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Abstract

Background Salt stress significantly reduces soybean yield. To improve salt tolerance in soybean, it is important
to mine the genes associated with salt tolerance traits.

Results Salt tolerance traits of 286 soybean accessions were measured four times between 2009 and 2015.The
results were associated with 740,754 single nucleotide polymorphisms (SNPs) to identify quantitative trait nucleotides
(QTNs) and QTN-by-environment interactions (QEls) using three-variance-component multi-locus random-SNP-
effect mixed linear model 3VmrMLM). As a result, eight salt tolerance genes (GmCHXT, GsPRX9, Gm5PTase8, GmWRKY,
GmCHX20a, GmNHX1, GmSK1, and GmLEA2-1) near 179 significant and 79 suggested QTNs and two salt tolerance
genes (GmWRKY49 and GmSKT) near 45 significant and 14 suggested QEls were associated with salt tolerance index
traits in previous studies. Six candidate genes and three gene-by-environment interactions (GEls) were predicted

to be associated with these index traits. Analysis of four salt tolerance related traits under control and salt treatments
revealed six genes associated with salt tolerance (GmHDA13, GmPHO1, GmERF5, GmNAC06, GmbZIP132, and GmH-
sp90s) around 166 QEls were verified in previous studies. Five candidate GEls were confirmed to be associated

with salt stress by at least one haplotype analysis. The elite molecular modules of seven candidate genes with selec-
tion signs were extracted from wild soybean, and these genes could be applied to soybean molecular breeding. Two
of these genes, Glyma06g04840 and Glyma07g18150, were confirmed by qRT-PCR and are expected to be key players
in responding to salt stress.

Conclusions Around the QTNs and QEls identified in this study, 16 known genes, 6 candidate genes, and 8 candi-
date GEls were found to be associated with soybean salt tolerance, of which Glyma07g18150 was further confirmed
by gRT-PCR.
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Background

Soil salinization is a major agricultural problem world-
wide, especially in arid and semi-arid regions [1]. Salin-
ity affects approximately 20% of irrigated cropland [2],
resulting in a global loss of approximately 2,000 hectares
of cropland per day. This contributes to a global annual
loss of 1% to 2% of agricultural land [3, 4]. Higher soil
salinity has negative effects on both soil properties and
plant physiology [5].

Soybean (Glycine max L. Merr.) is a major source of
edible vegetable oils and high-protein livestock feed [6,
7]. They are often considered to be more sensitive to
salt stress than other crops [8]. Salt stress significantly
reduces soybean yield, and high levels of salt damage the
plant at all stages of the growth cycle. This includes ger-
mination, vegetative and reproductive growth, nodula-
tion, leaf size, plant height, root length, shoot and root
dry weight, seed size and seed weight [9-11]. Toxicity
occurs when high concentrations of Cl~ and Na' ions
are absorbed and accumulated in the soybean plant. In
previous studies, Na* accumulation is more damaging to
Glycine soja, while CI™ accumulation is more damaging
to Glycine max [12]. Exposure of soybean plants to salt
stress resulted in reduction of hypocotyl and root length
and fresh weight [13]. Root length, fresh root weight and
dry root weight have been used as salinity tolerance indi-
cators to evaluate the salinity tolerance of soybean [14].

Salt tolerance in plants is a complex quantitative trait
that is influenced by numerous genetic and non-genetic
factors [15, 16]. Quantitative trait locus (QTL) mapping
and genome-wide association studies (GWAS) have been
used as effective and precise tools to detect QTLs for salt
tolerance-related traits, and a number of QTLs have been
detected in previous studies. A total of 19 QTLs and 13
quantitative trait nucleotides (QTNs) for salt tolerance-
related traits in soybean have been stored in Soybase
(https://www.soybase.org/). In addition, Zeng et al. [17]
identified 45 significant QTNs for salt tolerance-related
traits in 283 different soybean accessions with 33,009
single nucleotide polymorphisms (SNPs) using GWAS.
Shi et al. [18] identified 25 QTLs and 21 significant and
24 suggested QTNs for three salt tolerance indices in
two environments. Cao et al. [14] associated salt toler-
ance-related traits at the seedling stage in 281 different
soybean accessions with 58,112 SNPs, and 8, 4, 6 and 4
QTNs were found to be associated with germination
ratio, root length, root fresh weight and root dry weight,
respectively.

Currently, many salt tolerance-related genes in soy-
bean have been reported to be involved in various salt
tolerance mechanisms: ion transporters that maintain
ion balance, such as GmsSOS1 [19], GmCHX1 [20], and
GmNHX1 [21]; osmotic adaptation, such as Gm WRKY27
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[22]; restoration of oxidative balance, such as GmPAP3
[23]; transcriptional regulation of salt stress responses,
such as GmNACO06 [24], GmWRKY27 [22], GmbZIP2
[25], HSFB2b [26], GmMYBI118 [27], GmPHD [28],
GmDREB6 [29], and GmNFYA [30].

