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Abstract 

Background LACS (long-chain acyl-CoA synthetase) genes are widespread in organisms and have multiple func-
tions in plants, especially in lipid metabolism. However, the origin and evolutionary dynamics of the LACS gene family 
remain largely unknown.

Results Here, we identified 1785 LACS genes in the genomes of 166 diverse plant species and identified the clades 
(I, II, III, IV, V, VI) of six clades for the LACS gene family of green plants through phylogenetic analysis. Based on the evo-
lutionary history of plant lineages, we found differences in the origins of different clades, with Clade IV originating 
from chlorophytes and representing the origin of LACS genes in green plants. The structural characteristics of different 
clades indicate that clade IV is relatively independent, while the relationships between clades (I, II, III) and clades (V, 
VI) are closer. Dispersed duplication (DSD) and transposed duplication (TRD) are the main forces driving the evolution 
of plant LACS genes. Network clustering analysis further grouped all LACS genes into six main clusters, with genes 
within each cluster showing significant co-linearity. Ka/Ks results suggest that LACS family genes underwent purifying 
selection during evolution. We analyzed the phylogenetic relationships and characteristics of six clades of the LACS 
gene family to explain the origin, evolutionary history, and phylogenetic relationships of different clades and pro-
posed a hypothetical evolutionary model for the LACS family of genes in plants.

Conclusions Our research provides genome-wide insights into the evolutionary history of the LACS gene family 
in green plants. These insights lay an important foundation for comprehensive functional characterization in future 
research.
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Background
Lipids are a major class of important organic compounds 
in living organisms with various biological functions, 
including in membrane structural components, cell rec-
ognition, and energy storage [1]. Fatty acids (FAs) are the 
foundation of cellular lipid biosynthesis; they can serve 
as energy suppliers and storage materials in cells and can 
participate in cellular signaling. In addition, based on the 
diversity and specificity of FAs in living organisms, some 
individual FAs and their ratios can be utilized as bio-
markers [2]. Therefore, it is highly important to conduct 
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systematic research on key gene families involved in the 
synthesis, degradation, and oxidation pathways of FAs.

FAs can be divided into three categories based on the 
length of the carbon chain, namely, long-chain fatty acids 
(LCFAs), medium-chain fatty acids (MCFAs), and short-
chain fatty acids (SCFAs) [3]. The carbon chain length of 
FAs in embryogenic plants usually ranges from 14 to 20 
[4]. Acyl-CoA synthetase (ACS) is present on the outer 
membranes of the endoplasmic reticulum, mitochondria, 
and other structures and is classified into four catego-
ries based on the length of the substrate carbon chains 
of specific FAs: very long-chain acyl-CoA synthetase 
(VLACS, > C20), long-chain acyl-CoA synthetase (LACS, 
C14-C20), medium-chain acyl-CoA synthetase (MACS, 
C10-C12), and short-chain acyl-CoA synthetase (SACS, 
C6-C8). Free FAs are chemically inert [5, 6]. Both in the 
synthesis and degradation of lipids, free FAs must be 
activated by LACS to acyl-CoA in the presence of CoA, 
ATP, and  Mg2+ and then participates in various bio-
chemical reactions in cells, such as the synthesis of fats 
and β-oxidation of FAs, carbon chain extension of FAs, 
modification of proteins, and signal transduction of jas-
monic acid [6]. LACS catalyzes the conversion of free 
FAs to acyl-CoA thioesters through a two-step reaction. 
First, free FAs react with ATP to produce adenosylated 
intermediates (acyl-AMPs) and release pyrophosphate. 
Subsequently, the carbonyl of the acyl-AMP is attacked 
by the thiol group of CoA to form acyl-CoA thioesters 
and release AMP [7, 8].

LACS, an important enzyme for FA metabolism in 
plants, is involved mainly in the synthesis or degradation 
of phospholipids, triglycerides (TAGs), cuticular wax, 
cutin, starch, and cork and the β-oxidation of FAs [6, 9]. 
Some of these molecules play a crucial role as barriers in 
resisting biotic and abiotic stresses, some as sources of 
energy storage, and some as agents of communication 
between pollen and the stigma [6, 10]. Ultimately, regu-
lation of LACS activity influences multiple plant pheno-
types, including organ fusion, male infertility, abnormal 
stratum corneum structure, delayed seed germination, 
and changes in seed oil content [6, 11, 12].

