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Abstract 

Salvia miltiorrhiza is commonly used as a Chinese herbal medicine to treat different cardiovascular and cerebrovas‑
cular illnesses due to its active ingredients. Environmental conditions, especially drought stress, can affect the yield 
and quality of S. miltiorrhiza. However, moderate drought stress could improve the quality of S. miltiorrhiza with‑
out significantly reducing the yield, and the mechanism of this initial drought resistance is still unclear. In our study, 
transcriptome and metabolome analyses of S. miltiorrhiza under different drought treatment groups (CK, A, B, and C 
groups) were conducted to reveal the basis for its drought tolerance. We discovered that the leaves of S. miltiorrhiza 
under different drought treatment groups had no obvious shrinkage, and the malondialdehyde (MDA) contents 
as well as superoxide dismutase (SOD) and peroxidase (POD) activities dramatically increased, indicating that our 
drought treatment methods were moderate, and the leaves of S. miltiorrhiza began to initiate drought resistance. The 
morphology of root tissue had no significant change under different drought treatment groups, and the contents 
of four tanshinones significantly enhanced. In all, 5213, 6611, and 5241 differentially expressed genes (DEGs) were 
shared in the A, B, and C groups compared with the CK group, respectively. The results of KEGG and co‑expression 
analysis showed that the DEGs involved in plant‑pathogen interactions, the MAPK signaling pathway, phenylpro‑
panoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction responded to drought stress 
and were strongly correlated with tanshinone biosynthesis. Furthermore, the results of metabolism analysis indicated 
that 67, 72, and 92 differentially accumulated metabolites (DAMs), including fumarate, ferulic acid, xanthohumol, 
and phytocassanes, which were primarily involved in phenylpropanoid biosynthesis, flavonoid biosynthesis, and dit‑
erpenoid biosynthesis pathways, were detected in these groups. These discoveries provide valuable information 
on the molecular mechanisms by which S. miltiorrhiza responds to drought stress and will facilitate the development 
of drought‑resistant and high‑quality S. miltiorrhiza production.
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Introduction
Drought stress, one of the worst environmental stress-
ors, has serious impacts on the distribution of species, 
the ecological environment and the development of pro-
ductivity [1, 2]. Drought is a common abiotic stress and 
affects plant growth and development. Extreme drought 
stress has a major impact on a variety of physiological 
and biochemical processes of plants, leading to cell dehy-
dration and internal environment disorders, inhibition of 
plant photosynthesis and enzyme activity, and reactive 
oxygen species (ROS) accumulation [3, 4]. Moreover, due 
to their high reactivity, excess ROS are hazardous and 
can destroy nucleic acids, proteins, and lipids [5]. In addi-
tion, severe drought stress could reduce yield and quality, 
which in turn affect real productivity [6].

Adversity produces quality. Under moderate drought 
stress, the yield may be reduced, but the quality will be 
improved, especially for medicinal plants [7]. That’s 
because, in the early stage of drought stress, plants have 
evolved a series of response mechanisms, including cel-
lular modifications and physiological and metabolic 
changes [8, 9]. To meet the challenges posed by drought 
stress, plants can stabilize cell structure and protein 
activity and accumulate osmotic-regulating substances, 
such as soluble sugar and proline, thus improving their 
ability to produce ROS [10]. Furthermore, the accu-
mulation of flavonoids, one type of widely distributed 
secondary metabolites, can relieve the damage of ROS 
to plants [11, 12]. In addition, phytohormones, such 
as abscisic acid (ABA) and jasmonate (JA), are crucial 
in the response to drought stress [13]. It is well known 
that through the regulation of stress-responsive genes, 
ABA can stimulate short-term responses, including sto-
matal closure, and lead to the maintenance of water bal-
ance and longer-term growth responses [14]. Numerous 
regulators in the JA signaling pathway are connected to 
drought stress responses according to previous studies. 
Regulators usually do not have independent regulatory 
roles but often combine to form a complex signaling net-
work [15]. The extent of drought is gradually expanding 
due to global climate change, and an increasing number 
of studies have focused on how plants adapt to drought 
stress. Therefore, it will be helpful to improve the value 
of medicinal plants to reveal the possible mechanism of 
drought stress response by means of combined analysis 
of omics.

In the study of plant genetics, RNA-seq has been 
widely employed for a variety of purposes since the 
introduction of high-throughput sequencing technol-
ogy, particularly transcriptome analysis, which is used 
to identify differentially expressed genes (DEGs) in dis-
tinct biological processes [16]. Metabolite profiling has 
been extensively employed to investigate the alterations 

in metabolites caused by genetic modification and envi-
ronmental factors [17]. It is common to use UPLC/ESI-Q 
TRAP-MS/MS to identify and evaluate plant metabolites, 
and this technology has been extensively used to exam-
ine metabolites in various species, such as tomato [18]. 
From a molecular perspective, plants participate in the 
response to drought stress by regulating their metabolic 
pathways and activating relevant signaling networks. In 
Casuarina equisetifolia, for example, a total of 5033 and 
8159 DEGs were identified with transcriptome analysis 
after different periods of drought stress treatment, and 
they were primarily involved in flavonoid and phenyl-
propanoid biosynthesis as well as plant hormone signal 
transduction. Moreover, a metabolomic study revealed 
that the contents of amino acids, phenolic acids, and fla-
vonoids were also increased [19]. In addition, 2451 DEGs 
and 354 differentially accumulated metabolites (DAMs) 
were found under drought treatment in Pohlia nutans. 
Combining transcriptome and metabolomic analyses, 
researchers have hypothesized that P. nutans strongly 
relies on the plant hormone signaling pathway and flavo-
noid metabolism pathway, as well as stress-related genes 
involved in these pathways, such as NCED3, PP2C, and 
PYL, which are involved in the ABA signaling pathway. In 
addition, stress-related genes also included AOS and JAZ 
in the JA signaling pathway, CHS, FLS, FNS, and UFGT 
in the flavonoid pathway, and transcription factors (ERF 
and DREB) [20].