To date, there are few GWAS reports on QTN-by-
environment interactions (QEIs) for salt tolerance traits.
In rice, Wang et al. [31] applied the QTLNetwork pro-
gram to jointly analyze multi-environment datasets, and
six, four and one QEIs were found to be associated with
seedling height, shoot dry weight and root dry weight,
respectively. In soybean, Zhang et al. [32] adopted the
epistatic association mapping method of Lii et al. [33]
to identify 83 QEIs for salt tolerance index. However,
polygenic backgrounds are not included in the QTLNet-
work program, and a limited number of markers were
included in the model of Lii et al. [33], especially, their
candidate genes, QEIs and gene-by-environment interac-
tions (GEIs) are very limited. To address these issues, Li
et al. [34] established a compressed variance component
mixed model framework and the 3VmrMLM method to
identify QTNs, QEIs and QTN-by-QTN interactions.

To address the above issues, the 3VmrMLM method
was first used to detect QTNs and QEIs for salt toler-
ance-related traits in 286 soybean accessions. Then, can-
didate genes around significant and suggested QTNs and
QEIs were mined using multi-omics methods. The study
provides further understanding of the genetic structure
of these traits and candidate genes and GEIs for soybean
breeding and molecular biology studies.

Materials and methods

Genetic population

A total of 286 soybean accessions, including 14 wild, 153
landrace and 119 improved soybean accessions, were
used in this study. These accessions were collected by the
National Improvement Centre and the Linyi Academy of
Agricultural Sciences and distributed in six geographi-
cal regions of China as described in our previous stud-
ies [32, 35]. 257 soybean accessions in 2009 and 2010 and
286 (additional 29) soybean accessions in 2014 and 2015
were planted in three-row plots in a randomized com-
plete block design at the Jiangpu Experimental Station of
Nanjing Agricultural University. The plot width was 1.5
m and the length was 2 m. When the seeds of each acces-
sion matured, they were harvested and used for the salt
tolerance experiment.

Phenotypes of four salt tolerance related traits in soybean
accessions during germination stage

As described by Zhang et al. [32], the salt tolerance of
all the 257/286 soybean accessions was evaluated using
a salt water flooding method in the germination stage.
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Seeds of each accession were sown in a 30X20Xx15 cm
plastic container with sand added to a height of 3.5 cm
and treated with 350 ml water (CK, pH: 7.0) and 100 mM
NaCl (pH: 7.0) solutions, respectively, with two repli-
cates. Soybean seeds for each treatment were grown in a
growth chamber under white fluorescent light (600 umol
m~? s7% 14 h light/10 h dark) at 25+1 °C. Seven days
after sowing, four salt-tolerance-related traits, includ-
ing length of root (LR), dry weight of root (DWR), fresh
weight of root (FWR), and length of hypocotyl (LH),
were measured for each accession in the control and
NaCl treatments in 2009, 2010, 2014, and 2015. Among
these datasets, the phenotypic datasets in 2014 and 2015
are new, while the phenotypic datasets in 2009 and 2010
were reported in Zhang et al. [32].

To measure the degree of salt tolerance, the original
trait observations were converted into a Salt Tolerance
Index (STI) using the following equations [36]

STI = (Xck — Xnac1)/Xck x 100%

where Xy and Xy, were phenotypic values under con-
trol (CK) and saline (NaCl) treatments, respectively.

Genotyping of soybean accessions

A total of 106,013 SNPs were obtained from Zhou et al.
[35] by resequencing of 286 soybean accessions using
the RAD-seq approach. To make the subsequent analy-
sis results reliable, the SNPs with missing data>10% and
a minimum allele frequency (MAF)<0.05 were filtered,
and a total of 54,290 high-quality SNPs were obtained.

In addition, a total of 7,913,142 SNPs were obtained
by resequencing 171 out of 286 soybean accessions.
Similarly, SNPs with missing genotype rate>10% and
MAF <0.03 were filtered, and 686,661 high quality SNPs
were remained.

The above two genotypic datasets were merged and
imputed using Beagle v5.2 software [37] with default set-
tings, and a total of 740,754 high quality SNPs in 286 soy-
bean accessions were obtained and used for this study.

Statistical analysis for phenotypic traits

Phenotypic characteristics of four salt tolerance index
traits were analyzed using the R package psych, including
minimum, maximum, range, mean, standard deviation
(SD), coefficient of variation (CV), kurtosis, and skew-
ness. Correlation analysis between the four salt tolerance
index traits was performed and visualized using the R
package GGally. Two-way analysis of variance (ANOVA)
was performed to determine the significance of genotypic
and environmental variation using the R function aov.
Best linear unbiased prediction (BLUP) values for all the
accessions were calculated using the R package lme4. The
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broad sense heritability (/#°) for each trait was calculated
using the following equation

2 _ Ve
Vg + Ve/Ne

where V, was genetic variance, V, was residual error var-
iance, and Ne was the number of environments.

Genome-wide association studies

The HIIVmrMLM software [38] of the 3VmrMLM
method [34] was used to identify QTNs and QEIs for
salt tolerance-related traits. In detail, the SingleEnv mod-
ule was used to analyze each salt tolerance-related index
trait in each environment for identifying QTNs, while
the MultiEnv module was used to analyze each salt tol-
erance-related index trait in four environments and each
trait (LR, LH, DWR, and FWR) between control and salt
treatments for identifying QTNs and QEIs. The geno-
types were the above 740,754 high quality SNPs from 286
soybean accessions. The kinship matrix K was calculated
using IIIVmrMLM software. The number of optimal
subgroups was calculated using ADMIXTURE [39]. The
critical P value for significant QTNs and QEIs was set
at 0.05/m, where m is the number of markers, while the
critical LOD score for suggested QTNs and QEIs was set
at 3.0 [34].

