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Abstract
Background The increasing impacts of heat stress on wheat production due to climate change has entailed the 
development of heat-resilient crop varieties. To address this, two hundred recombinant inbred lines (RILs) derived 
from a cross between WH711/WH1021 were evaluated in a randomized block design (RBD) with two replications at 
CCSHAU, Hisar, during 2018-19 under heat stress and non-stress conditions. Heat stress was induced by altering the 
date of sowing so that the grain filling stage coincide with heat stress.

Results Heat stress adversely affects RILs performance, as illustrated by alterations in phenotypic traits. Highest 
coefficients of variations were recorded for TAA, CTD 1, WUE, CTD 2, Cc and A under non-stress and heat stress 
conditions whereas gs, WUEi and GY under non-stress and SPAD 1, SPAD 2, GY and NDVI 2 under heat-stress 
conditions recorded moderate estimates of coefficient of variations. CTD 2, TAA, E, WUE and A displayed a significant 
occurrence of both high heritability and substantial genetic advance under non-stress. Similarly, CTD 2, NDVI 2, 
A, WUEi, SPAD 2, gs, E, Ci, MDA and WUE exhibited high heritability with high genetic advance under heat-stress 
conditions.

Conclusions Complementary and duplicate types of interactions with number of controlling genes were 
observed for different parameters depending on the traits and environments. RILs 41, 42, 59, 74, 75, 180 and 194 
were categorized as heat tolerant RILs. Selection preferably for NDVI 1, RWC, TAA, A, E and WUEi to accumulate 
heat tolerance favorable alleles in the selected RILs is suggested for development of heat resilient genotypes for 
sustainable crop improvement. The results showed that traits such as such as NDVI, RWC, TAA, A, E, and WUEi, can be 
effective for developing heat-resilient wheat genotypes and ensuring sustainable crop improvement.
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Background
Wheat is a predominant cereal crop that ensures para-
mount role in global food security by fulfilling dietary 
requirements of millions of people all over the world with 
an average yield of about 280 million tons, highest in the 
world and an average production of 2.9 tons per hectare 
in Asian continent excluding Russia [1]. The probable 
reasons for its large-scale cultivation and dependency lies 
behind its high agronomic adaptability, convenience in 
grain storage and diverse uses of its flour in the prepa-
ration of various food items [2]. Despite the substantial 
growth in wheat production over the decades, it is dif-
ficult to cope with the demands of growing population 
[3, 4]. Furthermore, climate change and elevated tem-
perature above a threshold are detrimental to the normal 
growth and development, known as terminal heat stress, 
affecting the physiological and biochemical processes to 
a great extent [5, 6]. The global mean temperature has 
experienced a consistent rise in recent decades, and this 
trend can be attributed to uncontrolled and unorganized 
anthropogenic activities. For each 1oC increase in tem-
perature, the global wheat yield reduction is increased 
by 6.0 ± 2.9% [7]. Climate change and elevated tempera-
ture above a threshold are detrimental to the normal 
growth and affects the physiological and biochemical 
processes of wheat to a great extent. Prasad et al. [8] 
reported that wheat is more sensitive to nighttime tem-
perature increase than daytime comparatively. Night 
temperature between 20 and 23 oC delayed the grain fill-
ing period by 3 to 7 days, resulting in a decreased overall 
crop yield. The results also showed that both short- and 
long-term stresses can significantly influence growth 
and yield processes when stress occurs at sensitive stages 
and decreased them. Likewise, another study reported a 
significant reduction in grain filling duration and grain 
weight with  32/22 oC day/night temperatures as com-
pared to 25/15 oC [9]. Therefore, the development of heat 
resilient genotypes becomes crucial.

