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Abstract
Background Amylose, a prebiotic found in yams is known to be beneficial for the gut microflora and is particularly 
advantageous for diabetic patients’ diet. However, the genetic machinery underlying amylose production remains 
elusive. A comprehensive characterization of the genetic basis of amylose content in yam tubers is a prerequisite for 
accelerating the genetic engineering of yams with respect to amylose content variation.

Results To uncover the genetic variants underlying variation in amylose content, we evaluated amylose content 
in freshly harvested tubers from 150 accessions of Dioscorea zingibensis. With 30,000 high-quality single nucleotide 
polymorphisms (SNP), we performed a genome-wide association analysis (GWAS). The population structure analysis 
classified the D. zingiberensis accessions into three groups. A total of 115 significant loci were detected on four 
chromosomes. Of these, 112 significant SNPs (log10(p) = 5, q-value < 0.004) were clustered in a narrow window on 
the chromosome 6 (chr6). The peak SNP at the position 75,609,202 on chr6 could explain 63.15% of amylose variation 
in the population and fell into the first exon of the ADP-glucose pyrophosphorylase (AGPase) small subunit gene, 
causing a non-synonymous modification of the resulting protein sequence. Allele segregation analysis showed that 
accessions with the rare G allele had a higher amylose content than those harboring the common A allele. However, 
AGPase, a key enzyme precursor of amylose biosynthesis, was not expressed differentially between accessions with 
A and G alleles. Overexpression of the two variants of AGPase in Arabidopsis thaliana resulted in a significantly higher 
amylose content in lines transformed with the AGPase-G allele.

Conclusions Overall, this study showed that a major genetic variant in AGPase probably enhances the enzyme 
activity leading to high amylose content in D. zingiberensis tuber. The results provide valuable insights for the 
development of amylose-enriched genotypes.
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Background
Dioscorea species encompass over 600 species and repre-
sent one of the key tuber crops regarding their economic, 
pharmaceutical, and sociocultural importance [1]. Yam 
is positioned as the fourth most cultivated tuber crop 
behind potato, cassava, and sweet potato [2]. It serves 
as a fundamental dietary constituent and a significant 
economic revenue generator for an estimated 300  mil-
lion people worldwide, mostly in tropical and subtropical 
regions [3].

Yam species, like other dietary fiber plants, contain 
high-amylose (resistant starch type 2), a useful prebiotic, 
which has a positive effect on gut microbiome, and can 
help with weight loss and obesity prevention [4–7]. For 
instance, high-amylose varieties of rice [8] and wheat [9] 
have a much lower glycemic load, which could be ben-
eficial for diabetics. Additionally, high-amylose starch has 
been associated with various health benefits, including 
improved gut health, weight management, diabetes con-
trol, and potential cholesterol reduction, as indicated by 
studies involving animal models [10, 11]. Therefore, the 
genetic regulation of amylose content in crops such as 
rice [12], wheat [13], potato [14] and sweet potato [15] 
has sparked significant attention in the scientific commu-
nity. Besides, amylose is widely utilized in pharmaceuti-
cal, food product, textile, and paper industries [12, 16].

The amylose content properties of yams have been 
studied for industrial applications. A study by Freitas et 
al. [17] found that defatted yam starch from D. alata cul-
tivars had a significantly higher amylose content of 36.2% 
compared to 24.2% for cassava starch. This difference in 
amylose content is reflected in the different thermal and 
rheological properties of the two starches. Oscillatory 
rheometry revealed an initial gelatinisation tempera-
ture of 71 °C for yam starch, significantly higher than the 
62 °C observed for cassava starch [17]. Furthermore, the 
gelatinisation process of yam starch was shown to require 
a higher activation energy, indicating a more energetically 
demanding process. Interestingly, the higher amylose 
content in yam starch also confers a slower gelatinisation 
rate at elevated temperatures and facilitates the forma-
tion of stronger gel structures upon cooling and retrogra-
dation compared to cassava starch gels [17].

Furthermore, a study of starch granules isolated from 
five different yam species (D. cayenensis, D. polygonoides, 
D. alata, D. rotundata, and D. esculenta) revealed differ-
ent characteristics in terms of amylose content, granule 
size, crystallinity and susceptibility to enzymatic diges-
tion [18]. Amylose content varied significantly, with D. 
cayenensis having the highest amylose content at 26.5%. 
Notably, pronounced differences were observed in the 

digestibility of crude starches by porcine pancreatic 
α-amylase, with D. esculenta and D. polygonoides being 
the most susceptible to enzymatic degradation, while D. 
cayenensis, D. rotundata and D. alata starches exhibited 
greater resistance to digestion [18]. The amylose content 
of another yam species, D. opposita Thunb. cultivars, 
showed lower amylose content ranging from 20.74 to 
25.94% compared to D. alata species [19].