LACS is widely present in various organisms. A fatty 
ACS named FadD, which belongs to the AMP bind-
ing protein family, was identified in Escherichia coli. 
The function of FadD is to promote the transmem-
brane transport of exogenous FAs into the cell and acti-
vate them into fatty acyl-CoA [13]. In addition, Sorger 
and Daum [14] reported four LACS genes (Faa1p to 
Faa4p) in yeast, and mutants of these four genes exhib-
ited defects in the activation of free FAs. In embryogenic 
plants, LACS participates in multiple metabolic pathways 
and is located in different organelles, such as the endo-
plasmic reticulum [15, 16], plastids [15, 17], chloroplasts 

[17, 18], and peroxisomes [19, 20]. Considering the wide-
spread existence and functional importance of the LACS 
gene family in the plant kingdom, in-depth analysis of 
the characteristics and evolution of this family is highly 
important.

The LACS family has been identified in multiple plants, 
and there are significant differences in the number of 
LACS family members among different species, such 
as 9, 11, 11, 17, and 34 members in Arabidopsis [21], 
apple [22], corn [23], soybean [4], and Brassica napus 
[24], respectively. Due to the rapid development of high-
throughput sequencing technology, many plant genomes 
have been published. Making it possible to identify the 
LACS family on a large scale in plants. Ayaz et  al. [25] 
conducted whole-gene identification and analysis of the 
LACS gene family in 122 plant species, and the results 
showed that the evolutionary tree of LACS family mem-
bers mainly consists of six clades and that the expression 
levels of LACS genes vary among both anatomical and 
developmental stages. However, the origin and evolu-
tionary history of the LACS family are largely unknown.

To better understand the origin and evolutionary his-
tory of the LACS gene family, in this study, we compre-
hensively identified members of the family in 166 species 
that have been sequenced and are distributed at differ-
ent evolved loci in plants. In addition, we also conducted 
phylogenetic analysis, clade structure characterization, 
synteny network analysis, gene duplication event analy-
sis, and Ka/Ks analysis and combined the results with 
data from species such as fungi to support relevant con-
clusions. Finally, we identified the origins and evolution-
ary relationships of different clades of plant LACS genes 
and present a hypothetical model of their evolutionary 
history. This study deepens the understanding of LACS 
in plants, and phylogenetic insights help further reveal 
the molecular and biological functions of various LACS 
proteins.

Methods
Collection and processing of genomic data files
The genomes of 222 species used in this study were col-
lected from publicly available databases, such as NCBI, 
Phytozome, Ensembl, GigaDB, GDR, and Plant GAR-
DEN [26–31]. The longest transcript of a single gene was 
extracted from the genomic data of each species.

Identification of LACS gene family members
Nine Arabidopsis LACS protein sequences downloaded 
from TAIR (https:// www. arabi dopsis. org) [32] were used 
as queries to identify candidate LACS genes in the col-
lected plant genomes via BLASTP (v2.13.0 +). The LACS 
domain seed file (PF00501) was downloaded from Pfam 
(http:// pfam. xfam. org/) [33] to construct the Hidden 
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Markov Model (HMM), and HMMER (v3.2.1) was used 
to identify the collected genomes. The E-value in both 
BLAST (v2.13.0 +) and HMMER (v3.2.1) software was set 
to less than e-20, and the overlapping genes from the two 
sets of results were considered candidate LACS family 
genes. Furthermore, the protein sequences of these genes 
were submitted to the CDD (https:// www. ncbi. nlm. nih. 
gov/ cdd) and SMART (http:// smart. embl- heide lberg. 
de) databases [34] for domain detection (AMP binding 
domain), and if it was present, the gene was designated a 
member of the LACS family.

Multiple sequence alignment and phylogenetic analysis
Multiple sequence alignment of all LACS protein 
sequences was performed by MAFFT (v7.520) (https:// 
mafft. cbrc. jp/ align ment/ softw are/) with the param-
eter ‘E-INS-I’ [35]. After alignment, the sequences were 
trimmed using TrimAl (http:// trimal. cgeno mics. org), and 
the parameters gappyout or automated1 were selected 
[36].

The phylogenetic tree was constructed using IQ-TREE 
2 (v2.2.0) (http:// www. iqtree. org) with the maximum-
likelihood method [37]. The optimal model param-
eter MFP for automatic detection was selected, and the 
bootstrap value was set to 1000. The species classifica-
tion tree was obtained from NCBI Taxonomy Common 
Tree (https:// www. ncbi. nlm. nih. gov/ Taxon omy/ Commo 
nTree/ wwwcmt. cgi). All phylogenetic trees were visual-
ized through iTOL (https:// itol. embl. de) Visualize [38].

Identification of conserved domains and conserved motifs 
of LACS gene family members
The protein sequences of the conserved domains of the 
LACS family genes were subjected to multiple sequence 
alignment through MAFFT (v7.520) (https:// mafft. cbrc. 
jp/ align ment/ softw are/). Then, the results were submit-
ted to WebLogo3 (https:// weblo go. three pluso ne. com) for 
visualization [39, 40]. The protein sequences of the LACS 
gene family members were submitted to MEME (https:// 
meme- suite. org/ meme/ tools/ meme) for conservative 
motif identification. The parameters were set to a maxi-
mum of 20 motifs and a motif length range of 3–300 [41].