The complex interplay morphological and physio-bio-
chemical factors in determining the wheat yield under 
terminal heat stress makes it a thrust area for research. 
While earlier research focused on morphological param-
eters such as wheat height, tillers, grain yield, biologi-
cal yield, harvest index, grain volume, and seed density 
for developing heat tolerant wheat cultivars, however 
genetic gain has reached on plateau because these alone 
are insufficient for developing effective cultivars in pres-
ent scenario without full exploitation of other traits 
like biochemical, multispectral indices and gaseous 
exchange parameters [10]. Therefore, involvement of 
physio-biochemical parameters with high heritability 
and genetic advance can be valuable for assessing sus-
ceptibility/tolerance of genotypes and effective selection 
as they are directly involved in heat stress mechanism 

[10]. Elevated temperature at grain filling stage disrupts 
wheat metabolic and physiological responses. The pho-
tosynthetic efficiency of heat sensitive Rubisco, a major 
photosynthetic enzyme, is compromised, impacting pho-
toassimilates production [11]. Many traits, such as total 
antioxidant activity (TAA), canopy temperature depres-
sion  (CTD), water-use efficiency (WUE), grain yield 
(GY), chlorophyll content (SPAD), normalized difference 
vegetative index (NDVI), stomatal conductance (gs), 
intercellular CO2 concentration (Ci), and malondialde-
hyde content (MDA) are affected by heat stress.

Stomal conductance is crucial determinate of carbon 
assimilation and transpiration in wheat (C3 plants) as it is 
directly related to regulation of Co2 movement in leaves 
[12]. High temperature disrupts plant-water relations, 
affecting physiological phenomena like, photosynthesis, 
chlorophyll content, water use efficiency, leading to yield 
losses [13]. Furthermore, the production of reactive oxy-
gen species (ROS) under heat stress compromises cell 
membrane integrity, resulting in increase in electrolyte 
leakage and lipid peroxidation of polyunsaturated fatty 
acids, whose end product is malondialdehyde content 
(MDA) [14]. Under severe stress, plants start to change 
green to yellow color at phenotypic level, whereas, toxic 
ROS accumulate at cellular level, as a consequence, plants 
defense mechanism activates the production of antioxi-
dant enzymes [15]. The tolerant genotypes are reported 
to express high antioxidant enzymatic activity on high 
production of MDA content, therefore, both traits can 
be important criteria for screening out heat susceptible/
tolerant genotypes. Plants can experience some degree 
of relaxation when the canopy surface temperature is 
successfully lowered by a significant loss of water con-
tent [16]. Additionally, it is reinforced by a rise in tran-
spiration rate, which lowers water use efficiency (WUE). 
Consequently, plant closes their stomata and impairs the 
stomatal conductance, therefore, involvement of these 
parameters during selection process can be very effective. 
Moreover, the heat susceptibility index (HSI) can be a 
useful tool for identifying heat tolerant genotypes under 
heat stress conditions [17]. In summary, the importance 
of creating genotypes of wheat that are heat-resistant in 
response to climate change and rising temperatures must 
be emphasized. Through the application of plant breed-
ing and biotechnology, scientists can produce wheat vari-
eties that are more suited to a warmer climate, which will 
guarantee future generations’ access to food, environ-
mental sustainability, and economic viability.

During crucial growth stages like flowering and grain 
filling, wheat, a cool-season crop, is especially vulnerable 
to high temperatures. Prolonged heat stress causes physi-
ological changes in wheat plants that can lead to reduced 
photosynthesis, impaired grain development, and 
decreased overall productivity. So, a two-tiered based 
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approach including field level phenotyping of physio-bio-
chemical and gaseous exchange traits and various degree 
statistics was employed to uncover the genetic insights 
of RILs population under terminal heat stress conditions 
and identifying the heat resilient genotypes which further 
can be directly utilized in heat tolerant wheat breeding 
programs.