Due to its unique properties, high-amylose starch is a 
valuable ingredient that offers a wide range of benefits 
in the food industry [20]. It has a higher melting tem-
perature, limited granule swelling, lower water holding 
capacity, and a superior ability to form a gel during gela-
tinization [21]. Food products made from high-amylose 
starch, such as bread wheat and maize starch, can exhibit 
improved cooking quality [22, 23]. High-amylose starch 
possesses low enzymatic digestibility, which offers several 
nutritional and physiological benefits to humans such 
as improved glycemic control, increased dietary fiber 
intake, and reduced caloric value [20, 24]. High-amylose 
starch is also utilized in the encapsulation of probiotics 
and drugs, and in the formulation of oral rehydration 
treatments [25, 26].

As for low-amylose or amylose-free starches, they are 
used as thickening agents in food processing and paper-
making industries [27]. In South East Asian countries 
such as Japan, South Korea and China, amylose-free cere-
als are widely consumed as part of the daily diet [28]. 
Low-amylose starches are also used to improve the shelf-
life of products such as baked goods and snacks because 
they are less likely to become firm and grainy over time 
[29]. Low-amylose starches exhibit adhesive proper-
ties, making it a valuable alternative to petroleum-based 
adhesives production [30].

Despite these numerous advantages, the genetic archi-
tecture of amylose production in yam is not well under-
stood. However, tremendous works have been done to 
unlock the genetic determinants of amylose biosynthesis 
using the plant model Arabidopsis thaliana [31], cereals 
including maize [32], wheat [13, 33, 34], barley [35], and 
rice [12, 16], and tubers such as sweet potato [15] and 
potato [14, 36].

Amylose biosynthesis in yam involves a series of 
enzyme-mediated steps and regulatory factors (Fig.  1). 
Sucrose from the phloem is cleaved into glucose and 
fructose, which are then converted to glucose-1-phos-
phate (G1P) [37]. G1P is activated by the enzyme 
ADP-glucose pyrophosphorylase (AGPase) to form ADP-
glucose (ADPG), the immediate precursor of starch. 
AGPase catalyses this reaction, converting ATP to inor-
ganic pyrophosphate (PPi) [38]. The catalytic activity 
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of AGPase is inhibited by inorganic phosphate (Pi) and 
3-phosphoglyceric acid (3-PGA) [39]. AGPase consists 
of two large (AGPLS) and two small (AGPSS) subunits, 
each with different functions. Granule-bound starch syn-
thase (GBSS) elongates the glucan chains of amylose.

Genome wide association study (GWAS) has become 
very popular and is one of the main approaches to unlock 
the genetic basis of biological traits. In biomedical sec-
tor, GWAS helps scientists to identify genes associ-
ated with human diseases, enabling the development of 

Fig. 1 A simplified schematic view of the potential routes of amylose biosynthesis in D. zingiberensis. The diagram includes two compartments: the 
cytosol and the amymoplast. The stepwise reactions of sucrose synthase (SuSy), UGP-glucose pyrophosphorilase (UGPase) and plastidial phosphogluco-
mutase (pPGM) take place in the cytosol to convert sucrose to glucose-6-phosphate, which enters the amyloplast to be used for amylose biosynthesis. 
The enzymes involved in amylose biosynthesis in yam tubers include the precursor ADP-glucose pyrophosphorylase (AGPase) and granule-bound starch 
synthase (GBSS). Abbreviations are defined as follows Fructokinase (FRK); Glucose 1-phosphate (G1P); Glucose 6-phosphate/phosphate transporter (GPT/
G6PPT); Fructose 6-phosphate (F6P); Cytosolic phosphoglucomutase (cPGM); cytosolic phosphoglucose isomerase (cPGI); inorganic phosphate (Pi); inor-
ganic pyrophosphate (PPi); 3-phosphoglyceric acid (3-PGA); AGPase large subunit (AGPLS); AGPase small subunit (AGPSS).
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suitable therapeutics [40]. In livestock, GWAS mainly 
aim to identify candidate genes related to important eco-
nomic traits [41–43]. GWAS has also led to the discovery 
of large quantitative genetic loci associated with phe-
notypes of interest in several crops such as rice [44, 45], 
maize [46, 47], and peanut [48, 49].