Salvia miltiorrhiza Bunge, also referred to as “Dan-
shen”, is a widely studied medicinal plant. The medici-
nal parts of S. miltiorrhiza, especially the tanshinones, 
are mainly derived from its roots, which are frequently 
utilized to treat cardiovascular and cerebrovascular dis-
eases [21, 22]. Increasingly harsh environmental condi-
tions, especially global warming, gradually aggravate 
drought, which has caused serious harm to the yield and 
quality of S. miltiorrhiza [23, 24]. Studies have shown 
that moderate drought stress could improve the qual-
ity of medicinal plants without reducing the yield [7]. 
Therefore, it is of great significance to study the response 
mechanism under moderate drought stress and this will 
help to improve the drought stress resistance and adapt-
ability of S. miltiorrhiza. Although the genome sequence, 
transcriptome, and metabolome from different develop-
ment periods [25–27] and different tissues [28], tissue 
cultures from various inductions [29], and explanations 
for phenotypic changes [30] in S. miltiorrhiza have been 
obtained, little research has been executed on the tran-
scriptome and metabolome responses to drought stress. 
Consequently, to explore the drought response of S. 
miltiorrhiza, a comprehensive analysis of transcriptomic 
and metabolomic data was performed in this study. We 
identified the genes and metabolites that were altered 
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under drought stress. This study provides insight into the 
molecular basis of S. miltiorrhiza drought stress resist-
ance. This could serve as a theoretical foundation for fur-
ther research on the molecular mechanism and genetic 
regulation of drought stress resistance in S. miltiorrhiza 
under drought stress.

Materials and methods
Plant materials and experimental treatments
The seedlings of Salvia miltiorrhiza Bunge (‘Huadan 
No.2’) identified by the professor Q. L. were grown in 
a green house (temperature: 18~28℃; relative humid-
ity: 60%~80%) at the Medicinal Herb Garden, Shandong 
University of Traditional Chinese Medicine. After three 
months, the seedlings with consistent growth and root 
lengths of approximately 12~15 cm were chosen and 
used for pot cultivation with three seedlings per pot. The 
potting soil, which was composed of surface soil, nutri-
ent soil and fine river sand (the ratio was 3:1:2), was con-
tained in 25 cm (height) × 22 cm (inner diameter) plastic 
buckets.

For drought treatment, S. miltiorrhiza seedlings with 
essentially the same growth trend were chosen in our 
study. Four treatment groups were set up in this experi-
ment. The soil water content was 75% (75% θf ), 65% (65% 
θf ), 55% (55% θf ), and 45% (45% θf ) of the maximum 
field water capacity, corresponding to CK (the control 
group), A, B, and C, respectively [31, 32]. There were 150 
seedlings in total and 30 seedlings in each group. The 
treated S. miltiorrhiza seedlings were irrigated regularly 
to ensure that the soil moisture content remained at the 
set gradient in these four groups. The soil was weighed 
with an electronic scale at 17:00 every day, and the miss-
ing water was made up. The treatment was continued for 
30 days. The roots of S. miltiorrhiza were frozen using 
liquid nitrogen and stored at -80 ℃ for extraction of total 
RNA, tanshinone content measurement, mass spectrom-
etry imaging analysis, and multi-omics analysis. The 
leaves of S. miltiorrhiza were frozen using liquid nitro-
gen for measurement of physiological indexes. In our 
research, three biological replicates of each experiment 
were performed.

Measurements of physiological indexes and tanshinone 
content
To analyse the changes in physiological indexes of S. 
miltiorrhiza plants under drought stress, total protein, 
superoxide dismutase (SOD), peroxidase (POD), malon-
dialdehyde (MDA), proline (PRO), and catalase (CAT) 
were determined using commercial kits purchased from 
the Jiancheng Bioengineering Institute (Nanjing, China) 
[33–35]. Table S 1 in the supplementary material displays 

all of the measurement method of these physiological 
indexes.

The main tanshinone contents in the roots of S. miltio-
rrhiza plants treated with different drought stress were 
determined using high performance liquid chroma-
tography (HPLC, Waters 2695, USA). It was performed 
according to the previous method in our laboratory. All 
of the roots of samples were freeze-dried for 48 h, and 
then grind to a powder using a mortar. The 0.25g sam-
ple was extracted in 25 mL 100% methyl alcohol and sub-
jected to ultrasonic shock for 50 min. The extracts were 
centrifuged at 4000 rpm for 10 min and later filtered 
through a 0.22 μm microporous membrane (Jinteng, 
Tianjin China) for analysis.

Mass spectrometry imaging analysis
The roots of S.miltiorrhiza plants were removed from 
the ultra-low temperature refrigerator at -80 °C and 
placed in an incubator at -20 °C for rewarming for 2 h. 
Leica Cryo-Gel was used to fix the tissue on the sample 
holder of the microtome. Then 15 μm thick frozen sec-
tions were prepared at -20 °C using a Thermo CryoStar 
NX50 NOVPD cryotome. First, the sections were placed 
in a -20 °C desiccator and vacuumized for 1 h, then kept 
at room temperature and vacuumized for 6 h. Finally, the 
sections were fixed in plant tissue fixation solution for 10 
min and rinsed with water for 1 min. The sections were 
put into solid green dye solution for 5-10 min, and then 
washed with water to remove excess dye solution. Sec-
tions were successively immersed in 50%, 70% and 80% 
gradient alcohol for 3-5s; The sections were immersed in 
solid green dye for 30-60 s and dehydrated in three cyl-
inders of absolute ethanol. The slices were immersed in 
clean xylene and transparent for 5 min. The slices were 
sealed with neutral gum. The images were examined 
under a microscope and subsequently analyzed.