Materials and methods
The experiment material was composed of two hundred 
RILs derived from a cross between WH711 and WH1021 
using single seed descent method. The female parent, 
WH711 is known for high yield under timely and irri-
gated conditions, whereas, male parent, WH 1021 is a 
heat tolerant cultivar suitable for late sown and irrigated 
conditions. The experimental material composed of a 
selected subset of 200 RILs of early and late duration was 
sown in a randomized block design (RBD) during Rabi 
season 2018–2019 at CCSHAU, Hisar. Hyperspectral 
physiological parameters included normalized difference 
vegetative index at anthesis (NDVI 1) and 15 days after 
anthesis (DAA) (NDVI 2), chlorophyll content (SPAD 1 
and SPAD 2), canopy temperature depression (CTD 1 
and CTD 2), and relative water content at anthesis stage. 
Biochemical parameters including lipid peroxidation 
malondialdehyde content (MDA) and total antioxidant 
activity (TAA) were estimated at anthesis stage using 
[18] and [19] methods. The gaseous exchange param-
eters including intercellular CO2 concentration (µmole/
mole of air), transpiration rates (E) (mmol m− 2s− 1), sto-
matal conductance (gs) (mol m− 2s− 1), photosynthetic 
rates (A) (µmol m− 2s− 1), instantaneous water-use effi-
ciency (WUE = A/E), carboxylation capacity (Cc = A/Ci) 
and intrinsic water-use efficiency (WUEi = A/gs) were 
calculated at anthesis stage using a portable infrared gas 
analyzer (IRGA). Descriptive statistics, including mean, 
genotypic and phenotypic coefficient of variations (GCV 
& PCV), heritability, genetic advance (GA), skewness, 
and kurtosis were computed using IBM SPSS statistics. 
The significance of skewness and kurtosis was deter-
mined by dividing these values by their respective stan-
dard errors, yielding t values that were compared against 
the t-table values at n-1 degrees of freedom for assess-
ment. Heat susceptibility index (HSI) was calculated for 
all the traits within the RILs population utilizing the for-
mula described by [20].

Results and discussion
Change in physio-biochemical and gaseous parameters
The differential response of RILs population provided a 
clear picture of impacts of terminal heat stress (Table 1). 
The differences in the heat tolerance of RILs population 
were most evident in the changes in grain yield per plot. 
Generally, high yielding cultivar is a main goal of all crop 

improvement programmes [21]. The hyperspectral physi-
ological parameters recorded highest reduction for NDVI 
2 (0.80 to 0.54) followed by NDVI 1 (0.82 to 0.72), SPAD 
1 (49.41 to 41.55) and SPAD 2 (47.09 to 39.32) (Table 1). 
The intense loss of greenness and chlorophyll content 
(SPAD units) disrupted the photosynthetic machinery, A 
(15.70 to 7.26) and membrane permeability, RWC (79.92 
to 77.26%) and forced the plants to complete its grow-
ing degree days while compensating the economic and 
biological yield. The analogous findings were reported 
by [16, 22]. The heat stress impacts were more dramatic 
in CTD and gaseous traits, such as a significant increase 
was recorded for CTD 1, CTD 2 and Ci whereas, sig-
nificant reduction was observed for E, gs, Cc, WUE, and 
WUEi. Similarly, cooler canopy with reduced photosyn-
thetic and transpiration rate were recorded in other find-
ings [16, 23]. The impaired stomatal conductance and 
water loss directly hindered the photosynthates translo-
cation and ultimately decreased the economic yield [16, 
24]. Heat stress created enough stress to trigger the pro-
duction of MDA content (from 0.15–1.13 to 0.15–2.38 
µ mole/g fresh weight) and consequently, a differential 
response of TAA (from 5.11–30.75 to 10.10–45.20 µ 
mole/g fresh weight) was observed. Likewise other traits 
were also recorded with wide ranges, indicating towards 
the presence of ample amount of variations among RILs 
population, which can potentially provide some desirable 
genotypes. Earlier reports also observed severe reduc-
tion among different traits including antioxidant content, 
chlorophyll content, photosynthesis, stomatal conduc-
tance and transpiration under heat stress conditions [14, 
15].

Coefficients of variability
The recorded traits showed slightly higher PCV com-
pared to GCV, suggesting a predominance of genetic 
control in comparison to environmental factors (Fig. 1). 
Generally, higher values of GCV and PCV are preferred, 
as they provide a wider genetic base for the selection of 
desirable traits and result in an effective selection. High 
GCV and PCV values were observed for TAA (41.23% 
and 44.26%) followed by CTD 1 (36.48% and 39.03%) 
and WUE (32.78% and 35.78%) under non-stress condi-
tions whereas, WUE (49.75% and 59.14%) followed by 
MDA (47.14% and 55.33%), Cc (47.32% and 53.62%), A 
(46.36% and 49.02%), CTD 2(33.83% and 35.62%) and 
TAA (33.78% and 36.36%) under heat stress conditions. 
However, NDVI 1(3.54% and 3.99%), NDVI 2 (3.28% 
and 3.75%), SPAD 1(8.45% and 8.92%), SPAD 2 (8.39% 
and 8.94), RWC (5.29% and 5.75%) and Ci (8.79% and 
11.83%) under non-stress conditions and NDVI 1 (5.72% 
and 6.9%) and RWC (6.00% and 6.51%) under heat stress 
conditions recorded low values. Their low correspond-
ing difference signified minimum difference between 
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individual RILs, reflecting a higher level of acceptability 
for the results of these traits. Similar findings for canopy 
temperature and SPAD were reported by previous stud-
ies [25]. Rest of the traits showed moderate values for 
coefficients of variations, indicating that selection will be 
more responsive as compared to traits having low GCV 
and PCV values. These findings were aligned with other 
reports [26, 27].