In the past decade, the implementation of GWAS in 
yam breeding programs has emerged as a promising tool 
for accelerating genetic gains and enhancing the effi-
ciency of breeding efforts. As for D. alata, GWAS has 
been employed to decipher the genetic architecture of 
tuber dry matter, oxidative browning [50], sex determi-
nation, cross-compatibility [51], flowering control [52], 
anthracnose, tuber size, tuber shape [53], and tuber flesh 
color [54]. Using an elite population of D. rotundata, loci 
associated with mosaic virus tolerance and yield tuber 
were identified using GWAS strategy [55]. While the 
greater yam, D. alata, has received considerable atten-
tion in genome-wide association studies (GWAS), inter-
est has been growing recently in other species, including 
the bush yam (D. praehensilis) and white guinea yam 
(D. rotundata) [56, 57]. The first gene discovery efforts 
related to key traits in the bush yam, such as dry mat-
ter content, tuber flesh oxidation, and tuber flesh hard-
ness have been performed [57]. As tuber quality is one of 
the key determinant of consumers preferences [58, 59], 
attention has been drawn to elucidating the genetic basis 
of yam food quality traits. Employing sensory quality 
evaluation and textural profile analysis, Asfaw et al. [56] 
identified putative genes underlying the textural proper-
ties of boiled and pounded yam food products derived 
from D. rotundata. Recently, taking advantage of whole 
genome sequencing of 127 genotypes of the greater yam, 
D. alata, Mota et al. discovered several genes involved 
some key tuber quality related pathways including starch 
and sucrose metabolism, pentose and glucuronate inter-
conversions, and flavonoid biosynthesis [60]. Although 
the investigated traits are more likely related to tuber 
quality and agronomic performance, little is known about 
the genetic determinants of amylose content in yams.

Several genome-wide association studies (GWAS) 
have been conducted to understand the genetic regula-
tion of starch quality traits, including starch content and 
pasting properties, in maize and barley [61, 62]. These 
studies have identified significant single nucleotide poly-
morphisms (SNPs) and candidate genes associated with 
starch traits, providing valuable insights into the genetic 
architecture of these traits. For example, in maize, GWAS 
has revealed the genetic control of starch content by mul-
tiple small effect quantitative trait loci (QTLs), and iden-
tified candidate genes related to starch pasting properties 
[61]. Similarly, in barley, GWAS has been used to identify 
novel putative alleles associated with total starch, amy-
lose, and amylopectin content in grain [62].

D. zingiberensis is a dioecious perennial plant indig-
enous to southern China [63]. It has been discovered 
to contain over 70 bioactive compounds, exhibiting a 
diverse range of biological activities [64]. These include, 
but are not limited to, cardiovascular protection, anti-
inflammatory responses, and anti-cancer properties [64, 
65]. In the present study, we focused on the detection of 
genetic variants associated with amylose content, a key 
bioactive component with a wide range of applications. 
Molecular breeding techniques alongside CRISPR/Cas9-
mediated gene knockout have been utilized to modulate 
the amylose content in major crops such as wheat [13] 
and rice [16]. Therefore, knowing the genomic regions 
and candidate genes underlying the biosynthesis of amy-
lose in D. zingiberensis could pave the way for amylose-
oriented genetic engineering.

Results
Analysis of amylose content variation in D. Zingiberensis 
panel
A panel of 150 D. zingiberensis accessions was screened 
for their amylose content. The results indicate an approx-
imatively normal distribution of the amylose content 
at both Luohe (p-value = 0.125) (Fig.  2a) and Hainan 
(p-value = 0.181) (Fig. 2b) environments in China.

The amylose content ranged from 9.11 to 32.25%, and 
from 10.23 to 30.78% at Luohe and Hainan, respectively 
(Table 1). The average amylose content among the acces-
sions was significantly (p-value ≤ 0.001) higher in Luohe 
(20.41%) compared to Hainan (17.33%).

The analysis of variance also showed a highly signifi-
cant (p-value ≤ 0.001) effect of environment, and geno-
type by environment factors on the amylose content. 
Besides, the broad-sense heritability was 74%, suggesting 
that variation in amylose content in D. zingiberensis tuber 
is substantially attributable to genetic causes.