Mining potential candidate genes for salt tolerance index
traits in soybean

All the genes within the range of 150 kb downstream
and upstream of each QTN for four salt tolerance-
related traits were obtained from the soybean Glyma
v1.1 genome annotation (glyma.Wm82.gnm1l.annl.DvBy.
gene_models_main.gff3.gz), downloaded from Soybase
(https://soybase.org/data/public/Glycine_max/). Among
these genes, candidate genes for four salt tolerance-
related traits were identified using comparative genomic
analysis, gene differential expression analysis, KEGG
pathway analysis, and soybean gene annotation. The
details were as follows:

First, potential candidate genes whose gene annota-
tions in soybean were related to salt stress responses
were retained, where soybean gene annotation files were
downloaded from both Phytozomel2 (https://phyto
zome.jgi.doe.gov/pz/portalhtml) and Soybase (https://
www.soybase.org/). Second, the genes homologous to
the Arabidopsis salt stress genes were retained. Then,
potential candidate genes with KEGG pathway analy-
sis involved in salt stress responses were retained using
BlastKOALA version 2.2 [40]. Finally, the genes show-
ing significant differential expression between control
and salt treatments (log|FC|> 1.5; P<0.05) were retained,
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with RNA-seq data downloaded from the NCBI GEO
database (GEO accession ID: PRJNA766706) [41].

SNP variants and haplotype analysis

SNP variants within and 2 kb upstream of the candi-
date genes were mined from the above genotypes. The
genome sequences (glyma.Wm82.gnm1.FCtY.genome_
main.fna.gz) and annotation (glyma.Wm82.gnml.annl.
DvBy.gene_models_main.gft3.gz) were downloaded from
Soybase (https://soybase.org/data/public/Glycine_max/)
and used for SNP annotation using SnpEff software [42].
The SNP variants were extracted from the SnpEff anno-
tated VCF file using a Perl script. We retained the loss-of-
function mutations described by Torkamaneh et al. [43]
and the variants in the 5’UTR, 3’'UTR, and upstream of
the candidate genes.

Haplotype analysis was performed using Haploview
v4.1 software [44]. Based on the above phenotypes of
the four traits, multiple comparisons of trait differences
between different haplotypes were tested using the LSD.
test function of the agricolae package in R.

Co-expressional network analysis

The expression datasets of soybean genes under con-
trol and salt stress conditions in Li et al. [30], Sun et al.
[45], and Lu et al. [46] were downloaded from the GEO
database, and the GEO accessions were GSE93322 [30],
GSE133574 [45], and GSE173640 [46], respectively. The
transcript datasets from Lu et al. [46] included the counts
of 24 samples, the leaf and root of transgenic plants and
JACK plants under control and salt stress conditions with
three replicates. The counts were converted to FPKM
using the following equation

x 10°

C
FPKM =
LxN

where C was the count of each gene, L was the length of
each gene’s CDS, and N was sum of all the gene counts.

The three transcript datasets were analyzed using the R
package WGCNA v1.70 [47] to construct co-expression
networks. Optimal soft thresholds were calculated using
the function “pickSoftThreshold’, and the thresholds
were set to r*>0.85. The TOMType and corType were
set to “unsigned” and “bicor’; respectively. minModule-
Size was set to 30, and mergeCutHeight was set to 0.3.
The top 15 genes with higher kWithin value calculated by
the intramodularConnectivity function of the WGCNA
software were defined as hub nodes. The network was
visualized using the Cytoscape package [48]. The KEGG
enrichment analysis for the genes in the above co-
expression networks was performed using the R package
KOBAS [49].
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gRT-PCR verification of candidate genes

Plants were grown in a growth chamber under 16h
light/8h dark (26°C). 7-d-old seedlings were exposed to
either 200 mM NaCl or water as treatment and control,
respectively. Roots were harvested at 0 and 6 h. Har-
vested samples were snap frozen in liquid nitrogen and
stored at -80 °C for the following quantitative real-time
PCR (qRT-PCR).

Total RNA was extracted from the samples using
TRIzol reagent and quantified using a Nanodrop. The
cDNA was synthesised using an EasyScript® One-Step
gDNA Removal and cDNA Synthesis SuperMix (AE311,
Transgen). The complete sequence information of the
selected candidate genes was obtained from Phytozome
v13 (https://phytozome-next.jgi.doe.gov/), and the cor-
responding primers are shown in Table S1 and were
synthesised by Shenggong Bioengineering (Shanghai)
Co., Ltd. Quantitative PCR was performed to amplify
c¢DNA using 2X Universal SYBR Green Fast qPCR Mix
(RK21203, ABclonal) and was performed on the BIO-
RAD CFEX Connect Real-Time PCR Detection System.
The actinll gene was selected as an internal control to
normalize the expression data. The 2724t method was
used to calculate the relative expression of genes. Each
sample contains three replicates.