Identification of duplicate genes
We used the method of Qiao et al. [42] to identify dupli-
cate gene pairs in members of the LACS gene family 
through the DupGen_finder pipeline. Whole-genome 
protein sequence self-alignment was used to obtain a 
list of homologous gene pairs for each species through 
BLASTP (v2.13.0 +). The E-value was set to less than 
10–5. Then, the top five results with the best matches 
were taken, and the output format was set to m8. The 
genomes of each species were converted into BED format 

and then examined to detect five types of duplication 
events, namely, whole-genome duplication (WGD), tan-
dem duplication (TD), proximal duplication (PD), trans-
posed duplication (TRD), and dispersed duplication 
(DSD).

Cluster analysis of LACS gene family member networks
The SynNet pipeline was used for network cluster-
ing analysis [43]. First, pairwise alignment of protein 
sequences of the whole genome within and between spe-
cies was performed for 166 species using the software 
Diamond (v0.9.14.115) [44]. Second, a collinearity block 
file containing 166 whole-genome protein sequences of 
the species was obtained by using the SynNet-Build algo-
rithm. Information about members of the LACS gene 
family was extracted from the collinearity block file and 
integrated to obtain the collinear network relationships 
of the LACS family. Third, the network clustering rela-
tionships of LACS gene family members was visualized 
in Gephi (v0.10.1) using the Clique percolation method 
with a K value of 4 [45].

Collinearity analysis
Sequence alignment of whole-genome proteins was per-
formed through Diamond software, with an E-value of 
10–5. Then, MCScanX software was used to detect col-
linearity between pairs of species and within species [46], 
which were visualized through iTOL (https:// itol. embl. 
de) [38].

Calculation of Ka and Ks replacement rates and Ka/Ks 
ratios for duplicated genes
ParaAT2.0 was used to integrate the process before cal-
culating the Ka/Ks values [47]. The protein sequence 
alignment tool used for gene pairs was MAFFT (v7.520) 
(https:// mafft. cbrc. jp/ align ment/ softw are/). Kaks_calcu-
lator2.0 was used to calculate Ka and Ks values, with the 
YN model [48].

Results
Identification of LACS family genes in plants
To comprehensively identify LACS genes in plants, we 
collected genomes from 166 species covering different 
plant lineages (Fig.  1A, Supplementary Table  S1). The 
protein sequence encoded by each of the nine LACS 
family genes in Arabidopsis  was used as a query in the 
BLASTP search to identify putative homologs in each 
species. An HMM was constructed from the AMP-
binding domain seed file (PF00501) and used to deter-
mine whether the genes previously identified by the 
BLASTP search encoded the conserved domains. Ulti-
mately, we identified 1785 members of the LACS gene 
family in 166 species (Supplementary Table  S2). LACS 
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of 166 species; B Diagram of the developmental relationship between major plant lineages and the distribution of the number of LACS gene family 
members in each clade
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genes were detected in all species investigated, from red 
algae, green algae, ferns, and gymnosperms to flowering 
plants, indicating that an ancient origin of the LACS gene 
family. The number of LACS genes varied dramatically 
among the 166 species, ranging from 1 (Cyanidioschy-
zon merolae, Micromonas pusilla, Chlorella variabilis 
NC64A, Ulva mutabilis, Volvox carteri, Chlamydomonas 
reinhardtii, Chlorokybus atmophyticus-CCAC 0220) to 
39 (Medicago sativa) (Fig. 1B, Supplementary Table S2). 
With plant evolution, the overall number of LACS fam-
ily genes gradually increased, with an average of 1.167 in 
green algae, 3.333 in charophytes, 6 in bryophytes, 6.4 in 
ferns, and 11.957 in seed plants (Fig. 1B, Supplementary 
Table S2).

Phylogenetic analysis of LACS family genes in plants
To explore the phylogenetic relationships of the LACS 
genes in plants, the 1785 LACS proteins were subjected 
to multiple sequence alignment using MAFFT, followed 
by trimming using TrimAl software, and the phylogenetic 
tree was constructed using IQ-TREE software with the 
maximum-likelihood method (Fig.  2). The members of 
the LACS gene family were mainly divided into six clades 
(I, II, III, IV, V, VI). The six clades contained 243 (Clade I), 
213 (Clade II), 414 (Clade III), 364 (Clade IV), 288 (Clade 
V) and 197 (Clade VI) LACS genes. Notably, members of 
Clades IV, I and VI were detected in all the investigated 
green plant, vascular plant, and flowering plant species, 
respectively, while members of Clades II, III, and V were 
detected in all the investigated seed plant species (Fig. 2). 
The other 66 LACS genes were not classified into these 
six clades and are marked with black lines in the phylo-
genetic tree shown in Fig. 2; these genes are referred to 
as “Other Class Genes”. Among them, one belonged to 
rhodophytes, four to glaucophytes, one to chlorophytes, 
13 to charophytes, 21 to bryophytes, 21 to ferns, three to 
lycophytes, and two to eudicots.