Population structure and principal component analysis
Prior to conducting the genome-wide association analy-
sis, we assessed the presence of putative sub-populations 
based on 30,000 high-quality SNPs. Population struc-
ture analysis revealed that the studied population can 
be divided into three sub-groups, with the majority of 
accessions being admixed (Fig. 3a; Supplementary Fig. 1). 
Principal component analysis (PCA) showed that the first 
two PC (PC1 and PC2) explained a total of 26.43% of the 
genetic variation in the population, with PC1 and PC2 
explaining 18.91% and 7.52%, respectively. PC3 explained 
4,61% of the genetic variation in the population (Supple-
mentary Fig. 2). The low proportion of explained genetic 
variation suggests that the population of D. zingiberen-
sis used in this study has low levels of population differ-
entiation or substructure. Both STRUCTURE analysis 
(Fig.  3a), and PCA (Fig.  3b) confirmed the grouping of 
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accessions into three sub-groups. Overall, the population 
exhibited a moderately structured pattern.

Genome wide association study and identification loci 
controlling amylose variation
To identify the genetic loci accountable for the amy-
lose content variation in D. zingiberensis, we performed 
a GWAS using a panel of 150 accessions. The resulting 
Manhattan plot highlighted at least four genomic regions 
containing 115 significant SNPs on the chromosomes 
chr1 (1), chr3 (1), chr6 (112), and chr7 (1) (Fig. 4a, Sup-
plementary Table 1). The results of the quantile-quantile 
plot analysis (Fig. 4b) showed that the observed distribu-
tion did not deviate from the expected values to some 
extent. This result indicates a relative reduction of false 
positive (deviation from the expected values of the SNP 
markers) by the GWAS model.

The highest peak was observed on chr6 at the position 
75609202 and could explain 63.15% of amylose varia-
tion in the population (Table 2). This result suggests that 
the variant Chr6_75609202 is a major locus controlling 
amylose content in D. zingiberensis. Other minor SNPs 
detected on chr1, chr3 and chr6 had very weak contribu-
tions to amylose content variation and did not fall into 

genic regions. Therefore, we focused our efforts on char-
acterizing Chr6_75609202.

The SNP Chr6_75609202 was exactly located in the 
ADP-glucose pyrophosphorylase (AGPase) small subunit 
gene which is known to play a critical role in the starch 
biosynthesis [66, 67]. In-depth analysis the D. zingiberen-
sis AGPase (Dzin_AGPase) gene revealed that the SNP is 
a non-synonymous (A/G) variant affecting the resulting 
protein sequence from glycine to aspartic acid (Fig. 5a). 
Moreover, the SNP Chr6_75609202 is located in the first 
exon of the gene (Fig. 5a).

Through mining the genotypic data, a total of 102 
accessions presented the allele A while 27 harbored the 
allele G (Fig. 5b), indicating that A is the common allele. 
A comparative analysis of the amylose content in both 
groups showed a highly significant (p-value < 0.001) dif-
ference in the G allele group compared to the A allele 
group. Thus, the G allele could be considered the favor-
able allele for higher amount of amylose production in D. 
zingiberensis tuber.

Since the genetic variation fell into a genic region, we 
tested whether it impacts on the gene expression level. 
We performed a qRT-PCR experiment with five acces-
sions harboring the G allele and five accessions with the 

Table 1 Variability of the amylose content per location and contribution genotype, environment and genotype by environment 
effects

Mean (%) Range (%) CV (%) H2 G E G x E
Luohe 20.41 9.11–32.25 45.82 0.74 0.000381 0.00822 0.000517
Hainan 17.33 10.23–30.78 51.61
G = Genotype, E = Environment, G x E : interaction, H2 = Broad-sense heritability

Fig. 2 Distribution of amylose content data of D. zingiberensis accessions at Luohe (a) and Hainan (b)

 



Page 6 of 15Sun et al. BMC Plant Biology          (2024) 24:524 

Fig. 4 Genome-wide association mapping for amylose content in D. zingiberensis. Manhattan plot for amylose content (a). Quantile-quantile plot for 
amylose content (b)

 

Fig. 3 The results of the population structure (a) and principal component (b) analyses of the 150 D. zingiberensis accessions
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A allele. The results (Fig.  5c) revealed a similar relative 
expression level of Dzin_AGPase for both alleles, indicat-
ing that the discovered variant did not impact the gene 
transcription.

