil evapora-
tion and weighed twice on a precision balance to 0.01 g 
(Adventurer Pro AV4102, Ohaus, Thetford, UK), with the 
two readings a minimum of 30 min apart. Stomatal con-
ductance was measured using an AP4 porometer (Delta-
T Devices Ltd, Burwell, Cambridge, UK). A MultispeQ 
Beta [62] was used to measure leaf thickness and the fol-
lowing photosynthesis data; Phi2, PhiNPQ, PhiNO, linear 
electron flow, leaf temp differential, NPQt, ECSt mAU, 
gH+, vH+, PS1 active centres, PS1 open centres, PS1 over 
reduced centres, PS1 oxidised centres (see Supplemen-
tary Figures S2 and S3).

A total of three leaves were excised from each plant for 
analysis 4–8 h into the photoperiod in order to fall within 
a stable period of the plants’ circadian rhythm. The third 
leaf down was selected for bio-spectroscopy of dried 
whole leaves. Whole leaves were dried at 37  °C for one 
week and stored in a dry airtight container at room tem-
perature before analysis using ATR-FTIR spectroscopy. 
The fourth leaf down was placed in a humidified plastic 
bag and taken immediately to the pressure chamber for 
determination of leaf water potential (Ψleaf). Following 
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this, the plant was de-topped and the whole pot inserted 
into a pressure chamber (Model 3000F01 Plant Water 
Status Console, Soil Moisture Equipment Corp., Santa 
Barbara, CA, USA) with the stem protruding for deter-
mination of root water potential (Ψroot). Leaf area was 
determined using a leaf area meter (model LI-3100  C; 
Li‐Cor, Lincoln, NE, USA) and finally aboveground fresh 
weight was measured. These were dried at 80 °C for four 
days until the mass remained constant and all the mois-
ture was assumed lost, before reweighing for aboveg-
round dry weight.

ATR-FTIR spectral acquisition.
Whole dried leaves were analysed using a Tensor 

27 FTIR spectrometer with a Helios ATR attachment 
(Bruker Optics Ltd, Coventry, UK). The sampling area 
was 250 μm x 250 μm, as defined by the diamond crystal 
internal reflection element (IRE). Spectral resolution was 
8  cm− 1 with two times zero-filling, giving a data-spac-
ing of 4  cm− 1 over the range 4000 to 400  cm− 1; 32 co-
additions and a mirror velocity of 2.2 kHz were used for 
optimum signal to noise ratio. To minimise bias, an even 
spread of ten spectra were taken from each surface of the 
leaf, twenty spectra per sample, resulting in 480 spectra 
in total. Each dried leaf was placed on a slide with the 
side to be analysed facing upwards, the slide was placed 
on an adjustable platform and moved upwards to ensure 
a good and consistent contact with the IRE. A voucher 
specimen of the leaves used in this study has been depos-
ited in the University of Leicester Herbarium LTR.

Data analysis.
The ‘mergetool’ function of an in-house developed 

Matlab (Mathworks, Natick, USA) toolbox called IRoot-
Lab [63, 64] was used to convert all spectral information 
from OPUS format to suitable files (.txt). Following this, 
it was necessary to pre-process the acquired spectra to 
improve the signal-to-noise ratio. Pre-processing cor-
rects problems associated with random or systematic 
artefacts introduced during spectral acquisition and is 
an essential step of all spectroscopic experiments. Pre‐
processing and computational analysis of the data were 
performed using a combination of IRootLab toolbox [64] 
and the PLS Toolbox version 7.9.3 (Eigenvector Research, 
Inc., Manson, USA). The pre-processing steps applied to 
all spectra were firstly the selection of the spectral bio-
chemical fingerprint region (1800–900  cm− 1), followed 
by Savitzky–Golay (SG) second differentiation (nine 
smoothing points) and vector normalisation. All data 
were mean-centred before multivariate analysis, where 
multiple dependant variables are observed simultane-
ously to determine a pattern.

Four machine learning techniques were used in 
this study: an unsupervised dimensionality reduction 
method, two supervised classification methods and one 
regression. The unsupervised method PCA simplifies 

complex multivariate datasets, allowing them to be pre-
sented intuitively and enabling pattern recognition. 
This process is known as dimensionality reduction. 
Two supervised chemometric techniques, PCA-LDA 
and SVM, were used for the classification of groups [65, 
66]. PCA-LDA was also used for the determination of 
biomarkers.