Estimates of heritability and genetic advance
Heritability estimates are a useful tool in gauging the 
authenticity of phenotypic selection by helping in iden-
tification of particular traits. In this study, high broad 
sense heritability was recorded for CTD 2 (88% and 90%) 
followed by SPAD 2 (88% and 85%), TAA (87% and 86%), 
RWC (85% and 85%), and A (81% and 89%) under both 
conditions, indicating that traits have potential to give 
a stable performance under heat stress as they are least 
affected by environmental factors (Table 1). These results 
aligned with the other findings [16, 28] reported high 
heritability estimates for photosynthetic rates, canopy 
temperature depression. Heat stress severely impacted 
heritability estimates for NDVI 1, CTD 1, SPAD 1, 
E and WUE, whereas, remaining traits like NDVI 2, 
MDA, Ci, gs, Cc and WUEi recorded the reverse trend. 
On other hand, TAA (79.11%), CTD 1 (70.22%), WUE 
(61.80%) and CTD 2 (54.15%) under non-stress condi-
tions and A (90.34%), WUE (86.23%), Cc (86.04%), MDA 
(82.73%), TAA (64.65%) and gs (50.54%) under heat stress 

conditions recorded high estimate of GA as 5% of mean, 
indicating a good scope of improvement.

Traits like NDVI 2, CTD 2, SPAD 2, MDA, Ci, gs, A, 
Cc, WUE, and WUEi recorded significant increase in GA 
under heat stress conditions, suggesting towards worth-
ful results in case they are selected. The remaining traits 
showed decrease in GA values, suggesting that those 
traits were adversely affected by heat stress. Traits like 
NDVI 1, NDVI 2, SPAD 1 showed lower estimates of GA, 
indicated that these traits follow by non-additive / poly-
genic inheritance. Similar reports were recorded in previ-
ous findings [27, 29, 30].

Genetics of traits
The skewness and kurtosis can be very instrumental to 
understand the distribution pattern of a traits by deter-
mining the gene action and nature of genes associated 
with the traits [31]. Complementary gene interaction 
is commonly associated with positive skewness, while 
duplicate gene interaction (additive X additive) is indica-
tive of negative skewness. Additionally, platykurtic distri-
butions result from the influence of a larger number of 
genes, whereas leptokurtic distributions are associated 
with the impact of a smaller number of genes.

For most traits, the RILs exhibited a broad distribu-
tion that extended beyond the mean values of the par-
ents for each trait, as illustrated in Figs. 2, 3 and 4. This 
suggests the presence of a significant amount of vari-
ability within the RILs population and their differential 

Fig. 1 Estimate of GCV (genotypic coefficient of variations) and PCV (phenotypic coefficient of variations) for different physio-biochemical traits in RILs 
population under heat stress and non-stress conditions
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Fig. 3 Frequency distribution of Ci (Intercellular CO2 concentration), E (Tanspiration rates), gs (Stomatal conductance), A (Photosynthetic rates), WUE 
(Instantaneous water-use efficiency) and WUEi (Intrinsic water-use efficiency) for RILs population and parents under non-stress (dark) and heat stress 
(light) conditions

 