Transcriptome sequencing and data analysis
First, total RNA of our samples was extracted using 
the FastPure Universal Plant Total RNA Isolation Kit 
(Vazyme, Nanjing, China). Then, cDNA was synthe-
sized using the  PrimeScriptTM RT Reagent Kit (TaKaRa, 
Japan). The integrity of the RNA was detected through 
agarose gel electrophoresis (AGE), and the concentration 
of RNA was measured using a nucleic acid spectrometer 
(Thermo Scientific, USA). Poly (A) mRNA was enriched 
from the total RNA using oligo (dT) magnetic beads. 
The sequencing adaptors were attached to segments of 
acceptable length that had undergone end repair, and a 
poly(A) tail was added. Sequencing was performed using 
a BGISEQ-500 high-throughput gene sequencing plat-
form (MGI, China).
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Quantitative real‑time PCR (qRT‒PCR) analysis
The technique outlined above was used to extract total 
RNA. Following the manufacturer’s instructions, total 
RNA was subsequently reverse transcribed into cDNA 
using an RT Reagent Kit. Quantitative real-time PCR 
(qRT-PCR) was carried out with TB Green Premix Ex 
 TaqTM II (TaKaRa, Japan) using a CFX96 Real-Time PCR 
System (Bio-Rad, United States). In this study, all qRT-
PCR data were normalized to β-actin. For each biological 
replicate, each experiment was run in triplicate. The gene 
relative expression levels were calculated using the  2-∆∆Ct 
method [36]. Table S 2 in the supplementary material dis-
plays all of the primer sequences.

Ultra‑performance liquid chromatography (UPLC) 
parameters and ESI‑Q trap‑MS/MS
An LC-ESI-MS/MS system (HPLC, Shim-pack UFLC 
SHIMADZU CBM30A system; MS, Applied Biosys-
tems 6500 Q TRAP) was employed to evaluate the sam-
ple extracts. The following analytical conditions were 
applied: (1) HPLC: the column was a Waters ACQUITY 
UPLC HSS T3 C18 (1.8 μm, 2.1 mm*100 mm); the sol-
vent system included water and acetonitrile with 0.04% 
acetic acid added to each. On a triple Q TRAP, API 6500 
Q TRAP LC/MS/MS system with an ESI Turbo Ion-Spray 
interface, working in a positive ion mode and managed 
by Analyst 1.6.3 software (AB Sciex), linear ion hydra-
zine-flight time (LIT) and triple quadrupole (QQQ) 
scans were obtained [37].

Coexpression analysis
After integrating data from these two major omics 
approaches, coexpression network analysis was con-
ducted with R > 0.8 as the input file. Finally, the coexpres-
sion network was visualized through Cytoscape v3.8.0.

Statistical assessment
All of the experimental results in our research were 
reviewed using a t-test with a p value below 0.05. Addi-
tionally, SPSS 22.0 was used to execute all statistical 
analyses.

Results
The effects of drought stress on the above‑ground parts 
of S. miltiorrhiza
When severe drought stress occurs, the above-ground 
parts of the plant are the first to show changes, such 
as leaf wilting [38]. Therefore, we first observed the 
changes in the above-ground parts of S. miltiorrhiza 
and we found the leaves of S. miltiorrhiza after drought 
stress treatment had no obvious shrinkage, the stems 
were straight in comparison to those in the CK group 
(Fig.  1a). The changes of physiological indexes were 

measured to determine the impact of drought stress on 
the physiology of S. miltiorrhiza. With increasing levels 
of drought stress, the contents of MDA and PRO grad-
ually increased, reaching their highest levels in group 
C (increased by 1.37-fold and 1.66-fold, respectively). 
However, the content of total protein decreased gradu-
ally (Fig.  1b). Moreover, the activities of SOD, POD, 
and CAT, which increased by 1.43, 1.87, and 1.88 times, 
respectively, also improved with increasing drought 
degree in group C (Fig.  1c). These results indicate that 
the method of our drought stress treatment is moderate. 
It has no adverse effects on the growth and development 
of S. miltiorrhiza under moderate drought stress, and 
the drought-resistant response has been initiated in the 
leaves of S. miltiorrhiza.

The effects of drought stress on the roots of S. miltiorrhiza
As the root of S. miltiorrhiza is the main source of 
medicinal ingredients, meanwhile, we also observed the 
morphological changes of the roots using the mass spec-
trometry imaging technology. We found that the tissue 
structure, including epidermis, cortex, pith, phloem, 
xylem, and cambium, were not severely affected in com-
parison to those in the CK group (Fig.  2a). In addition, 
we also found that the component distribution, includ-
ing dihydrotanshinone I, cryptotanshinone, tanshinone 
I, and tanshinone IIA were mostly distributed in the 
peripheral part of roots, while low in the central pith and 
the contents of them were higher with increasing levels 
of drought stress. To further verify the effect of drought 
stress on the accumulation of tanshinones, the contents 
of four tanshinones in the roots were determined using 
HPLC technology. All of them showed a trend of grad-
ual increase with the increase of drought degree. In the 
highest group C, the content of the four active ingredi-
ents was 21.95 mg/g, 52.47 mg/g, 13.96 mg/g and 161.26 
mg/g, which increased 2.89-, 2.68-, 2.39- and 2.04-
fold compared with CK, respectively (Fig.  2b). These 
results indicate that moderate drought stress would not 
adversely affect the tissue structure and component dis-
tribution of the roots in S. miltiorrhiza. Simultaneously, 
moderate drought stress could promote the accumula-
tion of tanshinone components.

Differentially expressed genes (DEGs) under different 
degrees of drought stress
Transcriptomes were studied to identify DEGs in the 
samples to understand the molecular response of S. milti-
orrhiza to drought stress. The CK, A, B, and C groups 
produced a total of 164.77 M, 159.52 M, 157.35 M, and 
161.27 M raw reads, respectively. Both Q20 and Q30 
had values greater than 88%, implying that the data qual-
ity could be utilized for further investigation (Table S 3). 
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In addition, heatmap analysis showed that all of these 
groups’ correlation values were higher than 0.9 (Figure 
S  1). The principal component analysis (PCA) results 
showed that the differences in Unigene expression under 
distinct drought stress treatments were significant (Fig-
ure S 2). Therefore, we subsequently examined the gene 
expression in these groups under various degrees of 
drought stress.

The significance of variations in gene expression was 
assessed using rigorous thresholds of FDR < 0.01 and 
 log2FC ≥ 1. A total of 5213, 6611, and 5241 genes were 
differentially expressed in CK vs. A, CK vs. B, and CK 
vs. C, respectively, and there were more up-regulated 
genes than down-regulated genes (Fig.  3a). The top 15 
genes with up-regulated and down-regulated differential 
expression are listed in Table S 4. The variations in DEGs 
between these groups are represented by Venn diagrams. 
In the aggregate, 1726 genes were identified, with 664 
genes commonly upregulated and 836 genes commonly 
downregulated. Moreover, it was discovered that there 
were 1111 common genes identified in the CK vs. A and 
CK vs. B groups, 783 common genes identified between 
the CK vs. A and CK vs. C groups, and 1212 common 
genes identified in the CK vs. B and CK vs. C groups. 