Transformation of multivariate data into a different fea-
ture space using a kernel function called the ‘radial basis 
function’, allowed linear separation of data by SVM. SVM 
parameters were optimized by venetian blinds (10 data 
splits) cross-validation. Model validation was performed 
with 30% of the samples’ spectra randomly selected as an 
external test set. Success of this was measured by evalua-
tion of specificity, sensitivity, and accuracy.

To explore the relationship of controlled environmen-
tal variables with plant spectral profiles, each treatment 
category was scored either a zero (low) or a one (high) 
in each of the supplied variables of nitrogen, micronu-
trients, water, and R: FR, see Supplementary Table S3. 
This binary dataset was compared with ATR-FTIR spec-
tral absorbances using a multivariate analysis technique 
called PLSR. The resultant regressions gave an indication 
of which independent variable had the greatest impact 
on spectral absorbances. PLSR was performed using PLS 
Toolbox version 7.9.3 (Eigenvector Research, Inc., Man-
son, USA). Multivariate analysis techniques allow mul-
tiple variables to be compared at the same time, enabling 
spectral absorbance values across a range of wavelengths 
to be simultaneously correlated against environmental 
or physiological variables of numerous samples. Observ-
ing all these data at once allows patterns to be seen and 
enables predictions to be made.

PLSR was additionally used to predict plant physiologi-
cal conditions, such as Ψroot, by comparison of ATR-FTIR 
spectral data and measured water potential data. To form 
these models, an X-block of ATR-FTIR spectral absor-
bance data for plants was analysed by PLSR against a 
Y-block of physiological variables for the corresponding 
plants. Environments were analysed separately, allowing 
a model to be created for each of them. Once made, these 
models can be applied to new ATR-FTIR spectral data in 
the absence of measured physiological variables such as 
root water potential, to non-destructively predict these 
variables.

Results
Knotweed plants exhibit environmentally induced 
phenotypes.

The response of Japanese knotweed to the environmen-
tal treatment conditions (LC, LD, LN, LLN, SC, SD, SN, 
SLN) was sufficient to induce measurable physiological 
differences. Leaf area was significantly lower for LD (510 
cm2) than LC (1028 cm2), see Fig. 1a. In general, shaded 
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plants (SC, SD, SN, and SLN) were taller and etiolated, 
averaging 76.8  cm in height, compared with those of 
the light cabinet (LC, LD, LN and LLN), which averaged 
61.3  cm (Fig.  1b). However, plants supplemented with 
nitrogen only (LN and SN) were different to the general 
trend for each light treatment. SC and SLN plants had 
fewest leaves, ~ 15 and ~ 13 leaves respectively, whilst 
LN had the most, ~ 30, leaves (Fig.  1c). Leaf thickness 
was higher SD and LLN than LD (Fig. 1d). Of the plants 
with a high R: FR (LC, LD, LN and LLN) the aboveg-
round dry weight was lowest under drought conditions 
(LD; Fig.  1e). This differed from shaded plants (SC, SD, 
SN and SLN) in which SN had the lowest aboveground 
dry weight (Fig. 1e). Aboveground fresh weight was lower 
in LD than SC, SN and SLN (Supplementary Figure S3a). 
Stomatal conductance in SN plants was three times that 
of LN (Fig. 1f ). Chlorophyll was highest in LD, LLN and 
LN (358, 343 and 325 µmol.m− 2), followed by SD, SC, LC 

and SLN (313, 305, 296, 290 µmol.m− 2), and the lowest 
levels were measured in SN (278 µmol.m− 2, Fig. 1g).

Statistical significance was calculated using a Kruskal-
Wallis followed by a post hoc test using the criterium 
Fisher’s least significant difference (LSD) to determine 
where the difference lies, signified by lowercase letters 
above the bars. Within each graph, all bars which share 
letters are not significantly different from each other. 
Data are mean +/- standard errors. N values for groups 
LC, LD, LN, LLN, SC, SD, SN, and SLN respectively: Leaf 
area 5, 5, 5, 4, 3, 6, 5, 6; height 10, 9, 8, 8, 8, 6, 7, 8, num-
ber of leaves 10, 9, 8, 8, 8, 6, 7, 8; leaf thickness 7, 5, 7, 7, 5, 
3, 5, 6; aboveground dry weight 6, 8, 7, 5, 4, 6, 6, 7; stoma-
tal conductance 5, 7, 4, 4, 6, 4, 4, 4; and chlorophyll 7, 7, 7, 
8, 5, 6, 6, 7 (four technical replicates).