The origin and evolution of different clades of plant LACS 
genes
Considering that different clades of the LACS family exist 
in different plant lineages (Supplementary Table S3) and 
the evolutionary process of plant lineages (Fig.  3A), we 
analyzed the order of evolution of different clades in the 
phylogenetic tree. Clades IV, I, and VI appeared earliest 
in chlorophytes, lycophytes, and ANA grades, respec-
tively, while Clades II, III, and V appeared earliest in 
gymnosperms, indicating that the order of appearance of 
the six clades was IV, I, (II, III, V), and VI (Fig.  3B, C). 
The LACS genes that were not classified among these six 
clades were the last to appear in ferns (Fig. 3). We further 
constructed individual phylogenetic trees for the clades 
by performing multiple sequence alignments of the genes 

from the six clades using the same method. The plant 
lineage that appeared earliest on each clade was consist-
ent with the phylogenetic tree results constructed for all 
genes (Supplementary Figs. S1-S6).

Clade IV was the first clade of the LACS gene family 
to emerge during plant evolution. To determine whether 
Clade IV first appeared in chlorophytes or this was a spu-
rious result due to the small number of investigated spe-
cies, we identified 26 members of the LACS gene family 
in the recollected genomes of three rhodophytes, seven 
chlorophytes, and three fungal species using the same 
method. Then, we constructed a phylogenetic tree by 
combining these 26 LACS genes with previously iden-
tified LACS genes from rhodophyta, glaucophyta, and 
chlorophyta, as well as nine LACS genes from the model 
plant Arabidopsis (Supplementary Fig. S7, Table S4). The 
results showed that only two AtLACSs (AtLACS6 and 
AtLACS7) of Clade IV were on the same clade as 12 of 
17 LACS genes of chlorophytes, AtLACS8 of Clade VI 
and AtLACS9 of Clade V were on the same clade as 50 of 
88 LACS genes of rhodophytes, chlorophytes, and fungi, 
and the other five AtLACSs were clustered together. 
Therefore, we believe that Clade IV first appeared in 
chlorophytes.

To further elucidate the origins of the different clades, 
we selected plant lineage-related species dating from 
rhodophyta to the first appearance of Clade IV, Clade I, 
Clade (II, III, V), and Clade VI and constructed separate 
evolutionary trees (Fig.  4, Supplementary Tables S5-8). 
Due to the limited number of genes at the first appear-
ance of Clades II, III, and VI among the plant taxa, the 
clades of the phylogenetic tree could not be separated. 
We selected species from the plant lineages arising after 
the clade occurred to increase the sample size and con-
structed a phylogenetic tree by combining the LACS 
family genes identified by comparing these species with 
Arabidopsis. First, we constructed a phylogenetic tree 
based on the LACS genes identified in the rhodophyte, 
glaucophyte, chlorophyte, charophyte, and bryophyte 
species investigated (Fig.  4A, Supplementary Table  S5). 
The results showed that Clade IV, containing AtLACS6 
and AtLACS7, separated from the other LACS genes as 
an independent clade, which further explains why Clade 
IV differentiated before the emergence of the green 
plants. Second, we constructed a phylogenetic tree based 
on the LACS genes identified in the investigated spe-
cies of rhodophytes, glaucophytes, chlorophytes, cha-
rophytes, bryophytes, ferns, and lycophytes (Fig.  4B, 
Supplementary Table  S6). Using Mvi-Mesvi1206S02114 
in charophytes as the node of the outgroup, two clades 
were differentiated, with one clade containing Clade IV, 
Clade I, 16 Other Class Genes and AtLACS1-7 and the 
other clade including only 37 Other Class Genes and two 
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AtLACSs (AtLACS8 and AtLACS9) (Fig. 4B, Supplemen-
tary Table S6). Clade IV and two AtLACSs (AtLACS6 and 
AtLACS7) formed a single clade, while Clade I, 16 Other 
Class Genes and AtLACS1-5 cluster together on the same 
clade, and the corresponding species on this clade did 
not include chlorophytes. AtLACS1-5 was not separated 
in the phylogenetic tree, possibly because Arabidopsis 
is a dicotyledonous plant, and this phylogenetic tree did 
not contain dicotyledonous plant species. The significant 