Results
Phenotypic variation of four salt tolerance index related
traits
As described by Zhang et al. [32], LR, DWR, FWR, and
LH were measured in 286 soybean accessions under con-
trol and salt treatments in 2009, 2010, 2014, and 2015,
their salt tolerance indices were calculated and their
traits are listed in Table S2. The coefficients of variation
for these index traits and their best linear unbiased pre-
diction (BLUP) values ranged from 8.12% to 63.4% with
a mean of 28.60%, while their heritabilities ranged from
47.46% to 64.74% with a mean of 54.56% (Table S2). The
five accessions with the minimum index (WenFeng 6, 84
Tie 0066, ZYD4157, ZYD4368, and Y117249) are listed
as salt-tolerant accessions, while the five accessions with
the maximum index (Kaifeng 80-7 Zao, Ludou 2, Riben
Daheidou, He 05-47, and Nannong Heizhenzhu) are
listed as salt-sensitive accessions. The phenotypic dif-
ferences of these traits were significant across environ-
ments (Fig. 1). In two-way (genotype and environment)
ANOVA, the genotypic variations for the four index
traits were highly significant (P-value=8.57e-29 ~ 3.62e-
11) (Table S3), indicating the feasibility of conducting
GWAS for the four index traits.

Correlation analysis of these index traits revealed sig-
nificant positive correlations between the BLUP values
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Fig. 1 The boxplot of soybean salt tolerance index traits in four environments. A-D were the phenotype boxplots for LR, LH, FWR, and DWR in four
environments; The first, second and three rows in the upper of each plot were the mean, standard deviation and multiple comparison results,
respectively. The characters a-c in each boxplot marked the significance of these traits across different environments using multiple comparison

of the four index traits, such as r>=0.736 between DWR
and FWR (P-value <0.001; Figure S1).

Identification of QTNs for four salt tolerance index traits
using 3VmrMLM

QTNs for four salt tolerance index traits using a single
environment analysis

A total of 208 QTNs were identified on all the chromo-
somes for the above four salt tolerance index traits and
their BLUP values (Figs. 2A-B, 3A-D, S2; Table S4). In
detail, 33, 44, 30, and 42 significant QTNs were found to
be associated with LR, LH, DWR, and FWR, respectively
(P-value < 6.75e-8); their LOD scores were 7.16~80.61
for LR, 7.20~85.69 for LH, 7.21 ~143.73 for DWR, and
7.24~68.01 for FWR; the corresponding average r? val-
ues were 4.33%, 3.80%, 4.53%, and 3.76%, respectively
(Table S4).

15, 14, 13, and 22 suggested QTNs on all the chro-
mosomes were found to be associated with LR, LH,
DWR, and FWR, respectively (LOD >3; Table S4); their
LOD scores were 3.28 ~7.07 for LR, 3.05~7.08 for LH,
3.04~6.97 for DWR, and 3.19~6.71 for FWR; the corre-
sponding average r? values were 3.34%, 2.48%, 3.17%, and
2.44%, respectively (Table S4).

QTNs for salt tolerance index traits using multi-environment
joint analysis

A total of 60 QTNs were detected on all the chromo-
somes for the above four salt tolerance index traits
(Figs. 2C, 3E-F, S2; Table S5). In detail, 9, 13, 8, and 11
significant QTNs were found to be associated with LR,
LH, DWR, and FWR, respectively (P-value<6.75e-8).
The LOD scores ranged from 8.10 to 21.98 for LR, 7.40
to 41.19 for LH, 7.75 to 34.60 for DWR, and 8.05 to 33.44
for FWR, and the corresponding average r* values were
0.54%, 1.27%, 1.12%, and 0.72%, respectively, such as
2.55% for the LH QTN snp1466 (Table S5).

7, 3, 6, and 6 suggested QTNs on all the chromo-
somes were found to be associated with LR, LH, DWR,
and FWR, respectively (Table S5). The LOD scores were
3.01~7.00 for LR, 4.14~6.82 for LH, 3.28~6.02 for
DWR, and 4.94~5.77 for FWR, and the corresponding
average r” values were 0.29%, 0.65%, 0.77%, and 0.45%,
respectively.

As mentioned above, a total of 258 QTNs were
detected for the above four salt tolerance index traits
using the single and multi-environment analyses of the
3VmrMLM method. Only 10 QTNs were shared between
the two types of analyses.
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Identification of QEIs for the above four traits using
3VmrMLM
QEls for the four index-related traits across environments
A total of 59 QEIs for salt tolerance index-related
traits (iQEIs) were identified on all the chromosomes
(Figs. 2D, S2; Table S6). In detail, 12, 9, 10, and 14 sig-
nificant iQEIs were found to be associated with LR, LH,
DWR, and FWR, respectively (P-values < 6.75e-8). The
LOD scores ranged from 8.50 to 240.20 for LR, 8.18
to 101.72 for LH, 10.58 to 79.79 for DWR, and 9.61 to
143.89 for FWR, and the corresponding average r* val-
ues were 6.09%, 4.97%, 4.61%, and 4.42%, respectively,
such as 32.76% for the LR iQEI snp48170 (Table S6).
3,4, 3, and 4 suggested iQEIs on all the chromosomes
were found to be associated with LR, LH, DWR, and
FWR, respectively (LOD > 3; Table S6). The LOD scores
were 5.38 ~7.15 for LR, 5.83~9.26 for LH, 4.07 ~7.77
for DWR, and 5.16~8.26 for FWR, and the corre-
sponding average r? values were 0.51%, 0.98%, 1.01%,
and 0.67%, respectively.