Plant water status, evidenced by Ψleaf and Ψroot, was 
also affected markedly by treatments (Fig.  2a-b). LD, 
SD, and SC plants had the most negative Ψleaf, (-6.8, -4.9 

Fig. 2 Effects of the growth environment on plant water relations: (a) leaf and (b) root water potential measured in MPa

 

Fig. 1 Effects of each treatment on the physiological parameters (a) leaf area (b) height (c) number of leaves (d) leaf thickness (e) aboveground dry 
weight (f) stomatal conductance (g) Apogee chlorophyll, grouped by treatment
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and − 3.7 MPa respectively) indicating lowest hydration, 
followed by SN, LLN and LC (-3.6, -2.9, and − 3.1  MPa 
respectively), whilst SLN and LN had the least negative 
leaf water pressures (-2.4 and − 1.4  MPa respectively) 
indicating the highest levels of hydration (Fig.  2a). LD, 
SD, and SN had the most negative root water potentials 
(-5.8, -3.4 and − 2.5  MPa respectively) indicating lowest 
hydration, followed by SC (-1.8  MPa), then LN, LLN, 
SLN (-1.4, -1.0 and − 1.2  MPa), and LC (-0.7  MPa) had 
the Ψroot nearest to zero indicating the best levels of 
hydration (Fig. 2b).

Statistical significance was calculated using a Kruskal-
Wallis followed by a post hoc test using the criterium 
Fisher’s least significant difference (LSD) to determine 
where the difference lies, signified by lowercase letters 
above the bars. Within each graph, all bars that share let-
ters are not significantly different from one another. Data 
are mean +/- standard errors. Leaf water potential n = 6, 
8, 7, 6, 4, 6, 5, 7 and root water potential n = 6, 8, 5, 6, 4, 
5, 4, 5 for groups LC, LD, LN, LLN, SC, SD, SN, and SLN 
respectively.

Physiological changes are reflected in the ATR-FTIR 
spectra of plants.

The response of Japanese knotweed leaves to the envi-
ronmental treatment conditions (LC, LD, LN, LLN, SC, 
SD, SN, SLN) was observed in marked differences in their 
spectral profiles. Figure 3a shows the class mean finger-
print spectra for the different environmental conditions, 
with the strongest absorbance peaks at approximately 
1750, 1650 and 1030 cm− 1. Although further chemomet-
ric analysis is required to gain more information, Fig. 3b 
demonstrated visual differences between pre-processed 
spectra taken from plants in different treatment catego-
ries. Where the spectral profiles do not overlap, such 
as the horizontal shifts at ~ 1400 and ~ 1550  cm− 1, and 
the vertical divergences at ~ 1600 and 1750 cm− 1, this is 
indicative of biomolecular differences in concentration 
and chemical structure respectively.

To further explore the response of Japanese knotweed 
to the applied environments, chemometric techniques 
were applied to the acquired spectra. PCA alone did 
not achieve separation between treatment groups, with 
clusters overlapping (Fig.  4a). The symmetrical pattern 
in Fig.  4a was reflective of the two leaf surfaces, with 
separation of each in a different direction along the PC1 
scores axis. This was confirmed by principal component 
analysis of the spectral data from all treatment categories 
grouped by leaf surface; Supplementary Figure S2 shows 
lower surface spectra grouped on the left and upper sur-
face spectra grouped on the right. Following the appli-
cation of PCA-LDA to dried-leaf spectra, the different 
treatment types are separated into clusters along the 
axis LD1 (Fig.  4b), in particular the separation between 
shaded and light grown samples. SVM of whole dried 
leaves (cost = 31.6228, γ  = 3.1623, NSV : 400) achieved 
excellent separation between categories (see Fig.  4c-d), 
attaining the performance measures of 94.9% accuracy, 
91.0% sensitivity, and 98.8% specificity.