Functional analysis of the Dzin_AGPase gene
To validate the predicted function of the candidate 
Dzin_AGPase gene, an Arabidopsis thaliana-based trans-
formation was conducted. The full-length cDNA of the 
two variants of Dzin_AGPase were ligated into differ-
ent pROK II-35  S vector promoted by the CAMV35S 
promoter (Fig.  6a). From the positive T3 overexpress-
ing plants, leaves from four lines of each allele type with 
seven replicates each, were harvested for amylose and 
gene expression profile assessment.

The relative expression profile (Fig.  6b) of the trans-
genic lines indicates a highly similar expression level 
among the lines for both alleles of the Dzin_AGPase gene. 
However, the amylose content (Fig. 6c) was significantly 
higher in the G allele that in the A allele overexpressing 
lines. From the relative expression and amylose quantifi-
cation results, we deduced that the variant did not impact 
on the transcription and function of the protein but 
seemingly the enzyme activity is increased when it comes 
to the G allele, resulting in higher amylose content.

Discussion
Amylose is a valuable resource with many applications 
covering food, paper, textiles, adhesives, and health care 
industries [68, 69]. The genetic basis of amylose content, 
a component of starch, has been investigated in tuberous 

crops, such as potato [70], sweet potato [15], cassava [71] 
and non-tuber crops, including maize [32], wheat [33], 
and rice [16]. The improvement of amylose content in 
tubers for both consumption and industrial purposes has 
been a major objective for breeders. Taking advantage 
of a large panel combined with a high-quality genotyp-
ing dataset, we were able to dive into the genetic vari-
ants modulating amylose biosynthesis in D. zingiberensis 
tuber using a genome-wide association study (GWAS) 
approach.

In the present study, not only the genotype effect but 
also the genotype-by-environment effect were high-
lighted, influencing the amylose content in the studied D. 
zingiberensis panel. This implies that the environmental 
component is also a key determinant of amylose variation 
and should be considered when developing stable and 
high-yield amylose content genotypes. Similarly, a signifi-
cant environmental effect was also found for greater yam 
(Dioscorea alata) on tuber quality traits including flesh 
colour, tuber dry matter, oxidative browning, skin texture 
and shape regularity [50, 72], highlighting the importance 
of considering environmental effect for future research 
and breeding programs.

From GWAS, we identified four putative loci associ-
ated with amylose content variation in D. zingiberensis. 
Among these, three minor SNPs had very weak con-
tribution and were not linked to any candidate gene. 
Interestingly, one SNP was located in the first exon of 
the ADP-glucose pyrophosphorylase gene. The AGPase 
is well-known to be one of the key precursors at the 
upstream step of starch production [37]. Its role is to 

Table 2 Detected loci significantly associated with amylose content in Dioscorea zingiberensis
SNP Chromosome Position Allele p-value (-log10) PVE1 (%) Candidate gene
Chr6_75609202 6 75,609,202 A/G 8.23 63.15 Dzin_AGPase
Chr1_28410255 1 28,410,255 T/G 5.04 5.12
Chr3_661488 3 661,488 C/A 5.12 4.09
Chr7_8345231 7 8,345,231 A/G 5.21 5.24
1 Phenotypic variation explained

Fig. 5 Characterization of D. zingiberensis AGPase (Dzin_AGPase) gene structure showing the location of the SNP Chr6_75609202 in the first exon. A single 
nucleotide polymorphism (SNP) was detected within this exon, leading to a non-synonymous alteration in the resulting protein sequence (a). Compara-
tive amylose quantification for accessions exhibiting A and G alleles (b). Relative expression of the both versions of the gene via qRT-PCR experiment (c)
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Fig. 6 Generation of Arabidopsis thaliana transgenic plants for the overexpression of the DZin_AGPase gene (a). The construct of plasmid contains the 
Dzin_AGPase gene, the CaMV35S promoter, and NOS terminator. The NPT II was employed as a selective marker. RB, right border; LB, left border; NOS-P, 
nopaline synthase promoter; NOS-T, nopaline synthase terminator. Relative expression (b) and amylose content quantification (c) from the T3 generation 
transgenic plants. Four lines for each allele were selected. WT-VC is vector control (transformed with empty vector). Mean comparison significance of the 
amylose content was depicted with the letter A, B, and C
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catalyze the conversion of 1-P-glucose into ADP-glucose 
to enable the biosynthesis of both amylose and amylopec-
tin [66, 67, 73]. The regulatory properties of the ADPase 
gene in amylose production was firstly demonstrated 
in potato through overexpression approach [74]. This 
approach has gained popularity within some major cere-
als crops, with a specific focus on maize [75, 76], wheat 
[77, 78], and rice [79, 80]. Overexpression of AGPase in 
maize resulted in an increase in starch (amylose and amy-
lopectin) production and seed weight [75]. An increase in 
seed yield was also observed in overexpressed AGPase 
wheat [77] and rice [79, 80] lines. In addition to the regu-
latory role of AGPase with regard to amylose production, 
it has also been shown to have an impact on photosyn-
thesis and carbon metabolism. By increasing the avail-
ability of ADPglucose for starch biosynthesis, AGPase 
enhances the capacity of the leaf to store carbon, which 
in turn, stimulates photosynthesis by allowing more effi-
cient use of light energy [78].