Fig. 2 Frequency distribution of NDVI 1 (Normalized difference vegetative index at anthesis), NDVI 2 (Normalized difference vegetative index at 15 days 
after anthesis), CTD 1 (Canopy temperature depression at anthesis), CTD 2 (Canopy temperature depression at 15 days after anthesis), SPAD 1 (Chlorophyll 
content at anthesis) and SPAD 2 (Chlorophyll content at 15 days after anthesis) for RILs population and parents under non-stress (dark) and heat stress 
(light) conditions
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response for terminal heat tolerance. Among hyperspec-
tral traits, NDVI 1 and NDVI 2 exhibited a significant 
negatively skewed (-0.18 and − 0.83) and positive kurto-
sis (0.70 and 0.80) under non-stress conditions, suggest-
ing towards polygenic inheritance with increasing effects 
and dominance property in their expression. However, 
NDVI 1 exhibited only significant negative skewness 
and NDVI 2 exhibited only significant kurtosis under 
heat stress conditions. The genetic gain for NDVI 1 & 2 
traits will be rapid under mild selection, performed based 
on existing variability in the RILs population. However, 
SPAD 1 recorded non-significant positive skewness with 
platykurtic distribution, indicating complementary and 
polygenic inheritance.

Among biochemical traits, MDA showed a significant 
positively skewness with platykurtic distribution, indi-
cating presence of a large number of genes with increas-
ing effects with dominance property. The genetic gain 
for MDA will be rapid under mild selection, performed 
based on existing variability in the RILs population. On 
the other hand, RWC exhibited negatively skewed (-1.77 
and − 1.84) with a leptokurtic distribution (3.05 and 4.46) 
under both conditions, respectively, suggesting that, 
RWC followed a dominance based complementary (addi-
tive X additive) gene inheritance, controlled by lower 
number of genes with increasing effects. The stringent/ 
intense selection will be very effective and consequently, 
genetic gain will be highly responsive.

Among gaseous traits, heat stress severely impacted 
kurtosis distribution of gs by providing a nonsignificant 
(0.19) coefficients, whereas, skewness distribution (0.61 
and 0.61) was constant under both conditions. The gs 
distribution prominently depicted dominant compo-
nent, controlled by fewer number of genes, which will 
be responsive under mild selection. Likewise, skewness 
distribution of WUEi altered from negative to positive 

under nonstress to heat stress conditions. However, kur-
tosis distribution of A changed from platykurtic to lep-
tokurtic while moving from non-stress to heat stress 
conditions, indicating that heat stress severely impacted 
functioning of some genes, governing A under non-stress 
condition and a few genes, controlling A were active 
under heat stress conditions. It is well proved fact that 
photosynthetic rate is the ultimate factor, affected by 
heat stress, as it burns the photosynthetic machinery and 
impaired the activity of heat sensitive Rubisco enzyme. 
Similarly, Cc and WUE showed a significant positively 
skewed (0.82 and 1.37 under non-stress, 2.41 and 2.31 
under heat stress conditions) and platykurtic distribution 
0.36 and 2.34 under non-stress conditions. However, kur-
tosis distribution was platykurtic under non-stress and 
leptokurtic under heat stress, indicating that some genes 
were inactive under heat stress conditions. The stringent 
selection will be effective for both traits.

Selection of superior recombinant and traits contributing 
heat tolerance
The assessment of the top 10 and bottom 10 perform-
ing RILs underscored the existence of a transgressive 
segregant population across all traits. Different genetic 
interaction like dominant, additive and epistatic interac-
tions might be responsible for the occurrence of trans-
gressive segregants. The mean performance of top ten 
RILs showed significant achievement, even higher than 
the parents for most of the traits viz. NDVI 1 (0.88 and 
0.79), NDVI 2 (0.84 and 0.69), CTD 1 (4.16 and 9.25), 
CTD 2 (6.36 and 6.85), SPAD 2 (54.61 and 53.76), MDA 
(0.95 and 1.63), TAA (29.75 and 44.86), Ci (294.90 and 
364.65), E (7.73 and 6.85), gs (0.31 and 0.22), A (23.49 and 
18.41), WUE (6.33 and 5.69) and WUEi (88.53 and 88.55) 
under non-stress and heat stress conditions, respectively 
(Table 2). In general, the generation of ROS during heat 

Fig. 4 Frequency distribution of Cc (Carboxylation capacity), RWC (Relative water content), MDA (Lipid peroxidation malondialdehyde content) and TAA 
(Total antioxidant activity) for RILs population and parents under non-stress (dark) and heat stress (light) conditions
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Table 2 Mean performance of ten highest and lowest RILs and parents under non-stress and heat stress conditions
Traits Under NS Under HS