Note that the PC1 axis in a) separates the spectra taken 
from the lower leaf surface to the left of zero and those 
from the upper surface are on the right, see Supplemen-
tary Figure S2.

Plant responses to environment are associated with 
specific environmental response biomarkers.

Molecular differences between plants of the eight treat-
ments were examined using PCA-LDA (Fig. 4b). The top 
eight PCA loadings (Supplementary Figures S4-S15), 
which represent the main qualitative wavenumbers dis-
criminating each treatment comparison, were subse-
quently selected for the identification of biomarkers to 
qualitatively characterise the biochemical compounds 
showing the greatest changes, see Table  1. Many of the 
assigned biomarkers are cell wall carbohydrates and the 
proteins which regulate them, as well as molecules which 
other studies have identified as indicators of abiotic 
stress.

Fig. 3 (a) Class means fingerprint region (1800–900 cm− 1) and (b) pre-processed (SG second differentiation n = 9 and vector normalisation) class means 
spectra in the fingerprint region (1800–900 cm− 1) from dried leaves, grouped by treatment
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PLS regression allows predictions of physiological 
responses.

Plant environmental responses to different treatment 
groups were reflected in the differences in both physi-
ological measurements (Figs. 1 and 2) and in the acquired 
ATR-FTIR spectral profiles (Fig.  3). Two such datasets 
can be combined to correlate spectral profiles with phe-
notypic responses [77]. Similarly, the phenotypic changes 
measured here can form training and test data for models 
which demonstrate the potential of mid-infrared (MIR) 
spectroscopy for the rapid, non-destructive prediction 
of plant physiology. Figure  2 shows that Ψleaf and Ψroot 
were affected markedly by treatments (Fig.  2a-b). The 
largest Ψroot was found in LD (-5.8 MPa) compared with 
LC (-0.7  MPa) which had the smallest. Therefore, these 
two categories were chosen to develop a model for the 
prediction of plant water status. Figure 5 is an exemplar 
PLS regression graph for the prediction of physiological 
parameters using ATR-FTIR spectral data. This shows 
the PLS regression of Ψroot, as measured with a pres-
sure chamber (Model 3000F01 Plant Water Status Con-
sole, Soil Moisture Equipment Corp., Santa Barbara, CA, 
USA), against predicted levels using ATR-FTIR spectral 
absorbances of intact dried leaves grown under LC and 
LD conditions as training data, showing an example of 
the predictive models generated using this approach. 
The green line in Fig. 5 shows the ideal prediction gradi-
ent of one, which would be 100% accurate, and the red 

line shows the achieved success of the model, which was 
a gradient of R2 = 0.8 indicating a successful prediction. 
The key wavenumbers for this PLSR prediction of Ψroot 
are shown in a loadings graph (Supplementary Figure 
S17), which provide useful spectral indicators of drought. 
This further highlights the power of such models when 
investigating the responses of plants to environmen-
tal variables and the impacts these have on growth and 
development, particularly in species which are recalci-
trant to the destructive and time-consuming physical 
techniques routinely used for such measurement.

Yellow squares indicate data points from LC plants and 
orange circles represent data from LD plants. The green 
line shows the ideal prediction gradient of one, which 
would be 100% accurate. The red line shows the achieved 
success of the model. Model parameters are as follows: 
RMSEC: 1.4966, RMSECV: 1.6844, Calibration Bias: 
3.1086e-15, CV Bias: -0.009925, R^2 Cal: 0.841332, R^2 
CV: 0.799426.

Light environment R: FR ratio has the greatest impact 
on the plant spectral profiles.

Insights into which independent variable had the great-
est impact on spectral absorbances were gained through 
PLS regression of the binary dataset in Supplementary 
Table S3 against spectral absorbances. Table  2 shows 
the results of this PLS regression, with higher R2 values 
indicating a greater contribution from the correspond-
ing abiotic variable. The red: far-red ratio had the greatest 

Fig. 4 (a) PCA scores plot, (b) PCA-LDA scatter plot, (c) SVM sample/measured plot and (d) SVM results for spectra taken of dried leaves grouped by 
treatment
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influence over the spectral profile of intact dried leaves, 
reaching the highest R2 of 0.3, whilst water, micronutri-
ents, and nitrogen all contributed R2 values of 0.1. The 
RMSECV, representing the error in the predicted envi-
ronmental parameter, was higher for prediction of micro-
nutrient conditions at 0.5, than the other parameters at 
0.4.