differences between species led to the clustering of five 
closely related genes (AtLACS1-5). We speculate that 
the evolutionary process of Clade I was independent of 
that of the chlorophytes, and the phylogenetic tree in 
Fig. 2 shows that the 16 LACS genes derived from cha-
rophytes and bryophytes are the outgroups of Clade I. 
These results suggest that the ancestors of Clade I existed 
earliest in charophytes. Third, we constructed a phylo-
genetic tree based on the LACS genes identified in the 
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Fig. 2 A phylogenetic tree of members of the LACS gene family. A phylogenetic tree of LACS gene family members identified from 166 species 
clustered into six main clades (I, II, III, IV, V, VI), with different background colors used to distinguish plant lineages belonging to different clades. The 
LACS gene of red algae (Cyanidioschyzon merolae) is marked with a red circle, and the LACS genes of Arabidopsis thaliana are marked with a red star
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rhodophyte, glaucophyte, chlorophyte, charophyte, bryo-
phyte, fern, lycophyte, gymnosperm and three monocot 
species investigated (Fig.  4C, Supplementary Table  S7). 
Using Mvi-Mesvi1206S02114 in charophytes as the node 
of the outgroup, two clades were differentiated, with one 
clade containing Clade V and 39 Other Class Genes and 
the other clade including only Clade (I, II, III, IV) and 22 
Other Class Genes (Fig.  4C, Supplementary Table  S7). 
The clade on which Clade V was located contained 
AtLACS9, and AtLACS8 was closely related to this clade. 
The LACS genes in ferns constitute this subset of genes 
and were used as the outgroup. The clades of Clade (II, 
III) and Clade I share the LACS gene in ferns as the out-
group (Fig. 4C, Supplementary Table S7), indicating that 
the differentiation of Clade (II, III, V) may have occurred 
in a common ancestor with ferns. Fourth, we constructed 
a phylogenetic tree based on the LACS genes identified 
in the rhodophyte, glaucophyte, chlorophyte, charophyte, 
bryophyte, fern, lycophyte, gymnosperm, ANA grade and 
magnoliales species investigated (Fig. 4D, Supplementary 
Table  S8). The results showed that the clade on which 
Clade V was located and that contained AtLACS8 was 
separated from Clade VI and significantly separated from 

the other clades. The clade was more closely related to 
the LACS genes from ferns and lycophytes in the Other 
Class Genes group (Fig.  4D, Supplementary Table  S8). 
This result suggested that Clades V and VI share a com-
mon ancestor with ferns.

In addition, we found that Other Class Genes were 
present mainly in plant lineages living before the gym-
nosperm evolutionary site arose, with only one Other 
Class Gene (Lamiales-SIN_1001133 and Caryophylla-
les-Dca16844.1) found in Dianthus caryophyllus and 
Sesamum indicum, two eudicot species, respectively. We 
expanded the number of species in the eudicot orders 
to reidentify LACS genes (Supplementary Table  S9). 
No additional Other Class Genes were found, and the 
phylogenetic tree showed that the two Other Class 
Genes (Lamiales-SIN_1001133 and Caryophyllales-
Dca16844.1) were not significantly clustered with the 
other LACS genes (Supplementary Fig. S8). We speculate 
that because the selected genomic data were collected in 
earlier years, when sequencing technology and assembly 
quality were relatively poor, errors occurred in these two 
gene sequences [49, 50]. A phylogenetic tree (Supple-
mentary Table S10) was constructed for analyzing Other 
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on the relationships between families. B Stacked plot of the percentage of LACS genes on different clades of each family, with each clade 
distinguished by a different color and each bar corresponding to the family in (A). C A heatmap of the number of LACS genes on different clades 
of each family, with colors ranging from white to blue representing the number from least to greatest and horizontally corresponding to each row 
in  (A) and (B)
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Class Genes. The results showed that the Clade (I, II, 
III, IV, V) all had an outgroup composed of Other Class 
Genes from bryophytes, ferns, and lycophytes (Supple-
mentary Fig. S9), indicating a close correlation between 
Other Class Genes and Clade (I, II, III, IV, V) genes, and 
these clades shared a common ancestor with their corre-
sponding outgroup from the genes of Other Class Genes.