QElIs for the four traits between control and salt treatments
The trait observations and their BLUP values for the
four traits in the control and salt treatments were used
to identify QTNs and QEIs. A total of 166 QEIs on
all the chromosomes were identified to be associated
with the four traits (Figs. 2E-F, S2; Table S7). Among
these QEIs, 28, 42, 21, and 25 significant QEIs were
found to be associated with LR, LH, DWR, and FWR,
respectively (P-value<6.75e-8). The LOD scores were
6.61 ~43.14 for LR, 6.88~81.02 for LH, 6.34 ~306.87
for DWR, and 7.58 ~ 36.96 for FWR; the corresponding
average r? values were 1.48%, 1.02%, 7.06%, and 1.18%,
respectively; there were four large QEIs (r>10%),
such as 69.86% for the DWR QEI Gmo04:10,966,335
(Table S7).

14, 22, 9, and 11 suggested QEIs on all the chromo-
somes were found to be associated with LR, LH, DWR,
and FWR, respectively (LOD>3; Table S7). The LOD
scores ranged from 4.36 to 7.12 for LR, 3.47 to 7.00 for
LH, 3.02 to 6.59 for DWR, and 3.03 to 6.58 for FWR, and
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Fig. 3 The candidate gene Glyma07g18150 around QTN for salt tolerance index traits. A-B: Manhattan plot of QTNs for DWR in 2014 and BLUP
values. C-D: Manhattan plot of QTNs for FWR in 2015 and BLUP values. E-F: Manhattan plot of QTNs for DWR and LH using multi-environment joint

analysis. G. Differential expression levels (Count) of Glyma07g18150 between
obtained from Hu et al. [41]. H: Two SNPs and their haplotypes of Glyma07g1

under control and salt treatments. The gene expression levels were
8150, in which 5'UTR and 3'UTR are marked by red and blue colors,

respectively. I: Boxplot of salt tolerance index traits of two Glyma07g18150 haplotypes in different environments. J: The haplotype frequencies

of Glyma07g18150 in wild, landrace, and bred soybeans

the corresponding average r? values were 0.52%, 0.32%,
0.48%, and 0.40%, respectively.

There was no common QEI for salt tolerance index-
related traits and salt tolerance-related traits between
control and salt treatments.

Mining known and candidate genes around all the QTNs
for the four salt tolerance index traits

Known salt tolerance genes

Within the 150 kb flanking genomic region for each QTN
for the four salt tolerance index traits, there were 4646
genes. Of these, eight genes were shown to be associated
with salt stress in previous studies (Table 1), including

GmCHX1 [20], GsPRX9 [50], GmS5PTase8 [51], GmWRKY
[52], GmCHX20a [53], GmNHX1 [21], GmSK1 [54], and
GmLEA2-1 [55] (Table 1).

Candidate salt tolerance genes
Based on comparative genomic analysis, KEGG analy-
sis, and differentially expressed analysis, the above 4638
genes were used to mine candidate salt tolerance genes.
According to the previously reported soybean salt
tolerance mechanisms and gene functional annota-
tions, 19 candidate genes were found to be related to
salt stress. Based on homology analysis, 14 genes were
homologous to Arabidopsis thaliana genes that were
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reported to be related to salt stress in previous studies.
The remaining genes were subjected to KEGG analy-
sis. As a result, 118 genes were involved in the path-
ways associated with salt stress responses, including
ABC transporters, arginine and proline metabolism,
MAPK signaling pathway, phytohormone signaling
and sulfur metabolism. Thus, 151 genes were predicted
to be associated with salt stress responses. To further
confirm these potential candidate genes, differential
expression analysis was performed using the RNA-seq
data of Hu et al. [41]. As a result, 54 genes showed sig-
nificant differential expression levels between control
and salt stress treatments, such as the candidate gene
Glyma07g18150 (Fig. 3G).

The SNP genotypes of 286 soybean accessions were
used to identify SNP variants within candidate genes
and their 2 Kb upstream sequences. As a result, 17
out of the above 54 genes had SNP variants. In par-
ticular, six SNP variants of Glyma09¢g35300 and one
SNP variant of Glymal9g40980 were missense vari-
ants. The SNP variants of the 17 genes were used for
haplotype analysis. Among 14 genes identified in sin-
gle environment analysis, five genes (Glyma06g04840,
Glyma03g01603, Glyma07g18150, Glymal8g03090,
and Glymal9g40980) showed significant differences
in salt tolerance index traits among different haplo-
types in one-way ANOVA (Table 1). Among 6 genes
identified in the joint analysis of all environments,
three genes (Glyma03g01603, Glyma07g¢18150, and
Glyma09¢32570) showed significant differences in salt
tolerance index traits across different haplotypes in
two-way (haplotype and year) ANOVA (Table 1), such
as candidate gene Glyma07g18150 (Figs. 3H-I). In con-
clusion, eight candidate genes associated with the four
index traits were identified.

In addition, Glyma06g04840 and Glyma07g18150 were
considered as important candidate genes, and qRT-PCR
verification experiment was conducted. The relative
expression levels of Glyma06g04840 and Glyma07g18150
in roots were significantly higher in 6 h salt treatment
than in control (Figure S3), indicating the involvement of
these genes in salt stress response.