(Fig. 3c, d, e). The heatmap in Fig. 3b displays the expres-
sion of DEGs in the comparative groups.

Gene Ontology (GO) enrichment analysis of S. miltiorrhiza 
in response to different degrees of drought stress
Over the years, Gene Ontology (GO) enrichment analysis 
has been broadly performed to annotate gene function 
and determine gene enrichment [39]. It is usually used 
to describe the functions of DEGs obtained from RNA-
seq at three main levels: molecular function (MF), cellu-
lar component (CC) and biological process (BP). In our 
study, GO analysis indicated that in groups A, B, and C, 
more than half of the DEGs were categorized as “defense 
response”, “response to stress” and “response to stimulus” 
belonging to the BP category, “extracellular region” in the 
CC category, and “ADP binding” and “cellulose synthase 
activity” in the MF category. In addition, many DEGs 
were annotated under various metabolic processes in the 
BP category and various synthase activities in the MF cat-
egory (Fig. 4a, b, c). According to these results, S. miltio-
rrhiza may enhance drought resistance by increasing a 
variety of synthase activities and various metabolic pro-
cesses. TopGO analysis further revealed that the BP (GO: 
0008150), CC (GO: 0005575), and MF (GO: 0003674) in 

Fig. 1 Effects of drought stress on the aboveground S. miltiorrhiza. a Phenotypic changes in S. miltiorrhiza after different drought stress treatments. 
b The contents of total protein, MDA, and PRO under drought stress. c The activity of different physiological indexes under drought stress. Values are 
presented as the means±SDs with three replicates. The symbols “**” and “*” represent p values below 0.01 and 0.05, respectively
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these groups were the most significantly enriched terms 
in these three categories (Figure S 3).

Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway enrichment analysis of S. miltiorrhiza in response 
to different degrees of drought stress
To better comprehend the biological functions and 
gene interactions, 2185 of 14606 DEGs from CK vs. A, 
2747 of 14606 from CK vs. B, and 2139 of 14606 from 
CK vs. C were selected, and the most abundant meta-
bolic pathways were examined. Our results indicated 
that all DEGs involved in plant-pathogen interaction 

(ko04626), phenylpropanoid biosynthesis (ko00940), 
and MAPK signaling pathway (ko04016) were signifi-
cantly enriched by different degrees of drought stress 
(Fig.  5). In addition, we found that these DEGs were 
also prevalent in flavonoid biosynthesis (ko00941). 
Notably, among the A and B groups compared with the 
CK group, these genes were also strongly prevalent in 
plant hormone signal transduction (ko04075). Moreo-
ver, among CK vs. B, these DEGs were also highly 
abundant in diterpenoid biosynthesis (ko00904). These 
results showed a possible connection between S. miltio-
rrhiza drought resistance and the DEGs implicated in 
these pathways.

Fig. 2 Effects of drought stress on the roots of S. miltiorrhiza. a The mass spectroscopic image of four tanshinones in root tissue and tissue sections 
in the root under drought stress. The closer the color is to red, the higher the tanshinone content. b Content changes of four tanshinones in roots 
of S. miltiorrhiza plants under drought stress. The symbols “**” and “*” represent p values below 0.01 and 0.05, respectively
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Analysis of differentially expressed TFs
In addition to aiding in plant growth and development, 
transcription factors (TFs) also influence how plants 
respond to abiotic stress. In our research, TFs identi-
fied in whole groups were evaluated to elucidate their 
biological functions under drought stress. Through the 
comparison of the databases, we revealed that there 
were 2760 DEGs encoding TFs. Among them, 66 fami-
lies were classified, including GRAS (n=230), bHLH 
(n=176), AP2/ERF-ERF (n=171), MYB (n=151), WRKY 
(n=149), C2C2 (n=142), MYB-related (n=138), NAC 
(n=134), GARP-G2-like (n=117), and bZIP (n=109) 
(Fig. 6a).

In addition, the variations in the expression levels 
of the TFs between these groups were also examined. 
Figure 6b demonstrates that 26 DEGs from 9 TF fami-
lies were upregulated under drought stress, of which 
the GRAS (ten), bHLH (three), and AP2/ERF-ERF 
(three) families made up a sizable fraction. Strikingly, 
the FPKM values of most GRAS, AP2/ERF-ERF, MYB, 
and WRKY TFs were larger in the B group than in the 
other two groups, especially GRAS TFs (such as SMil-
00017834-mRNA-1 and SMil-00013932-mRNA-1).

Fig. 3 Identification of DEGs and transcriptome analysis. (a) The number of genes that were up‑ and down‑regulated under various degrees 
of drought stress. (b) Heatmaps of DEGs compared between different groups. (c, d, e) Venn diagram of DEGs. (c) All differentially expressed genes 
(DEGs), (d) DEGs that were upregulated, and (e) DEGs that were downregulated. Values represent the difference in DEGs between pairs. The symbols 
“**” and “*” represent p values below 0.01 and 0.05, respectively
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Identification of differentially expressed metabolites 
under different degrees of drought treatments
With the aid of the UPLC-MS/MS platform, a broadly 
targeted metabolome analysis was carried out to identify 
the metabolite changes that S. miltiorrhiza underwent 
after different degrees of drought treatments. First, the 
variations in metabolites were explored using PCA and 
orthogonal projection to latent structures-discriminate 
analysis (OPLS-DA). The results indicated that there 
was differentiation between the control and drought-
treated groups, implying the stability and replicability of 
the detection method. In addition, OPLS-DA score per-
mutations were obtained, and evident differences were 
observed for CK vs. A (R2Y=1, Q2=0.953), CK vs. B 
(R2Y=1, Q2=0.963), and CK vs. C (R2Y=1, Q2=0.963), 
demonstrating the suitability of the constructed model. 
These results indicated that the metabolite profile 
changed under different drought stresses (Fig. 7a, d, e, f ). 
Then, the DAMs were further screened using the changes 
in metabolites under the different degrees of drought 
stress (Fig.  7g, h, i). The disparities in DAMs among 

these groups were also illustrated using Venn diagrams. 
These groups identified 24 substances, including flavones 
(chrysin O-malonylhexoside and O-methylchrysoeriol 
5-O-hexoside) and terpenes (phytocassane D). Compared 
with the control group, 67 DAMs were found in group A, 
72 in group B and 92 in group C (Fig. 7b, c, Table S 5).