Parental genotypes RILs Parental genotypes RILs

WH711 WH1021 High Low WH711 WH1021 High Low
NDVI 1 0.84 0.82 0.88 0.74 0.70 0.74 0.79 0.63
NDVI 2 0.82 0.80 0.84 0.72 0.59 0.55 0.69 0.39
CTD 1 1.26 2.30 4.16 0.61 4.50 5.47 9.25 2.19
CTD 2 1.50 3.50 6.36 1.44 2.50 6.75 6.85 0.62
SPAD 1 58.60 53.66 59.07 42.16 53.00 55.68 51.53 33.27
SPAD 2 53.10 48.95 54.61 37.63 50.00 52.00 53.76 24.23
RWC 87.24 83.87 84.15 67.03 75.10 80.43 82.13 63.71
MDA 0.68 0.55 0.95 0.33 1.02 0.74 1.63 0.22
TAA 12.86 23.18 29.75 5.76 24.66 43.48 44.86 10.55
Ci 288.00 247.50 294.90 201.05 215.00 200.00 364.65 196.85
E 5.20 4.90 7.73 3.12 3.89 5.84 6.85 2.09
gs 0.26 0.21 0.31 0.15 0.12 0.17 0.22 0.08
A 23.04 17.39 23.49 10.86 9.20 14.05 18.41 3.65
Cc 0.08 0.07 0.10 0.04 0.04 0.09 0.08 0.01
WUE 4.43 3.55 6.33 1.71 2.37 2.41 5.69 0.81
WUEi 88.62 84.88 88.53 53.68 80.15 82.65 88.55 26.73
GY 1050.00 905.00 1119.15 618.05 660.00 710.00 802.15 350.15
HS = Heat stress, NS = Non-stress, NDVI 1 = Normalized difference vegetative index at anthesis, NDVI 2 = Normalized difference vegetative index at 15 days after 
anthesis, CTD 1 = Canopy temperature depression at anthesis, CTD 2 = Canopy temperature depression at 15 days after anthesis, SPAD 1 = Chlorophyll content at 
anthesis, SPAD 2 = Chlorophyll content at 15 days after anthesis, RWC = Relative water content, MDA = Lipid peroxidation malondialdehyde content, TAA = Total 
antioxidant activity, Ci = Intercellular CO2 concentration, E = Tanspiration rates, gs = Stomatal conductance, A = Photosynthetic rates, Cc = Carboxylation capacity, 
WUE = Instantaneous water-use efficiency, WUEi = Intrinsic water-use efficiency, GY = Grain yield per plot

Fig. 5 Distribution of Heat Susceptibility Index for different traits of whole RILs population. NDVI 1 = Normalized difference vegetative index at anthesis, 
NDVI 2 = Normalized difference vegetative index at 15 days after anthesis, CTD 1 = Canopy temperature depression at anthesis, CTD 2 = Canopy tempera-
ture depression at 15 days after anthesis, SPAD 1 = Chlorophyll content at anthesis, SPAD 2 = Chlorophyll content at 15 days after anthesis, RWC = Relative 
water content, MDA = Lipid peroxidation malondialdehyde content, TAA = Total antioxidant activity, Ci = Intercellular CO2 concentration, E = Tanspiration 
rates, gs = Stomatal conductance, A = Photosynthetic rates, Cc = Carboxylation capacity, WUE = Instantaneous water-use efficiency, WUEi = Intrinsic water-
use efficiency, GY = Grain yield per plot
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stress is a multifaceted but crucial component of plant 
defense mechanisms. In order to design crop varieties 
with increased resilience to environmental challenges 
and, eventually, contribute to sustainable agriculture and 
food security in a changing climate, it can be helpful to 
understand the role of ROS in signaling cascades and 
defense mechanisms. Based on highest GY under heat 
stress conditions, (895  g), RIL 59 can be categorized as 
heat tolerant RIL, which was further supported by high-
est TAA (59 µ mole/g fresh weight). The results show 
that antioxidant enzymatic activity and malondialdehyde 
content traits can be effective for screening heat-tolerant 
genotypes.