We also uncovered that allelic variation in the DZin_
AGPase is associated with amylose content level in the 
studied D. zingiberensis panel. Genotypes with the G 
allele exhibited approximately two-fold higher amylose 
content than the A version of the gene. Surprisingly, the 
expression levels of both alleles are in the same range, 
indicating that both versions of the genes are equitably 
expressed but somehow, the amylose content in geno-
types with G allele is higher. The presence of non-synony-
mous changes in the protein sequence between the A and 
G alleles of AGPase, suggests that this change may lead 
to functional differences. The absence of evidence for dif-
ferential expression of the two alleles in transcriptome 
data may indicate that post-transcriptional or post-trans-
lational modifications may be responsible for observed 
differences in amylose content. Further investigation is 
required to elucidate the mechanisms underlying these 
differences and their potential implications for breeding 
programs aimed at developing cultivars with higher amy-
lose content.

The allelic variation associated with the amylose con-
tent in the panel and transgenic lines comforts the rate-
limiting enzyme function of the AGPase. In fact, the 
AGPase subunits interaction [81–84], and specifically, 
amino acid motifs [85, 86] responsible for allosteric regu-
lation are thought to confer to AGPase, the capabilities of 
starch level regulation. Therefore, AGPase has become a 
prime target for enzyme engineering, to increase starch 
content in some food crops including common wheat 
[87], maize [75], rice [79], and potato [86].

To functionally test the role of the DZin_AGPase, we 
proceeded to a transgenic experiment using Arabidopsis 
thaliana as plant model. DZin_AGPase overexpression 
showed a relatively high proportion of amylose content 
for the G allele compared the A allele. Therefore, the G 

version will likely be valuable to boost the production of 
amylose in D. zingiberensis. In-depth genetic improve-
ment of amylose content through CRISPR-Cas9 for 
example, might be a promising avenue to explore. Mean-
while, for the tetraploid potato, amylose-free genotype 
has been recently developed by CRISPR/Cas9-mediated 
mutagenesis [88]. Besides, the control of the amylose 
content in sweet potato has also been successfully con-
ducted [15]. It is worth noting that these two success 
stories exclusively relied on the granule-bound starch 
synthase gene editing, which is the amylose encoding 
enzyme. Noticeably, the granule-bound starch synthase 
gene has not been found in the present study. Knowing 
that the accumulation of amylose and the expression of 
key enzymes follows a diurnal pattern [89, 90], timeline 
transcriptome profiling of the tuber following expan-
sion of the tuber might potentially enlighten others key 
enzyme master players.

Methods
Plant materials and field experiments
To identify the genomic regions associated with amy-
lose content in D. zingiberensis, a panel of 150 accessions 
was utilized in a field experiment conducted in two loca-
tions in China: Hainan (18° 56’ 22’’ North and 109° 29’ 3’’ 
East) and Luohe (33° 34’ 18’’ North and 114° 2’ 7’’ East). 
The experiment was designed as a randomized complete 
block with three replicates. Within each block, five rep-
licates of each accession were sown on ridges, and all 
recommended in-field cultural practices were applied at 
both sites until tuber harvest, which occurred upon leaf 
senescence. The plant materials were formally identified 
by Prof Yunpeng Luan and all germplasms are conserved 
as vitro-plant at the Genebank of Southwest Forestry 
University. No permission is required to work on this 
species. The accessions originated from Southern China 
within relatively similar agroecological zones.