Mining known and candidate GEls for the four salt
tolerance index traits

Known genes of salt tolerance index traits

in multi-environment analysis

Within the 150 kb flanking genomic region for each iQEI,
there were a total of 1147 genes. Among these genes, two
genes, including GmSK1 [54] and GmWRKY49 [56], were
verified to regulate soybean salt tolerance index traits
(Table 2).
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Candidate GEls of salt tolerance index traits

in multi-environment analysis

The above 1145 genes were used to mine candidate salt
tolerance GEIs as described below.

According to the previously reported soybean salt tol-
erance mechanisms and gene functional annotations,
12 potential candidate salt stress-related genes were
identified. Based on homology analysis, five genes were
homologous to Arabidopsis thaliana genes reported
to be responsible for salt stress in previous studies. The
residues were used for KEGG pathway analysis. 16 genes
were predicted to be involved in the pathways associated
with salt stress responses, including ABC transporters,
arginine and proline metabolism, MAPK signaling path-
way, and sulfur metabolism. Thus, 33 genes were found
to be potentially associated with salt stress responses.
To further confirm these genes, differential expression
analysis was performed using RNA-seq data from Hu
et al. [41], and seven genes showed significantly differ-
ent expression levels between control and salt stress
treatments.

The genotypes of 286 soybean accessions were used to
identify the SNP variants within these potential candi-
date genes and their 2 Kb upstream sequences. A total of
6 potential candidate genes were found to have SNP vari-
ants. In particular, two SNPs of Glymal12g07270 and three
SNPs of Glymal3g33590 were missense variants. The SNP
variants in all of 6 potential candidate genes were used
for haplotype analysis, and three genes (Glyma04g41701,
Glymal3g33590, and Glymal6g22630) showed significant
differences in salt tolerance index traits in haplotype-by-
environment interactions (Table 2).

The promoter sequences of the three genes were used
to identify their cis-acting elements. All of the three
genes had multiple cis-acting elements involved in envi-
ronmental responses, including cis-acting regulatory
elements involved in MeJA responsiveness, abscisic acid
responsiveness, auxin responsiveness, light responsive-
ness, drought inducibility, defence and stress respon-
siveness, low temperature responsiveness, salicylic acid
responsiveness, and gibberellin responsiveness. These
results further indicated that these candidate genes regu-
late salt-tolerance-related traits and respond to environ-
mental variations.

Mining known and candidate GEls around QEls for four

salt tolerance related traits between control and salt
treatments

Known genes in the analysis of salt tolerance related traits
Within the 150 kb flanking genomic region for each
QEI for salt tolerance index related traits, there were
a total of 3148 genes. Among these genes, six genes,
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including GmHDA 13 [30], GmPHOI1 [57], GmMERFS5 [58],
GmNACO06 [24], GmbZIP132 [59], and GmHsp90s [60],
were verified to regulate salt-tolerance-related traits in
soybean (Table 3).

Candidate salt tolerance GEls
The above 3142 genes were used to mine candidate salt
tolerance GEls.

According to the previously reported soybean salt tol-
erance mechanisms and gene functional annotations,
58 genes were found to be related to salt stress. Based
on homology analysis, three genes were found to be
homologous to Arabidopsis thaliana genes reported to
be involved in salt stress in previous studies. The remains
were used for KEGG pathway analysis, and 21 genes
were found to be involved in the pathways of salt stress
responses, including ABC transporters, arginine and
proline metabolism, MAPK signaling pathway, and sul-
fur metabolism. Thus, all the 82 genes were found to be
potentially associated with salt stress responses. To fur-
ther confirm these genes, differential expression analysis
was performed using the RNA-seq data from Hu et al.
[41], and 45 genes showed significant differential expres-
sion levels between control and salt stress treatments.

The genotypes of 286 soybean accessions were used to
search for SNP variants within these genes and their 2 Kb
upstream sequences. A total of fifteen genes had SNP vari-
ants. In particular, one SNP of Glyma04g09550 was a mis-
sense variant. The SNP variants of the fifteen genes were
used for haplotype analysis, and five genes (Glyma02¢38910,
Glymal2g03200, Glymal6g08480, Glymal6g27950, and
Glymal8g43250) showed significant differences in salt tol-
erance index traits in the haplotype-by-environment inter-
actions (Table 3).

The promoter sequence of the above five genes was
used to identify cis-acting elements of these genes, and
all of the five genes had cis-acting elements involved in
environmental responses, such as cis-acting elements
involved in light responsiveness, MeJA responsiveness,
abscisic acid responsiveness, drought inducibility, gibber-
ellin responsiveness, salicylic acid responsiveness, auxin
responsiveness, and low temperature responsiveness. In
conclusion, the five GEIs regulated the salinity tolerance
index traits and responded to the environment.