KEGG enrichment analysis of DAMs
In this research, the rich factor, p value, and quantity of 
enriched metabolites were used in the KEGG analysis 
to expand our understanding of the functions of DAMs. 
The results revealed that most of them were enriched in 
flavone and flavonol and phenylpropanoid biosynthesis 
among CK vs. A (Fig.  8a), phenylpropanoid biosynthe-
sis, flavonoid biosynthesis, tyrosine, arginine and proline 
metabolism, glutathione metabolism, and ubiquinone 
and other terpenoid-quinone biosynthesis in CK vs. B 
(Fig. 8c), and phenylalanine metabolism, biosynthesis of 
antibiotics, purine, arginine and proline metabolism in 
CK vs. C (Fig.  8 e). When comparing different degrees 
of drought stress treatment with the control, the top 

Fig. 4 Distribution and GO enrichment analysis of DEGs under different degrees of drought stress. (a) CK vs. A, (b) CK vs. B, (c) CK vs. C
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20 DAMs were displayed using the order of |log2FC| 
(Fig.  8b, d, and f ). The most significant DAM was 
pmb0423 (hydroxy-methoxycinnamate), with a  log2FC of 
11.34 among the CK group vs. A, 11.86 in the CK group 
vs. B, and 12.33 in the CK group vs. C. After comparison 
with the database, hydroxy-methoxycinnamate belonged 
to the phenylpropanoids. In addition, the overproduced 
DAMs also included terpenes and flavonoids. These 
results suggested that there was an extensive accumula-
tion of secondary metabolites and that these substances 

may be essential in S. miltiorrhiza’s response to drought 
stress.

Response of S. miltiorrhiza induced by drought stress
While comprehensively analysing these enrichment 
results, we also discovered, quite interestingly, that 
numerous DEGs and DAMs were related to plant-path-
ogen interactions, the MAPK signaling pathway, phenyl-
propanoid, flavonoid, and diterpenoid biosynthesis and 
plant hormone signal transduction compared with those 

Fig. 5 KEGG analysis of DEGs after different degrees of drought stress. a‑c represent three different treatment groups compared with control 
groups. The gene ratio is the proportion of DEGs to all of the genes that have been noted in this pathway. The images are used and adapted 
with the permission of Kanehisa Laboratories
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in the control group. Next, we discussed these pathways 
thoroughly (Figs. 9, 10, 11).

One of the major metabolic pathways with significantly 
greater DEG enrichment in these groups was the “plant-
pathogen interaction and MAPK signalling” pathway. 
Additionally, the “plant hormone signal transduction” 
pathway was remarkably differentially abundant between 
CK and B groups. To explore the connection between 
these pathways and the response of S. miltiorrhiza to 
drought stress, the genes related to these pathways were 
investigated. For the plant-pathogen interaction pathway, 

18 enzymes were annotated, including 16 up-regulated 
and 2 down-regulated enzymes. Furthermore, the DEGs 
encoding CNGCs, FLS2, MKK4/5, RPM1, KCS, and 
WRKY22/52 were significantly upregulated in these 
three comparison groups. The DEGs encoding CDPK, 
CaMCML, PR1, and PRS2 were only upregulated in CK 
vs. B, suggesting that these DEGs changed significantly 
when the soil water content was 65% (B group) (Fig. 9).

Among the enrichment results, 9 enzymes related to 
the “MAPK signaling pathway” and 20 enzymes con-
nected to “plant hormone signal transduction” were 

Fig. 6 Changes in TFs under different degrees of drought stress. a Distribution of TFs. b DEGs assigned to TFs under drought stress treatment. GRAS: 
GRAS‑domain transcription factors; bHLH: basic helix‑loop‑helix transcription factor; AP2/ERF‑ERF: APETALA2/ethylene‑responsive element binding 
factors‑ethylene‑responsive element binding factors; MYB: MYB‑related transcription factors; WRKY: WRKY transcription factors; C2H2: C2H2 type 
zinc finger; NAC: NAC (NAM, ATAF1, 2, CUC2) transcription factors; bZIP: basic region/leucine zipper; HSF: heat stress transcription factor
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uncovered. As shown in Fig.  10a, in detail, the DEGs 
encoding AUX/IAA, ARF, and SAUR in the auxin sign-
aling pathway were significantly upregulated. The DEGs 
connected to ABA signal transduction, such as soluble 
ABA receptors pyrabactin resistance 1 (PYR1)-like (PYL) 
and sucrose non-fermenting 1-related protein kinase 2 
(SnRK2), were upregulated under drought stress; how-
ever, the opposite was observed for protein phosphatases 
type-2C (PP2Cs). In addition, DEGs encoding TGA and 
PR-1, which are involved in SA signaling, and GID1, 
DELLA and TF, which are involved in GA signaling, were 

upregulated under drought stress. Furthermore, during 
the MAPK signaling pathway, the DEGs encoding FLS2, 
MKK4/5, OXI1, and RbohD were significantly upregu-
lated, whereas the opposite was found for genes involved 
in MPK4 (Fig. 10b).