Starch isolation
Freshly harvested yam tubers were processed for starch 
isolation following a modified protocol of Farhat et al. 
[91]. Briefly, the rhizomes were washed, peeled, and 
cut into small pieces. A total of 100 g of the slices were 
ground with 900 mL of 1% sodium chloride solution 
in a commercial blender (Waring Commercial, Stam-
ford, Connecticut, USA) for two minutes. The resulting 
slurry was then passed through a 106 μm pore diameter 
sieve (Fisher Scientific, Waltham, Massachusetts, USA) 
to remove any solid particles. The obtained suspen-
sion was left to settle overnight (12 h) at room tempera-
ture to allow for starch precipitation. The supernatant 
was decanted, and the starch pellet was centrifuged at 
3000  g for 10  min. The top brown layer was carefully 
removed, and the starch was subsequently resuspended 
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in solutions of 1% w/v sodium chloride and de-ionized 
water, respectively. For each washing step, the solution 
was re-centrifuged two to three times. Finally, the freshly 
isolated starch was then dried at 60 °C in an oven (Preci-
sion Scientific, GCA Equipment Corporation, Madison, 
Wisconsin, USA), ground, and stored at room tempera-
ture in a glass container prior to usage.

Amylose Content quantification
The amylose content was quantified according to the 
iodine binding colorimetric methodology outlined in 
Jiang et al. [92] study with modifications. Firstly, a quan-
tity of 10 mg of the previously prepared starch was mixed 
with 2 mL of Dimethyl sulfoxide and subjected to heating 
at 85 °C for 15 min. The dissolved starch was then diluted 
with deionized water to attain a final volume of 25 mL. 
A volume of 1 mL of the starch solution was transferred 
into a 50 mL flask followed by the addition of 5 mL of 
iodine. Lastly, the optical absorbance was recorded at 
620 nm using a Cary 60 UV-Vis spectrophotometer (Agi-
lent, Santa Clara, California, USA). Triplicate apparent 
amylose content was carried out for each accession.

Amylose Content Data Evaluation and Statistical Analysis
The collected data were checked for normality through 
frequency distribution histogram plot, and Shapiro-Wilk 
test using R program v.4.2.2 [93]. The mean, range, and 
coefficient of variation were also computed in R program. 
Subsequently, an analysis of variance was performed fol-
lowing the model:

 

yijk = µ + Loci + Re pj (Loci)

+ Genk + Loci × Genk + εijk
 (1)

Where yijk is the observed value of the amylose content 
in the ith location, jth block for the kth genotype, µ  is the 
overall general mean, Loci is the effect of the ith location, 
εijk  is the experimental pooled error effect, Repj (Loci)  is 
the effect of jth block within ith location,Genk  is the effect 
of kth genotype, Loci × Genk is the effect of the interac-
tion between the ith location and the kth genotype, and 
εijk  is the experimental pooled error.

The variance components were computed by fitting 
the mixed linear model with genotype, location, and 
genotype by location factors as random effect using lme4 
package [94]. Furthermore, the heritability (H2) was cal-
culated as:

 
H2 =

σ2
g

σ2
g + σ2

ge/nLoc + σ2

ε
/(nLoc × nRep)

 (2)

where σ2
g  is the genotype variance component, σ2

ge 
is the genotype by environment interaction variance 

component, nLoc is the number of environments and the 
nRep the number of replicates.

The best linear and unbiased predictors (BLUPs) values 
calculated from the model, served for the downstream 
GWAS analysis. Normality test was conducted with sha-
piro.test() in R program v.4.2.2.

SNP Genotyping
From 100  g young leaves tissues, we extracted the 
genomic DNA for each accession with ImaSpin® Genomic 
DNA Kit (Imagene Bioscience, China) following the man-
ufacturer’s protocol. The quality of the DNA was checked 
using a Nanodrop 8000 spectrophotometer (Thermo 
Fisher Scientific, Waltham, MA, USA). A volume of 30 
mL of DNA was pipetted into 96-well PCR plates, and 
genotyping-by-sequencing (GBS) was conducted follow-
ing a 96-plex Pst I GBS protocol [95]. Briefly, the DNA of 
each accession was digested with the restriction enzyme 
PstI (New England Biolabs, Beijing, China). Restriction 
cutting sites were ligated with adapters (barcodes) with 
the T4 ligase. The ligated products were then pooled 
together. Single-end sequencing was performed using an 
Illumina HiSeq2500 instrument (Illumina Inc. San Diego, 
CA, USA).