Discussion

Soybean provides 59% of the world’s oilseed production
and 69% of the daily vegetable protein consumed [61].
Global soybean production must increase substantially
to meet the world’s rapidly growing food demand [30].
However, soybean yield is seriously threatened by unfa-
vorable environmental factors. Genes associated with
salt stress tolerance could be used to breed new soybean
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varieties with high salt tolerance [41]. Although some
genes have been reported to regulate salt tolerance-
related traits under these conditions [27, 54-56, 62], few
QEIs and GEIs have been reported due to the limitations
of QEI detection methods in GWAS. Note that QTNs
not affected by different environments are identified
from a single dataset or multiple environment datasets,
while QEIs affected by different environments are identi-
fied only from multiple environment datasets. Recently,
our group established a new comprehensive GWAS
method, 3VmrMLM, to detect QTNs, QEIs, and QTN-
by-QTN interactions while controlling for all possible
polygenic backgrounds [34, 38]. Therefore, this study
focused on the identification of QTNs, QEIs, and their
known and candidate genes in different environments.
As a result, ten known salt tolerance genes and a major
salt tolerance QTL on chromosome 3 reported in previ-
ous studies [20, 63] around 258 QTNs and 59 iQElIs, and
6 known salt tolerance genes around 166 QEIs identified
between control and salt treatments were found, indicat-
ing the reliability of our results. Meanwhile, 6 candidate
salt tolerance genes and 3 candidate salt tolerance GEIs
around 258 QTNs and 59 iQEIs and 5 candidate salt tol-
erance GEIs around 166 QEIs were found. More impor-
tantly, candidate salt tolerance genes Glyma06g04840
and Glyma07g18150 were confirmed by qRT-PCR. These
known and candidate genes provide gene sources for soy-
bean breeding and molecular biology research.

The co-expression network analysis of salt tolerance
related genes

To understand the co-expression network regulating
salt tolerance traits, three transcript datasets from Li
et al. [45], Sun et al. [46], and Lu et al. [30] were used in
this study. A total of 1942 differential expression genes
(DEGs) were identified using the R package DEGseq [64].
The expression levels of the above DEGs were then used
to construct co-expression network using the R package
WGCNA v1.70 [47]. As a result, 12 co-expression mod-
ules were constructed, including black (96), blue (319),
brown (274), green (140), green-yellow (52), magenta
(93), pink (93), purple (55), red (123), turquoise (385),
and yellow (148) modules, where one, one, one and
one known genes identified in this study were included
in the purple, blue, magenta, and turquoise modules,
respectively, and one and one candidate genes predicted
in this study were included in the purple and magenta
modules, respectively. The genes in each co-expression
module were used to perform KEGG pathway enrich-
ment analysis using KOBAS [49]. The results showed
that the turquoise, magenta, blue, and purple modules
were enriched in 24, 3, 2, and 2 KEGG pathways, respec-
tively (corrected P-value<0.05, Table S8). Among these
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pathways, 1, 2, 0 and 0 pathways were found to be associ-
ated with salt tolerance, including ‘plant hormone signal-
ing; ‘MAPK signaling pathway; and ‘arginine and proline
metabolism’ pathways (Table S8), which were reported to
play an important role in the process of plant salt stress
response in Liu et al. [65]. We analyzed the hub genes of
the turquoise and magenta modules. The known gene
GmCHX20a [53] in this study was the hub gene of the
turquoise module, while the known gene GmWRKY49
[56] and the candidate gene Glyma06g04840 in this study
were the hub genes of the magenta module (Fig. 4), indi-
cating the co-expression of the three genes in this study
with salt stress responses through the ‘plant hormone
signaling, ‘"MAPK signaling pathway, and ‘arginine and
proline metabolism’ KEGG pathways.

Domestication and improvement analyses of salt tolerance
related candidate genes provided gene resource in future
soybean breeding

Compared to wild soybeans, cultivated soybeans have
lost a large number of important genes related to envi-
ronmental adaptation during long-term domestication
and improvement processes [66]. Wild relatives gener-
ally have a more diversified genomic pool and greater
genetic variation than domesticated species and, provid-
ing breeders with a diverse range of genetic resources,
including the genes for different stress tolerances [67].

In this study, the phenotypes of salt tolerance-related
traits in wild soybean were significantly smaller than
those in landrace and improved soybean (Table S9;
Fig. 5), indicating greater salt tolerance of wild soybean
than that of landrace and improved soybeans. This is
consistent with a previous study [66]. Compared with
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the domestication and improvement regions of Zuo
et al. [68], the known gene GmNHXI and two candidate
genes (Glymal9g40980 and Glyma07g18150) around
QTNs for salt tolerance index traits and two candidate
GEls (Glymal3g33590 and Glyma04g41701) for salt tol-
erance index traits were located in the domestication
regions (Table 4). These genes may have undergone the
domestication process. Two known genes (GmNHXI and
GmSKI) and three candidate genes (Glyma07g18150,
Glymal8g03090, and Glyma03g01603) around QTNs
for salt tolerance index traits, and the known gene
GmSKI1 and two candidate GEls (Glymal3g33590 and
Glymal6g22630) for salt tolerance index traits, and three
known genes (GmHsp90s, GmbZIP132, and GmNAC06)
and one candidate GEI (Glyma02¢38910) for salt toler-
ance related traits, were located in the improvement
regions (Table 4). These genes may be undergoing an
improvement process.