The important secondary metabolism in plants 
includes the biosynthesis of phenylpropanoids and 
flavonoids. Furthermore, diterpenoid biosynthesis 
is one of the important pathways in S. miltiorrhiza 
and is closely related to the active ingredient. Among 
the annotated results of DEGs and DAMs in the 

Fig. 7 Widely targeted metabolome analysis of S. miltiorrhiza after distinct degrees of drought treatments. a PCA. b, c Venn diagram 
of the up‑regulated and down‑regulated DAMs. d, e, f Permutation of OPLS‑DA for the A, B, and C groups, respectively. R2Y indicates 
the interpretation rate of Y matrices. Q2 represents the predictive power of the model. g, h, i DAM clustering heatmaps for the A, B, and C groups 
in comparison to the control. Red and green are employed to symbolize high and low abundance, respectively
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phenylpropanoid biosynthesis pathway, DEGs encod-
ing PAL, 4CL, and CAD were significantly upregulated. 
The changes in compounds, including fumarate, ferulic 
acid, and caffeyl alcohol, were also significantly upreg-
ulated (Fig.  11a). As shown in Fig.  11b, there was 1 
enzyme and 2 compounds involved in flavonoid biosyn-
thesis, and the DEGs encoding CHS were upregulated 
in the B and C groups in comparison to the CK group. 
In addition, we found that the accumulation of xantho-
humol and apigenin was significantly increased after 
drought stress and that the accumulation of apigenin 
was in line with the CHS gene. The DEGs encoding 

CPS and CYP76AH1 were considerably upregulated 
among diterpenoid biosynthesis genes, indicating that 
drought stress may be related to the biosynthesis of 
tanshinones. Moreover, we found that one metabolite, 
phytocassanes, was significantly upregulated in all of 
the groups (Fig. 11c).

Synchronously, for the sake of verifying the depend-
ability of the RNA-seq data, we randomly chose 10 
DEGs to confirm the sequencing results, including the 
key rate-limiting enzyme GGPPS (SMil-00019981-
mRNA-1) downstream of the pathway. Similar with 
the results of the RNA-seq approach, the 10 DEGs 

Fig. 8 Statistical analysis of DAMs under different degrees of drought treatment. (a, c, d) KEGG analysis of DAMs in CK vs. A, CK vs. B, and CK vs. C, 
respectively. The significance of the enrichment increases as the p value approaches zero. b, d, f The |log2FC| of the top 20 significantly changed 
metabolites in these groups. The images are used and adapted with the permission of Kanehisa Laboratories
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discovered by qRT-PCR differed significantly under the 
different degrees of drought stress (Figure S 4).

Correlation analysis
Combined transcriptome and metabolomic analysis was 
conducted to learn more about the function of DEGs 
and DAMs of S. miltiorrhiza after different degrees of 
drought stress. Many DEGs and DAMs were abundant 
in the same KEGG pathways, including phenylpropanoid 
biosynthesis, cyanoamino acid metabolism, flavonoid 
biosynthesis, ABC transporters, and plant hormone sig-
nal transduction (Fig. 12a, b, c). According to these find-
ings, these metabolite changes may be regulated by the 
respective genes either directly or indirectly, and they 
may be closely related to how S. miltiorrhiza reacts to 
drought stress.

Based on the Pearson correlation coefficient, a correla-
tion network graph of DEGs and DAMs was constructed 
to further investigate the gene regulatory network of 
S. miltiorrhiza under drought stress. The results of the 

correlation study revealed that PAL, 4CL, and CAD were 
highly positively connected to phenylpropanoid con-
tents and that CHS was highly positively connected to 
apigenin, one of the flavonoids. Intriguingly, CYP76AH1 
implicated in the diterpenoid biosynthesis pathway was 
positively connected to PAL, 4CL, and CAD (Fig.  12d). 
These findings suggested that these genes might be essen-
tial for S. miltiorrhiza to enhance drought resistance and 
promote the accumulation of tanshinones.

To further explore whether genes in other pathways 
(plant-pathogen interactions, the MAPK signaling path-
way, and plant hormone signal transduction) also had 
dual roles in response to drought stress and tanshinone 
regulation, we constructed a correlation network graph 
of DEGs involved in these pathways (Fig. 12e). We found 
that WRKY22/WRKY52 involved in the plant-pathogen 
interactions and GID1 involved in the plant hormone 
signal transduction were highly positively connected to 
CYP76AH1 gene. JAR1, DELLA, and TGA involved in 
plant hormone signal transduction were highly positively 

Fig. 9 DEGs in plant‑pathogen interactions under different degrees of drought stress. Avr9: race‑specific elicitor A9; Cf9: disease resistance protein; 
CDPK: calcium‑dependent protein kinase; CNGCs: cyclic nucleotide gated channel; CaMCML: calmodulin; flg22: flagellin; FLS2: flagellin sensitive 
2; MKK4/5: mitogen‑activated protein kinase kinase 4/5; MPK3: mitogen‑activated protein kinase 3; WRKY29/22/1/2/52: WRKY transcription factor 
29/22/1/2/52; FRK1: senescence‑induced receptor‑like serine/threonine‑protein kinase; PR1: pathogenesis‑related protein 1; RPM1/RPS2: disease 
resistance protein; SGT1: suppressor of G2 allele of SKP1; HSP90: heat shock protein 90 kDa beta; EDS1: enhanced disease susceptibility 1 protein; 
XopD: type III effector protein; KCS: 3‑ketoacyl‑CoA synthase
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connected to CPS gene. All of the correlations were 
greater than 0.8. These results indicated that these genes 
might function in response to drought stress and pro-
mote the accumulation of tanshinones in S. miltiorrhiza.

Discussion
The dry root and rhizome of S. miltiorrhiza is popu-
lar among traditional Chinese medicine because of its 
strong pharmacological and therapeutic effects [40–42]. 
In recent years, the yield of S. miltiorrhiza has been neg-
atively impacted by increasingly harsh environmental 
conditions, particularly drought stress. Numerous stud-
ies have demonstrated that the response mechanisms of 

different species under drought stress are also different. 
In our study, transcriptome data were combined with 
widely targeted metabolite profiles to investigate the 
drought response mechanism of S. miltiorrhiza. Further-
more, we found that there were significant differences in 
plant-pathogen interactions, the MAPK signaling path-
way, the biosynthesis of phenylpropanoids, flavonoids, 
and diterpenoids and plant hormone signal transduction 
(Fig. 13).