Gene structural characteristics of different clades
The threshold for the maximum number of conserved 
motifs was set to 20 in MEME software, and a total of 
12 conserved motifs of the LACS gene family proteins 
were detected. Specifically, two pairs of conserved motifs 
(motif 2 and motif 3, motif 4 and motif 5) were highly 
similar, and Clade (I, II, III) had more conserved motifs 
than Clade (IV, V, VI), indicating that Clade (I, II, III) is 
more conserved than Clade (IV, V, VI). To understand 
the types of conserved motif patterns on different clades, 
similar genes with 10 or more conserved motif categories 
and positions were counted and classified into one type 
(Fig.  5A, B, Supplementary Fig. S10, Table  S11). Clades 
I and V had three types, and the other four clades had 
two types. The representation of Type 1 on each clade 
was the highest, reaching 39.70%-64.73%, while the other 
types had one to three motifs duplicated or missing com-
pared to those in Type 1. The structures of the seven 
types in Clade (I, II, III) were generally similar, as were 
the structures of the three types in Clade V and Type 1 
in Clade VI. Clade (I, II, III) had a greater proportion of 
motif 2 than Clade (V, VI), reaching 59.70–97.50%, while 
Clade (V, VI) had a higher proportion of motif 3, reach-
ing 91.18–94.96%. Compared to Clade (V, VI), Clade (I, 
II, III) had a unique motif 1, motif 8, and motif 11, while 
Clade (V, VI) had a unique motif 6 and motif 10. In addi-
tion, the front-ends of three motifs in Clade IV were con-
sistent with those in Clade (I, II, III), and the back-ends 
of four to five motifs in Clade IV were consistent with 
those in Clade (V, VI). Multiple alignment results of the 
protein sequences of LACS genes from Clade (I-VI) were 
analyzed using MAFFT and visualized using WebLogo3 
(Fig. 5C). The results revealed differences in the two con-
served domains (AMP-binding domain signature and 
ACS signature motif ) of the LACS family genes across 
the six clades. For these two conserved domains, the 
similarity between Clade I, Clade II, and Clade III was 
greater, and the similarity between Clade V and Clade 
VI was greater, while Clade IV was significantly different 
from the other five clades, indicating that Clades I, II, and 
III had a closer genetic relationship, Clades V and VI had 
a closer genetic relationship, and Clade IV was most dis-
tantly related to the other five clades. This finding is also 
consistent with the results of the phylogenetic tree.

Analysis of duplicate genes, synteny relationships, and Ka/
Ks values on different clades
To further elucidate the evolutionary relationships 
of the LACS gene family, we first identified duplica-
tion events and duplicate gene pairs across the whole 
genomes of 166 species using the process of Dup-
Gen_finder (Fig. 6, Supplementary Fig. S11, Table S12). 
A total of five gene duplication events were identified, 
including WGD, TD, PD, TRD, and DSD. The number 
of duplicated gene pairs in the LACS gene family varied 
greatly among the different species, ranging from none 
identified in 7 algae and 80 pairs identified in Medicago 
sativa. Five types of gene duplication contributed to the 
expansion of the LACS gene family. The proportion of 
duplication events attributed to DSD, TRD, and WGD 
was greater than that attributed to TD and PD, with 
DSD and TRD interpreted as the main forces driving 
the expansion of the LACS gene family.

To further investigate the collinearity and evolution-
ary history of the LACS gene family, multiple align-
ment of whole-genome protein sequences within 
and between 166 species was performed. The synteny 
network contained a total of 6102 nodes (i.e., genes 
interconnected based on collinearity), which were 
connected by 65650 edges (i.e., pairwise collinearity 
between genes). Six main clusters were obtained by 
resolving and visualizing the LACS gene synteny net-
work (Fig. 7A). These six clusters corresponded to the 
six clades (Clade I, Clade II, Clade III, Clade IV, Clade 
V, and Clade VI) from the phylogenetic analysis. Many 
collinear gene pairs were found via cluster analysis. The 
node size of Clade III in the clustering network was 
significantly larger than that of the other five clusters, 
indicating strong collinearity among the gene members 
in Clade III. The links between the collinearity rela-
tionships of all LACS genes and the phylogenetic trees 
shown in Fig. 2 were visualized using the ITOL website. 
The homologous relationships (homologous gene pairs) 
in the network clusters of all LACS genes corresponded 
to the relationships in the phylogenetic tree (Fig.  7B), 
indicating stronger collinearity between LACS family 
within the clades than among the clades.