RIL 41 was recorded for highest A (21.32 µmol m-2s-1) 
and gs (0.25 mol m-2s-1), whereas, RIL 42 was recorded 
for highest CTD 1 (9.6 oC) and RWC (82.75%), however, 
both RILs had higher HSI values for GY (0.55 and 0.81), 
therefore, they can be considered as moderately tolerant. 
RIL 73 was recorded for maximum Cc (0.1264) with low-
est Ci (163.5 µmol/ mole of air) and lower GY (526.50 g) 
under heat stress conditions. On other hand, RIL 77 
exhibited moderate tolerance (0.72 HSI for GY), which 
was supported by maximum CTD 1 (9.6 oC) with lowest 
E (1.65 mmol m− 2s− 1) under heat stress conditions. RIL 
74 exhibited high tolerance (0.30 HSI for GY) with high-
est NDVI 2 (0.71), which was further supported by lowest 
HSI for NDVI 2 (0.12). Several investigations, including 
those conducted by [32, 33], identified heat-resistant gen-
otypes through the screening of wheat populations under 
conditions of heat stress.

While calculating heat susceptibility indices (HSI) of 
individual trait, performed for whole RILs population, 
the lowest HSI values were recorded for RWC (-9.32) fol-
lowed by MDA (-8.18) whereas, highest HSI values were 
recorded for MDA (17.94) and CTD 1 (15.12) (Fig.  5). 
Bennani et al. and Vijayalakshmi et al. [34, 35] observed 
the existence of transgressive segregants concerning heat 
stress indices. RIL 75 was recorded for lowest HSI val-
ues for maximum number of traits, including A (-1.23), 
Cc (-0.97), WUE (-4.81) and GY (0.13) which was further 
supported by maximum WUE (6.48); therefore, it can be 
termed as one of the highly heat tolerant genotype. RIL 
194 also exhibited high heat tolerance (0.29 HSI for GY), 
which was supported by maximum SPAD 1 (56) under 
heat stress conditions with a lowest HSI (-1.16) for SPAD 
1. RIL 180 was recorded for lowest HSI for GY, which 
was supported by lower HSI for different traits includ-
ing NDVI 1 (0.33), SPAD 1 (0.10), SPAD 2 (0.43), RWC 
(-4.58), TAA (-0.15), E(0.38) and WUEi (0.72), whereas 
RIL 126 was recorded for highest HSI for GY, which 
was supported by higher HSI of different traits includ-
ing NDVI 1(1.68), RWC (6.28), Ci (1.85), gs (0.99), A 
(1.43), cc (1.45), WUE (2.04) and WUEi (2.68), suggesting 
that the following physio-biochemical traits has a direct 

association and high potential for governing GY under 
heat stress conditions. In reaction to heat stress and 
water loss, plants may demonstrate several adaptation 
processes to survive with the tough conditions. These can 
include closing stomata to prevent water loss, creating 
protective chemicals such heat shock proteins, increasing 
antioxidant activity to buffer oxidative stress, and chang-
ing their metabolism to sustain important physiological 
activities. Overall, the relationship between water con-
tent loss, canopy surface temperature, and plant response 
to heat stress highlights the intricate balance that plants 
must maintain to survive under environmental pressures. 
In tough and ever-changing environmental conditions, 
plants require proper control of water and temperature.

An important tool for determining how sensitive a 
plant is to high temperatures is the Heat Susceptibility 
Index (HSI), which is a quantitative indicator of a plant’s 
susceptibility to heat stress based on physiological and 
biochemical responses. Researchers [36, 37] can use the 
HSI to compare the responses of different plant geno-
types to high temperatures when examining their respec-
tive genotypes under heat stress; genotypes with lower 
HSI values are thought to be more heat-tolerant because 
they show less detrimental effects on growth, develop-
ment, and physiological functions when exposed to heat 
stress.

The ability of the RILs to maintain their physiological 
and biochemical functions is a promising factor in alle-
viating the adverse effects of terminal heat stresses, as 
demonstrated by the current study. The RILs population 
exhibited a tendency to promptly respond to terminal 
heat stress through adjusting the level of greenness, rela-
tive water content, total antioxidant enzymes, transpi-
ration rate, photosynthetic rate and intrinsic water use 
efficiency. This enables the plant to maintain a balance 
among physio-biochemical and gaseous exchange pro-
cesses, leading to the high yield production. Hence, the 
present study suggests a comprehensive assessment of 
above-mentioned heat tolerant RILs (41, 42, 59, 74, 75, 
180 and 194) through extensive trials under terminal heat 
stress target environments.
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