Discussion
Environmental response can be detected through leaf 
spectral profiles.

The measured physiological parameter in Figs.  1 
and 2 show clearly that the genetically identical plants 
responded to the applied treatment conditions with envi-
ronmentally induced phenotypes, demonstrating the 
plasticity expected of this species [28–35]. The acquired 
ATR-FTIR spectral absorbances in Fig.  3 demonstrate 
that the environmental conditions under which plants 
are grown have a marked impact on their spectral profiles 
suggesting subtle changes in plant composition. Although 
the overall absorbance pattern of the fingerprint region in 
Fig. 3a is visually similar to that of any other green veg-
etative plant tissue [48, 78, 79], chemometrics has the 
power to extract more information, including differences 
between treatment groups. The unique patterns pro-
duced by the ATR-FTIR spectral absorbance profiles of 
plants grown in different environments could be success-
fully differentiated through application of the discrimi-
nant algorithm, SVM (Fig. 4c-d). This combined method 
achieved high accuracy, sensitivity, and specificity. This is 
consistent with observations from previous studies which 
have identified spectra from plants of different growing 
environments [48–53] suggesting that the high degree 
of plasticity exhibited by Japanese knotweed to environ-
mental factors is reflected in key biomolecular changes 
that may contribute to its success as an invasive species.

Detected biomarkers are associated with plant stress 
responses.

A variety of biological compounds, such as proteins, 
ketones, terpenes, and carbohydrates, which differ under 
each condition were identified through linking molecu-
lar biomarkers with key wavenumbers affected by envi-
ronment. The peak at 1709  cm− 1 (Figures S4 and S7), 
which was assigned to protein absorbance (see Table 1), 
is a common biomarker across other plant species, and 
has been associated with plant development in tomato 
plants [75]. This band indicates the relative concentra-
tions of the significant proteins are highest in LD, fol-
lowed by LC, and lowest in LN. The upregulation of 
these proteins under conditions of drought stress and 
increased micronutrient availability suggests that the 
peak at 1709  cm− 1 may correspond to enzymes that 
break down polysaccharides in plant cell walls, such as 
pectin-methylesterase and β-glucosidase. These enzymes 
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allow for leaf expansion during development and stress-
induced alterations of cell-wall polymers [80]. Another 
response of Japanese knotweed plants to water deficit is 
highlighted by biomarker 1385 cm− 1 which was assigned 
to the bioactive plant volatile, pentanone. Spectral com-
parison suggests that pentanone was higher in control 
plants (LC) than droughted plants (LD). This is consis-
tent with a similar spectroscopic study on citrus plants 
in which pentanone was retained in healthy leaves but 
released under biotic stress [76]. It seems possible that 
this finding could be related to the hormone jasmonic 
acid, which contains a pentanone ring. This hypothesis 
is supported by hormonal data in which jasmonic acid 
levels were higher in LC than in plants grown under less 
ideal conditions [77]. The jasmonic acid signalling path-
way is a core component in plant response to both biotic 
and abiotic stress [81]. The peak at 953 cm− 1, caused by 
protein phosphorylation, was a key difference in several 
comparisons; LC vs. LD, LLN vs. SLN, SC vs. SN, and SC 
vs. SLN. This indicates that wavenumber-953 is sensitive 
to changes induced by drought, and the combination of 

stresses from a low R: FR and deficiencies in nitrogen 
and micronutrients. Similarly, the peak at 1732  cm− 1, 
associated with hemicellulose [73], was a key difference 
between LC vs. SC, LD vs. SD, and SC vs. SN, whilst 
1038  cm− 1, associated with the polysaccharide galactan 
[73], allowed discrimination between LLN vs. SLN and 
SN vs. SLN. The association of these peaks with abi-
otic stress is consistent with other spectroscopic studies 
which have associated them with vehicular pollution in 
sycamore trees [73]. Wavenumber 1227  cm− 1, assigned 
to geranyl acetate, an acyclic monoterpene, was higher in 
LLN than SLN. This biomarker has previously been asso-
ciated with response to ozone exposure in sycamore tree 
leaf tissue [73]. Amide I peaks at 1628 and 1585  cm− 1, 
have previously been associated with fungal infection in 
other studies [73]. In the present study, these two Amide 
I peaks were key differences between plants not provided 
with any nutrients and those provided with nitrogen only. 
It is common for plant responses to biotic and abiotic 
stresses to overlap because stress signalling pathways are 
known to share intermediates such as reactive oxygen 
species and calcium which allow for crosstalk [82]. Taken 
together these results suggest that wavenumbers 953, 
1038, 1227, 1709, and 1732  cm− 1 are key indicators of 
plant-environment interactions, including abiotic stress 
responses, that are conserved between species.