Plant‑pathogen interaction in response to drought stress
Plant-pathogen interactions, which exhibit two patterns, 
PAMP-triggered immunity (PTI) and effector-triggered 

Fig. 10 DEGs in plant hormone signal transduction and the MAPK signaling pathway under different degrees of drought stress. PYL: abscisic 
acid receptor PYL family; PP2C: protein phosphatase 2C; SnRK2: serine/threonine‑protein kinase; ABF: ABA responsive element binding factor; 
GID1: gibberellin receptor; DELLA: DELLA protein; TF: phytochrome‑interacting factor 4; AUX/IAA: auxin‑responsive protein; ARF: auxin‑responsive 
protein; GH3: auxin responsive gene; SAUR: SAUR family protein; JAR1: SAUR family protein; JAZ: jasmonate ZIM domain‑containing protein; MYC2: 
transcription factor; COI1: coronatine‑insensitive protein 1; NPR1: regulatory protein; TGA: transcription factor; PR‑1: pathogenesis‑related protein 
1; MEKK1: mitogen‑activated protein kinase kinase kinase 1; MPK4: mitogen‑activated protein kinase 4; MKK4/5: mitogen‑activated protein kinase 
kinase 4/5; MPK3/6: mitogen‑activated protein kinase 3; OXI1: serine/threonine‑protein kinase OXI1; CaM4: calmodulin; MPK8: mitogen‑activated 
protein kinase 8; RbohD: respiratory burst oxidase
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immunity (ETI), are crucial physiological processes that 
occur in plants [43]. It has been reported that drought 
stress could trigger the plant-pathogen interaction and 
regulate the expression of genes implicated in this path-
way, such as FLS2, CNGCs and SGT1 [44]. FLS2 (flagel-
lin sensitive 2), which exists in the plasma membrane, 
is one of the immune signal receptors participating in 
the plant-pathogen interaction pathway and can cause a 
decline in ROS [45, 46]. Studies have demonstrated that 
FLS2 works together with RBOHD and PIF4 to respond 
to drought stress [47]. Here, we discovered that the 
DEGs encoding FLS2 were significantly upregulated in 
comparison to the control group (Fig. 9), indicating that 
FLS2 may be a key player in the response to drought 
stress. Eukaryotes have cyclic nucleotide-gated channels 
(CNGCs), which act as calcium sensors. Calcium is cru-
cial not only for plant growth and development but also 
for drought, salt stress, and disease resistance [48]. In 
our study, the DEGs encoding the CNGCs dramatically 
increased under drought stress, which was in line with 

the results of CsCNGC1.4/2.1/4.2 in Citrus sinensis [49]. 
Interestingly, we also found that the DEGs encoding one 
suppressor of the G2 allele of skp1 (SGT1) were remarka-
bly downregulated between these treatment groups. Fur-
thermore, research has shown that OsSGT1 is important 
for the response of rice to drought [50]. Based on this, we 
made the assumption that SGT1 might react negatively 
to drought stress. In addition, drought stress could mod-
ulate WRKY TFs, such as WRKY22 [51]. WRKY22 and 
WRKY52, significantly increased after drought treatment 
in our research, implying that these two genes may be 
connected to drought resistance.

Response of the MAPK signaling pathway to drought stress
One of the most well-researched plant signaling path-
ways, the MAPK signaling pathway, is composed of 
a class of protein kinases that are crucial for stress 
responses [52]. Studies have reported that the MAPK 
signaling pathway could be activated by drought stress, 
and MAPK pathway genes improved drought tolerance 

Fig. 11 DEGs involved in phenylpropanoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis under different degrees of drought 
stress. DEGs were selected based on |log2FC| ≥ 1. PAL: phenylalanine ammonia‑lyase; 4CL: 4‑coumarate‑‑CoA ligase; CAD: cinnamyl‑alcohol 
dehydrogenase; CHS: chalcone synthase; CPS: ent‑copalyl diphosphate; KSL: ent‑kaurene synthase; CYP76AH1: ferruginol synthase
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[53, 54]. In our investigation, DEGs encoding MKK4, 
MKK5, OXI1, and RbohD were significantly upregu-
lated in the A, B, and C groups compared to the control 
group. MKK4/5 protein kinases are mitogen-activated 
protein kinase kinases that mediate environmental signal 

transduction to induce stress responses. Under drought 
stress, excessive ROS production induces oxidative 
stress, which eventually results in cell membrane rupture 
and stimulates various stress signaling pathways, includ-
ing the MAPK signaling pathway [55, 56]. OXI1 kinase is 

Fig. 12 Correlation analysis between DEGs and DAMs. a‑c Graphs of DEGs and DAMs enriched along the same KEGG pathway among these three 
groups in comparison to the control. d Coexpression network analysis between DEGs and DAMs. The red and yellow shapes represent the enzymes 
and compounds involved in the diterpenoid biosynthesis pathway, respectively. The pink and blue shapes represent the enzymes and compounds 
involved in the biosynthesis pathway of flavonoids, respectively. The purple and green shapes represent the enzymes and compounds implicated 
in the phenylpropanoid biosynthesis pathway, respectively. Red lines indicate a positive correlation with R > 0.9. The yellow lines indicate a positive 
correlation with R > 0.8. The blue lines indicate a negative correlation with R > 0.9. PAL: phenylalanine ammonia‑lyase; 4CL: 4‑coumarate‑‑CoA 
ligase; CAD: cinnamyl‑alcohol dehydrogenase; CHS: chalcone synthase; CPS: ent‑copalyl diphosphate; CYP76AH1: ferruginol synthase. e 
Coexpression network analysis between DEGs. The red circles represent the enzymes in the diterpenoid biosynthesis pathway. The pink (related 
to JA hormone), blue (related to GA hormone), and purple (related to SA hormone) shapes represent the enzymes involved in the plant hormone 
signal transduction. The green shapes represent the enzymes implicated in plant‑pathogen interactions. The orange shapes represent the enzymes 
implicated in the MAPK signaling pathway. The thicker the line and the closer the color is to red, the stronger the correlation is ( R > 0.8). The blue 
lines indicate a negative correlation with R > 0.6
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necessary for MAPK protein kinase activation and is an 
integral component of the signal transduction pathway 
that transmits the signal to a variety of downstream reac-
tions [57]. In addition, RbohD (respiratory burst oxidase) 
is another key gene involved in the MAPK signaling path-
way, and it could cooperate with other genes to respond 
to drought stress [47]. Therefore, we conjectured that 
MKK4/5 might be significant in improving the drought 
resistance ability of S. miltiorrhiza.