The generated raw reads were processed (sorting, 
demultiplexing and trimming) using the TASSEL GBS v2 
pipeline [96] (Supplementary Table 2). The mapping onto 
the reference genome [97] was performed using the Bur-
rows–Wheeler alignment (BWA) v0.7.17 (Li and Durbin, 
2009), and the SNPs were called with DiscoverySNPCall-
erPluginV2 of the TASSEL GBS v2 pipeline yielding 
2.3  M SNPs. A minimum locus coverage (mnLov) was 
set to 0.1, while other parameters were maintained to 
default settings. Monomorphic sites, SNPs with missing 
data > 20%, and with minor allele frequency (MAF) < 0.01, 
were excluded using vcftools v0.1.16 [98]. The resulting 
data was imputed with Beagle v4.1 [99] yielding (842,000 
SNPs), and a second round of SNPs with MAF < 0.01 
were filtered out prior to the downstream analyses. Out 
of 54,000 SNPs, 30,000 high-quality SNPs were retained 
for downstream analyses.

Population structure analysis
The population genetic structure of the 150 accessions 
was inferred by using a Bayesian model-based method 
embedded in STRUCTURE v2.3.4 [100]. The number of 
population clusters was predetermined as k ranging from 
1 to 10. We applied five independent runs for each k. 
Each run involved a total of 100,000 Markov chain Monte 
Carlo iterations after a burn-in period of 100,000 itera-
tions. We determined the best k population following 
the Evanno ΔK method. Besides, the principal compo-
nent analysis (PCA) was performed using the Genomic 
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Association and Prediction Integrated Tool (GAPIT) 
[101] in the R program v.4.2.2 [93].

Genome-wide Association analyses
To find out putative candidate genomic regions related 
to the amylose content accumulation in tuber, the asso-
ciation phenotype-genotype analysis was performed 
using the GAPIT package following the mixed linear 
model (MLM) option [102]. Both kinship matrix and 
PCA matrix were employed as random and fixed effects, 
respectively. Since we retained a set of 30,000 high-
quality SNPs meeting the stringent filtering criteria, the 
genome wide significant threshold was set to 5 following 
the calculation -log10(p) with p = 1/30,000. The Manhat-
tan and qq plots were rendered using the qqman package 
[103].

Quantitative RealTime PCR (qRTPCR) analysis
To evaluate the expression of the candidate gene, a qRT-
PCR experiment was conducted in an Applied Biosys-
tems™ 7500 Real-Time PCR machine (Thermo Fisher 
Scientific, Waltham, Massachusetts, USA) with a SYBR 
Green PCR Master Mix (Tiangen Biotech, Beijing, 
China). Total RNA was extracted with RNAprep Pure 
Plant Kit (Tiangen Biotech, Beijing, China), and the RNA 
was transcribed with the help of a Quantscript Reverse 
Transcriptase Kit (Tiangen Biotech, Beijing, China). A 
primer pair (5’- A G A A T C T A G A C C A C T T A C-3’; 5’- C T 
C T A G G T A C A G T C T C A-3’) was designed, and the PCR 
experiment was conducted with the following conditions: 
denaturation step at 95 °C for 10 min, annealing step with 
40 cycles at 95 °C for 15 s, and the extension step at 60 °C 
for 1 min. The relative expression of the candidate genes 
was quantified following the comparative CT method 
[104]. Three replicates were applied for each gene vari-
ant, and the expression data were normalized against 
those of D. zingiberensis actin gene sequence (NCBI Gen-
Bank accession: JN693499).

Arabidopsis transgenics experiment
To functionally characterize the candidate gene Dzin_
AGPase, we extracted the protein coding region from two 
genotypes, each having different alleles. The construct 
design and cloning were performed using the pROK 
II-35 S vector. The Arabidopsis transformation was per-
formed following the floral dip method as outlined by 
Clough and Bent [105] using Agrobacterium tumefaciens 
strain LBA4404. The overexpressing plants (T3 homo-
zygous lines) were then transferred into larger pots and 
maintained in greenhouse. The gene expression and the 
amylose content quantification were executed in accor-
dance with the aforementioned methods.

Conclusions
In the present study, we report for the first time, a major 
locus associated with amylose content in a non-model 
plant D. zingiberenisis. DZin_AGPase, a starch rate-lim-
iting enzyme, exhibited allelic variation with the G allele 
associated to higher amylose content. Overexpression of 
the two DZin_AGPase alleles using Arabidopsis trans-
genic plants corroborated the higher amylose content for 
the G allele. Our findings provide a valuable foundation 
for developing new varieties with desired amylose con-
tent levels. This study can also contribute to improving 
the nutritional quality of yam-based foods, as amylose 
content affects their digestibility and glycemic index. 
Future research can expand on our findings by examin-
ing the functional roles of the identified genetic variants 
using CRISPR-Cas9.
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