To further confirm these candidate genes and GElIs,
their elite haplotype frequencies in wild, landrace, and
improved soybean were calculated in 286 soybean acces-
sions. As a result, a total of 7 candidate genes were fur-
ther confirmed. During the domestication process,
the elite haplotype frequencies of two candidate genes
(Glymal9g40980 and Glyma07g18150) around QTNs
for salt tolerance index traits and two candidate GEIs
(Glyma13g33590 and Glyma04g41701) for salt toler-
ance index traits were higher in wild soybean than in
landrace soybean (Table 4). During the improvement
process, the elite haplotype frequencies of two candidate
genes (Glyma07¢g18150 and Glymal8g03090) around
QTNs for salt tolerance index traits, one candidate GEI
(Glymal6g22630) around iQEls, and one candidate
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Fig. 4 The subnetwork of the candidate and known genes. A: The magenta module; B: The turquoise module. The candidate and known genes
were marked with pink and orange colors, respectively. The hub genes of each module were marked with diamond shape
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GEI (Glyma02¢38910) around QEI for salt tolerance
related traits were higher in landrace soybean than in
bred soybean (Table 4). For example, the elite haplotype
frequency of Glyma07g18150 was 100%, 68.18%, and
56.73%, respectively, in wild, landrace, and improved soy-
beans, respectively (Fig. 3J). The results indicated that
these candidate genes and GEIs had undergone domesti-
cation and improvement processes. In addition, the elite
haplotypes in Table 4 can be used in soybean breeding
for salt tolerance-related traits.

The GEls for salt tolerance related traits may respond

to other environment stresses

When seeds are harvested in different environments, the
seed formation process is influenced by their environ-
ment conditions in different environments. Although
the experimental conditions for the salt tolerance experi-
ments in this study are the same, the seeds themselves
contain environmental influences, such as seed com-
position [69] and fatty acids [70, 71]. The different seed
compositions have been shown to influence the toler-
ance [72-74]. In this study, 59 iQEIs were identified
using multi-environment joint analysis, and two known
genes and three candidate GEIs for salt tolerance index
traits were identified. For example, the expression of
the known gene GmSKI1 was simultaneously induced by
several hormones and abiotic stresses, including absci-
sic acid (ABA), jasmonic acid (JA), salicylic acid (SA),
NaCl, low temperature, and drought [54]. The candidate
gene Glyma04g41701 was homologous to Arabidopsis

AtWRKY30, which is associated with oxidative and salin-
ity tolerance during seed germination [75]. The results
indicated that these genes and GEIs in this study may
respond to multiple environmental stresses.

Comparison between iQEls for the four index-related

traits and QEls for the four salt stress-related traits
between control and salt treatments

The iQEI and QEI detection is aimed at identifying the
gene-by-environment interactions of salt tolerance
related traits. In this study, we found the differences and
similarities in the two types of results. First, seven QElIs
were found to be within the same linkage disequilibrium
intervals by the two types of analyses, such as snp57845
and snp57848, indicating the similarities (Tables S6 and
S7). Then, most of the QEIs identified by the two types of
analyses are different, possibly because their phenotypic
values are different (salt tolerance indices and trait obser-
vations). In fact, the two types of analyses are comple-
ment each other to identify GEIs more comprehensively,
as different GWAS methods described in Zhang et al.
[76, 77].

Although this study used the phenotype datasets of
Zhang et al. [32], who performed epistatic association
mapping for salt tolerance using 135 SSR markers, the
current results are more comprehensive and diverse.
First, we used the new method (3VmrMLM) to associ-
ate richer markers (740,754 SNPs) with more phenotype
datasets to identify more QTNs and QEIs for salt toler-
ance-related traits. Then, we identified candidate genes
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through comparative genomic analysis, gene differential
expression analysis, KEGG pathway analysis, soybean
gene annotation, SNP variation, haplotype analysis, and
qRT-PCR experiment. Finally, we identified the elite hap-
lotypes of genes that can be used in soybean breeding.

The threshold of significant and suggested QTNs and QEls
In our GWAS methodologies [34, 77], the P-value thresh-
old for significant QTNs and QEIs is determined by the
Bonferroni correction probability. As we know, this crite-
rion is too strict and some important genes or GEIs might
be missed [77]. To address this issue, suggested loci with
the threshold of LOD score=3.0 were considered in our
previous methodological articles [34, 77]. If strong evi-
dence supports the genes/GEIs around suggested QT Ns/
QEIs, these loci are valuable. In this study, six known salt
tolerance-related genes, such as GmNHXI, and six can-
didate genes with strong evidence (differential expres-
sion analysis, gene annotation, Arabidopsis homologous
genes, and haplotype analysis) were found to be around
the suggested QTNs (Tables 1 and 3). More importantly,
the 3VmrMLM method was proven to strictly control
the false positive rate at the threshold of LOD score=3.0
[34]. This approach has been widely adopted in the appli-
cation studies of our GWAS methods [76-78].

Conclusion

Around 258 QTNs and 59 iQEIs identified for four salt
tolerance index related traits, 8 and 2 known salt toler-
ance genes were verified in previous studies, and 6 can-
didate genes and 3 candidate GEIs were predicted to be
associated with these traits using multi-omics and bioin-
formatics analysis. Around 166 QEIs identified for four
salt-tolerance-related traits between control and salt
treatments, 6 salt-tolerance genes were verified in previ-
ous studies, and 5 candidate GEIs were predicted to be
associated with salt stress, at least by haplotype analysis.
In addition, the elite molecular modules of seven can-
didate genes with selection signs were extracted from
wild soybean and could be applied to soybean molecu-
lar breeding. More importantly, the candidate gene
Glyma07¢g18150 was confirmed by qRT-PCR and pre-
dicted to play important roles in salt stress response. This
study will provide important information for the genetic
basis and breeding of salt tolerance in soybean.
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