When the ATR-FTIR spectral profiles of plants grown 
under different environments were compared, several 
cell wall carbohydrates, both structural and storage, 
were highlighted as significantly different. The storage 

Table 2 Model parameters of PLSR correlation of intact leaf 
spectral profiles with controlled environments assigned binary 
values
Model 
parameters

Nitrogen Micronutrients Red: 
far-red 
ratio

Water

R2 0.1 0.1 0.3 0.1
RMSECV 0.4 0.5 0.4 0.4

Fig. 5 Prediction of root water potential (Ψroot) from ATR-FTIR spectral data in the fingerprint region (1800 –900 cm-1) of plants from categories LC and 
LD using PLS regression
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molecule starch, reserves of which are known to be mobil-
ised under conditions of abiotic stress [81], was identified 
as a biomarker for five of the comparisons [70]. As out-
lined above, the peak for hemicellulose (1732 cm− 1) was a 
key difference between shaded and unshaded plants both 
under, and in the absence of, drought stress [73]. Shading 
stress is known to have a greater inhibitory effect on the 
biosynthesis of non-structural than that of structural car-
bohydrates [83]. Some structural carbohydrates, such as 
xylose and mannose, decrease under shading stress [83]. 
Beta- glucans were highlighted as a key differentiator 
between plants grown with differing red: far-red ratios, 
LC and SC again showing hemicellulose to be affected 
by shading. Also differentiated by this beta- glucan peak 
were LC and LN, indicating a consequence of environ-
mental micronutrient levels. Wavenumber 1126  cm− 1 
identified sucrose, the major transport form of photo-
assimilated carbon, as a key discriminator between LC 
and LN, but not their shaded equivalents SC and SN [69, 
84]. The peak at 1049 cm− 1 for cellulose [72] was a key 
discriminator between SC and SLN, showing the impact 
of nutrient deficiency on plants also experiencing shad-
ing. Low levels of soluble sugar, sucrose, lignin and cel-
lulose content can result in weak stem strength [83]. 
However, this was not reflected in the measured stem 
diameter of plants, variations in which were insignificant 
across all eight treatments (see Supplementary Figure 
S3a). Etiolation was observed in shaded plants from SC, 
SD and SLN which were significantly taller than those 
of the non-shaded groups LC, LD and LLN (see Fig. 1b). 
One molecule which can alter elongation capacity of the 
cell wall is galactan (see peaks 1072 and 1038  cm− 1). It 
achieves this by controlling porosity and viscoelastic 
properties of the cell wall [85] and levels increase during 
the cell expansion phase [86]. Galactans also play a role 
as cell wall storage polysaccharide [86]. The amplitude 
of peaks 1072 and 1038 in the rubber band normalised 
fingerprint spectra indicate that galactan was present in 
higher concentrations in LN than LLN, SN than SLN, and 
in LLN than SLN, but this peak was not identified as a 
key difference for other comparisons. These results sug-
gest that Japanese knotweed plants which are experienc-
ing shading and deficiency of both micronutrients and 
nitrogen have lower levels of galactan, because they have 
low requirements for carbohydrate storage and lack the 
excess resources for expansion and growth.

‘Tarping’, an herbicide-free control strategy where soil 
covered with a plastic tarp is heated by solar radiation 
and thought to reach a lethal temperature for knotweed 
growth [87], is more effective when black, light-blocking 
tarp is used [88]. The combined stresses of shade and low 
nutrients observed in this study suggests that the addi-
tional shading effect of tarping would be most effective 
in areas of poor soil quality or those prone to leaching. 

Artificial shading may also increase the efficacy of her-
bicides that function through interference with nutrient 
absorption and metabolism.