We also calculated the ratios of nonsynonymous sub-
stitution rates (Ka) to synonymous substitution rates 
(Ks) (Fig. 7C, Supplementary Fig. S12, Table S13), and 
the results showed that homologous gene pairs with 
Ka/Ks values less than 1 accounted for 99.3% of the 
total gene pairs, while homologous gene pairs with Ka/
Ks values greater than 1 accounted for 0.7%, indicating 
that the LACS gene family was subjected to strong puri-
fying selection and strongly evolutionarily conserved.
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Discussion
LACS can activate free FAs to generate acyl-CoA thi-
oesters, which are widely present in living organisms [7], 
including bacteria, mammals, algae and plants [51–54]. 
In this study, a total of 1785 LACS genes were identified 

in the genomes of 166 species widely distributed among 
plant lineages. There were significant differences in the 
number of LACS genes among species, and the average 
number overall showed an upward trend with the evo-
lution of plant lineages. Phylogenetic analysis revealed 

Fig. 6 The number of pairs of LACS gene family members from five duplication events in 166 species genomes. The classification tree of 166 
species was obtained from the NCBI Taxonomy Common Tree (https:// www. ncbi. nlm. nih. gov/ Taxon omy/ Commo nTree/ wwwcmt. cgi). The bar chart 
shows the number of LACS gene pairs for each species in five duplication events: whole-genome duplication (WGD), tandem duplication (TD), 
proximal duplication (PD), transposed duplication (TRD), and dispersed duplication (DSD)

https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi
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six clades of LACS family genes (I, II, III, IV, V, and VI), 
which is consistent with the findings of previous studies 
[25]. The network clustering method has been applied 
to decipher evolutionary relationships in several gene 
families, such as the evolution of the SOT gene family in 
angiosperms, the ARF gene family in plants, and the lin-
eage-specific evolution of MADS-box [55–57]. The result 
of network clustering analysis shows that there are six 
major clusters of 1785 LACS family genes, which is con-
sistent with the result of phylogenetic tree. In the cluster-
ing network, all six clusters are primarily characterized 
by intra-cluster collinearity, with Clade III having the 
highest gene count and node size among the six clusters. 
The conserved gene collinearity within the phylogenetic 
tree also indicates that internal collinearity predominates 
among different clades.

Moreover, we performed motif detection on all LACS 
gene sequences using MEME and obtained 12 motifs. 
However, Ayaz et  al. [25] obtained 20 motifs from 697 
LACS gene sequences. This may be because the number 
of LACS gene sequences used in this study was 2.6 times 
greater than that used in previous studies, leading to the 
genes sharing fewer conserved motifs. In addition, motif 
pattern analysis revealed that among the six clades of 
plant LACS genes, the motif patterns of Clades I, II, and 
III were more similar and had a closer evolutionary rela-
tionship, while those of Clades V and VI were more simi-
lar and had a closer evolutionary relationship. Clade IV 
was located far from the other five clades. Previous stud-
ies have reported that acetyl-activating enzymes contain 
two highly conserved domains (AMP binding domain 
signature and ACS signature motif ) [58, 59]. We found 
that these two conserved domains in Clade (I, II, III) and 
Clade (V, VI) were more similar (Fig. 5C), while those in 
Clade IV had lower similarity compared with those in 
plants on the other five clades. The similarity between 
the motif pattern and the conserved domains reflects the 
phylogenetic relationships between the six clades.

The LACS gene family belongs to a subfamily of acyl-
activating enzymes (AAEs). Previous studies have shown 
that the evolution of the AAE superfamily in Arabidop-
sis involved multiple large-scale and small-scale genome 
duplication events [60]. Our results indicate that the 
evolution of the LACS gene family is contributed to by 

five types of duplication events, including WGD, TD, PD, 
TRD, and DSD, which is consistent with the findings of 
previous research [60]. Specifically, the proportions of 
DSD, TRD, and WGD are much greater than those of TD 
and PD, which are the main driving forces for the evolu-
tion of the LACS gene family in plants.

Genes were selected from six clades to construct a phy-
logenetic tree (Supplementary Figs. S1-S6). The results 
showed that the LACS genes identified in monocots in 
Clade III formed two clades (Supplementary Fig. S3). The 
LACS genes identified in eudicots by Clade IV formed 
two clades (Supplementary Fig. S4), each of which 
included the LACS family genes AtLACS6 and AtLACS7 
from the model plant Arabidopsis thaliana. We specu-
late that the LACS family genes underwent duplication 
events in Clades III and IV of the phylogenetic tree, caus-
ing the expansion of the gene family and resulting in the 
number of LACS genes in Clades III and IV ranking first 
and second, respectively. This phenomenon has also been 
reported for the AGO, ALMT, and SLAC gene families 
[61, 62]. We used TrimAl software to adjust the multiple 
sequence alignment results from the parameter—gappy-
out to—automated1 for trimming and reconstructed the 
phylogenetic tree. Similar results were obtained (Supple-
mentary Figs. S13-S18), indicating the high reliability of 
the results.