The red: far-red ratio had the greatest effect on leaf 
spectral profiles.

Differences in spectral profiles indicate key biomolecu-
lar alterations occurring within the leaves under differ-
ent growth environments, reflective of the high degree of 
environmental plasticity exhibited by Japanese knotweed 
that may contribute to its success as an invasive species 
[89, 90]. Although IAS generally display greater plastic-
ity, this is not always correlated with a fitness benefit [91]. 
Physiological variation of Japanese knotweed grown in 
different habitats has been recorded in previous stud-
ies, including differences in height, number of leaves, 
leaf surface area and biomass allocation [92, 93]. All the 
rhizomes used for these controlled growth experiments 
were extracted from the same source, but recent research 
indicates that the environmental adaptations observed 
here may be influenced by the original source of the rhi-
zomes and could have differed if these were collected 
from another habitat type [93]. The growth environment 
plays a significant role in phenotypic presentation, and 
this study has explored the influence of specific environ-
mental variables.

Chlorophyll content under drought stress can both 
increase [94] and decrease [95]. Here, LD had sig-
nificantly higher chlorophyll levels compared with LC 
(Fig.  1g). This may be because LD had fewer (Fig.  1c), 
smaller (Fig. 1a), leaves compared with LC, leading to a 
necessity for increased chlorophyll levels per unit leaf 
area. Figure 1 shows that plants of the nitrogen supple-
mented category, SN, had a significantly greater number 
of leaves than SC or SLN, but this was not statistically dif-
ferent to SD. Although drought is usually associated with 
a reduced leaf number [96, 97], this observation is consis-
tent with water having only been withheld completely for 
seven days out of a total growth period of fifty days in the 
present study, representing a short-term drought rather 
than a long term water deficit. However, nitrogen avail-
ability, sugar demand, R:FR and auxin concentrations 
have all been linked to the control of apical branching 
[98–100]. These pathways interlink via common interme-
diates, for example a low R: FR promotes auxin signalling 
[100] and nitrogen fluctuations have a significant impact 
on auxin distribution [98]. These complex interacting sig-
nals could explain the lack of significant differences in the 
number of leaves between categories. Growth was mark-
edly affected in shaded plants (LC, LD, LN and LLN) 
which were generally taller in height (Fig. 1). This is con-
sistent with ethylene-mediated stem elongation which 
is a stress response known to be induced by low R: FR 
[101]. Additionally, transpiration rate is elevated under 
high R: FR [102] thereby increasing the likelihood of 
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plants experiencing drought under conditions of reduced 
water availability, possibly leading to the larger root water 
potentials measured in category LD compared to cat-
egory SD. This increased transpiration rate may also have 
altered the effect of drought on leaf quantity under dif-
ferent lightings; under a high R: FR LC plants had more 
leaves than LD, however under a low R: FR then SD had 
more leaves than SC, see Fig. 1.

Of the altered environmental parameters, the R: FR of 
the growth environment had the greatest effect on the 
spectral profiles of intact dried leaf material. This was 
indicated by the highest PLS regression R2 in Table 2. A 
possible explanation for this is that these spectra were 
taken from leaf vegetative tissue, which may be more 
prone to changes in light as leaves are photosynthetic 
organs. The primary function of leaves is to absorb sun-
light for photosynthesis, and spectra of other plant organs 
may be affected differently by different environmental 
factors. The clustering pattern of the 2D PCA-LDA scat-
ter graph (Fig.  4b) provides an indication of why the R: 
FR has the greatest impact on the spectra. This displays a 
general separation along the axis LD1 of shaded samples 
on the left and non-shaded samples on the right. This 
LD1 axis is significant for identifying the wavenumbers 
most affected by the different environments, used for 
the classification of groups. Molecular biomarkers were 
found from the LD1 loadings and indicate which mole-
cules differ most between leaves of plants grown in dif-
ferent environments: lipid (1732 cm− 1), CH2 bending of 
the methylene chains in lipids (1470 cm− 1), ring breath-
ing (995 cm− 1), C-H and O-H bending in hemicellulose 
(1423  cm− 1), C-O vibration in sucrose (1126  cm− 1), 
overlapping of the protein amide III and the nucleic acid 
asymmetric phosphate vibration (1231  cm− 1), cellulose 
(1319  cm− 1), peak of nucleic acids due to the base car-
bonyl stretching and ring breathing mode (1620  cm− 1), 
starch (1030 cm− 1), and CH3 rocking (957 cm− 1) [67, 68, 
101–104].