Previous studies have reported that the differentiation 
of plant LACS genes occurred before the origin of bryo-
phytes [22], and Clades I-IV and V-VI differ from those 
in Chlorophyta and Rhodophyta, respectively [25]. In 
this study, we conducted in-depth research on each clade 
using more comprehensive sampling of plant lineages 
and selected appropriate species to reconstruct a phy-
logenetic tree based on the position of each clade in the 
plant evolutionary process to clearly describe the origin 
and evolutionary history of the LACS family in plants. 
Our results showed that the six clades of the LACS fam-
ily appeared in the order Clade IV, Clade I, Clade (II, 
III, V), and Clade VI (Fig. 3B, C), and there were differ-
ences in the origin and possible ancestors of the differ-
ent clades. Sixty-six LACS genes (named Other Class 
Genes) were independent of the six clades (Fig. 2). This 
finding is consistent with the findings of Ayaz et al. [25]. 
Clade (I, II, III, IV, V) shares a common ancestor with 

(See figure on next page.)
Fig. 7 The collinearity network and collinearity relationships of LACS gene family members within and between different clades, as well 
as the proportion of Ka/Ks values in LACS gene family members. A The network clustering relationship of LACS gene family members based 
on the Clique percolation method with a K value of 4. The size of each node represents the number of connected edges. The network also clustered 
into six Clades (I, II, III, IV, V, a. VI), consistent with the phylogenetic tree in Fig. 2. B The collinearity relationship between species and within species 
of the LACS gene family in the phylogenetic tree. The line within the phylogenetic tree represents the collinearity of two LACS genes. C The pie 
chart represents the proportion of Ka/Ks values greater than or less than 1 for all LACS gene pairs



Page 13 of 16Zhou et al. BMC Plant Biology          (2024) 24:481  

A

B

Ka/Ks < 1
Ka/Ks > 1

99.3%

0.3%

C

Chlorophytes

Bryophytes

Lycophytes

Ferns

Gymnosperms

ANA grade

Magnoliids

Monocots

Charophytes

Eudicots

Rhodophytes and
Glaucophytes

Clade V

Clade VI

Clade IV

Clade I

Clade II

Clade III

Clade V

Clade VI

Clade IV

Clade I

Clade II

Clade III

Fig. 7 (See legend on previous page.)



Page 14 of 16Zhou et al. BMC Plant Biology          (2024) 24:481 

the corresponding LACS genes of the outgroup from 
Other Class Genes. We speculate that the ancestors of 
plant LACS genes differentiated into genes on differ-
ent clades after a certain plant evolutionary event, while 
the Other Class Genes were not affected by this even 
and retained the ancestral characteristics. However, the 
Other Class Genes gradually disappeared after multiple 
plant evolutionary events. We constructed an evolution-
ary model for plant LACS genes (Fig. 8). The LACS gene 
in plants originated in chlorophytes, with the first clade 
of Clade IV appearing. After green plants originated, they 
evolved into vascular plants, and the second clade, Clade 
I, appeared. Subsequently, the vascular plants evolved 
into seed plants, and Clade (II, III, V) appeared. Finally, 
Clade VI emerged as the last clade along with the evo-
lution of flowering plants. In addition, we speculated on 
the possible ancestors of different clades. The ancestors 
of Clade IV may be the ancestors of green plants, such as 
Rhodophyta. The ancestors of Clade I may have been the 
ancestors of land plants, and they may have originated in 
Charophyta. Clade (II, III, V, VI) appeared in seed plants, 
and its ancestors may have existed before ferns. The spe-
cific locations of these clade ancestors require further 
research. During this evolutionary process, the origin of 
Other Class Genes occurred before the appearance of all 

six clades, and their traces can be found in the ancestors 
of plants. The evolutionary relationships of these genes 
are relatively complex (Supplementary Fig. S9).

Conclusions
This study identified 1785 LACS genes from the genomes 
of 166 plant species. The LACS family mainly consists 
of six clades (I, II, III, IV, V, and VI). The origins of the 
clades differ. Clade IV originated in chlorophytes and 
gave rise to the LACS gene in green plants. Clade I origi-
nated in vascular plants, Clade (II, III, V) originated in 
seed plants, and Clade VI originated in flowering plants. 
Among these six clades, Clade IV was relatively inde-
pendent, while Clade (I, II, III) and Clade (V, VI) had 
more similar structures and closer evolutionary rela-
tionships. DSD and TRD are the main forces driving the 
evolution of plant LACS genes, leading to differences in 
evolutionary time and structural and functional diver-
sity among different clades of the plant LACS family. 
The results of the collinearity expression network and 
collinear relationship inference show that each clade is 
mainly characterized by internal collinearity, and there 
are fewer cases of collinearity between clades. The Ka/
Ks results also support this conclusion, with approxi-
mately 99.3% of homologous gene pairs having Ka/Ks < 1, 
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indicating a strong influence of purifying selection. The 
results of this study provide new insights into the origin, 
evolutionary history, and phylogenetic relationships of 
different clades of plant LACS genes.
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