The sensitivity of ATR-FTIR spectral profiles to the R: 
FR ratio of the growth environment could account for 
some of the spectral differences in plants grown in dif-
ferent regions of the UK, observed previously [48]. At 
higher latitudes, plants experience longer durations of 
sunlight from low solar angles [105]. The R: FR ratio at 
low solar angles is lower [106] and more variable [105]. 
Water vapour increases the R: FR photon ratio by pref-
erentially absorbing the FR light meaning that plants in 
growing regions with overcast skies tend to experience 
a higher R: FR ratio than those under clear skies [107]. 
Additionally, modelled climate scenarios predict that 
increasing global temperatures will result in increased 
atmospheric water vapour, which will reduce the pro-
portion of far-red photons in sunlight [106]. Plants sense 
the R: FR ratio with phytochromes which allows them 

to trigger their shade-avoidance response and detect 
above-ground neighbours [108]. As a pioneer species, 
one could predict Japanese knotweed to be a competitive 
shade-avoider, likely to have a strong avoidance response 
compared with a shade-tolerant woodland floor species, 
however, leaves within the dense knotweed canopy are 
known to experience reduced light-penetration. Martin 
FM et al. [109] noted the lack of information on the sig-
nificance of shading for Japanese knotweed, particularly 
in interaction with mechanical control, whilst observ-
ing its importance for ramet density (the space between 
independent members of a clone). Plants grown in 
shaded conditions (SC, SD, SN, SLN) tend to have lower 
aboveground fresh and dry weights compared with light 
(LC, LD, LN, LLN), see Fig. 1 and Supplementary Figure 
S2, supporting the importance of light quality for Japa-
nese knotweed. These results have been echoed in field 
studies which found that a reduction in soil fertility had 
no significant effect on knotweed biomass production, 
and concluded that light quality was the most important 
of the tested parameters [110].

ATR-FTIR spectroscopy provides a novel tool for pre-
dicting physiological responses.

The model in Fig.  5 was created using training data 
from plants of LC and LD, which differed only in the 
amount of water supplied to them with the other con-
trolled environmental variables remaining the same. The 
use of larger training sets would allow the generation of 
more robust models which take account of the breadth 
of the variables in the growth environment enabling this 
approach to be widely applied. We have previously shown 
the power of ATR-FTIR spectroscopy for predicting plant 
physiological responses such as hormone concentrations 
[77]. Applying this approach to the analysis of plant water 
status in Fig. 5 further highlights the importance of such 
predictive models for non-destructively studying the 
responses of plants to their environment in situ. Near-
infrared (NIR) spectroscopy [111] using portable hand-
held NIR spectrometers, whilst less rich in the spectral 
information provided compared with ATR-FTIR spec-
troscopy, has been used for monitoring plant water [112–
114] and nutrient [115] status. Advances in technology 
mean that portable MIR spectrometers are now available 
[116–120] highlighting the potential of this method for 
future applications of MIR spectroscopy to the prediction 
of physiological responses in the field, providing a more 
sensitive alternative to NIR spectroscopy. The use of MIR 
as an indicative tool to determine the efficacy of treat-
ment approaches for invasive knotweeds could accelerate 
studies which normally span several years [121], and pro-
vide dosage guidance for herbicide application to prevent 
sub-lethal outcomes. ATR-FTIR spectral ground-read-
ings could complement spatial dynamic data collected by 
remote sensing [122], to create detailed predictive maps 
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that enhance our ability to monitor invasive alien species, 
providing further information on the ‘what’ in addition to 
the ‘where’.

Conclusions
This study indicated that the R: FR ratio of the light envi-
ronment, plays a key role in shaping the spectral pro-
file of Japanese knotweed. Spectral differences between 
plants of different treatment groups allowed the identi-
fication of several biomarkers for environmental effects, 
highlighting changes in compounds such as cell wall 
carbohydrates. Conservation of specific wavenumbers 
across plant species raises the potential for their use as 
indicators of plant health under abiotic stress.
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