Response of plant hormones to drought stress
It is well recognized that plant hormones play signifi-
cant roles in modulating the plant defence response to 
drought stress. Key hormones produced by plants include 
ABA, JA, GA, SA, and auxin [13]. Numerous studies 

have indicated that the accumulation of JA could trig-
ger downstream TFs and subsequently respond to stress 
[58]. Among this pathway, a previous study suggested 
that JAR1-mediated could improve drought stress toler-
ance of Arabidopsis [59]. According to our findings, the 
DEGs encoding JAR1 significantly increased in groups B 
and C. In addition, it has been noted that during drought 
stress, the transcription level of SlMYC2 considerably 
increased [60]. These results, which were in line with a 
previous study, indicated that the expression of the DEG 
encoding MYC2 was markedly upregulated in both 
groups. This finding revealed that the JA hormone might 
be crucial for the drought stress response of S. miltior-
rhiza. Generally, the main functions of SA are regulating 
physiological processes, including photosynthesis and 

Fig. 13 Illustrated depiction summarizing the main pathways under drought stress of S. miltiorrhiza 
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the activity of antioxidant enzymes [61]. Under drought 
stress, the DEGs encoding TGA and PR-1 were shown 
to be upregulated in this study; synergistically, it was 
discovered that the activity of antioxidant enzymes was 
boosted, especially POD activity (Fig.  1c). Thus, the SA 
hormone might increase the ability of S. miltiorrhiza to 
withstand drought by enhancing the activity of antioxi-
dant enzymes.

GA hormone is also crucial in mediating the stress 
response. Under drought stress, GID1, one of the GA 
receptors, was notably upregulated in Elymus sibiri-
cus [62]. In tomatoes, DELLA proteins help tolerate 
drought stress [63]. It was also interesting to note that, in 
line with earlier findings, the DEGs encoding GID1 and 
DELLA were notably upregulated. These results imply 
that GA might improve the capacity of S. miltiorrhiza 
for drought stress adaptation. Moreover, drought stress 
could also stimulate ABA accumulation. For example, in 
P. nutans, PYL, PP2C, and SnRK2 were notably upregu-
lated [64]. DEGs that encode PYL, PP2C, and SnRK2 in 
our research, however, showed a decrease or no signifi-
cant change. We speculated that this result may be due 
to species differences and different methods of drought 
stress treatment.

Analysis of transcription factors
TFs are crucial for the response to drought stress and 
the regulation of secondary metabolites [64, 65]. Previ-
ous results have proven that some TFs function through 
the MAPK signaling pathway and plant hormone signal 
transduction. To elucidate the biological functions of TFs 
in S. miltiorrhiza under drought stress, TFs expressed 
in both drought stress groups were determined. Forty-
five DEGs from 14 TF families, including GRAS, bHLH, 
AP2/ERF-ERF, MYB, and WRKY, were annotated in 
this work (Fig.  6). CaGRAS 12 has been shown to be a 
drought-responsive gene, making it a possible candidate 
gene for improving  drought  tolerance in Cicer arieti-
num [66]. Previous results revealed that SlbHLH96 could 
mediate  drought  resistance in tomatoes [67]. Addition-
ally, more TF genes showed differential expression under 
drought stress in Medicago sativa [68]. With these differ-
ential results, we hypothesized that these annotated TFs 
might play a significant regulatory function in S. miltior-
rhiza to enhance drought tolerance.

Secondary metabolism induced by drought stress
Plant secondary metabolites are unique resources that 
are widely used to make medicines, food additives, and 
biochemicals with significant commercial applications. 
In general, they are essential for plants to adapt to their 
environment and deal with stress [69]. Nevertheless, 
many studies have demonstrated that environmental 

elements such as drought stress may have a significant 
impact on secondary metabolites. In Casuarina equi-
setifolia, drought stress elevated the expression of associ-
ated genes and increased the accumulation of flavonoids 
and phenols [19]. In Salvia officinalis, the amount of 
monoterpenes significantly increased in response to 
drought stress [68]. The concentrations of most phenolic 
and flavonoid components increased with the aggrava-
tion of drought severity in Achillea pachycephala Rech.f. 
[70]. Research has also shown that a large variety of sec-
ondary metabolites are produced by general phenyl-
propanoid metabolism and that the phenylpropanoid 
pathway is activated under drought stress [71, 72]. In 
our study, there was an extensive accumulation of com-
pounds, including fumarate, ferulic acid, xanthohumol, 
and apigenin, under drought stress (Fig. 11a, b). Further-
more, the DEGs encoding PAL, 4CL, CAD, and CHS 
were significantly upregulated. Intriguingly, we found 
that the trend between CHS and apigenin was consistent, 
and correlation analysis showed that CHS was strongly 
positively connected to apigenin. Studies have shown that 
CHS is an essential rate-limiting enzyme in the pathway 
that produces flavonoids and is necessary for regulating 
plant growth, development, and abiotic stress resistance 
[73]. All of these results supported earlier research and 
indicated that the biosynthesis pathways of phenylpro-
panoids and flavonoids, especially CHS genes and api-
genin, were involved in the response of S. miltiorrhiza to 
drought stress [20].

In addition, we found one increased metabolic com-
pound, phytocassanes, which is involved in the diterpe-
noid biosynthesis pathway and may be connected to the 
response to drought stress. Phytocassanes are usually 
protective substances produced when plant tissues are 
destroyed and damaged by foreign pathogens and micro-
organisms. Therefore, we hypothesized that the tissues of 
S. miltiorrhiza plants were destroyed and that this kind of 
substance was produced to enhance drought resistance. 
As one of the most significant secondary metabolites, 
tanshinones are frequently utilized to treat cardiovascu-
lar and cerebrovascular diseases [27, 28]. Interestingly, 
CYP76AH1, which is associated with the biosynthesis 
of tanshinones, was strongly connected to PAL, 4CL, 
and CAD, which are involved in the phenylpropanoid 
biosynthesis pathway (Fig.  12d). Based on these results, 
we inferred that the phenylpropanoid metabolic path-
way was not only closely related to the drought stress 
response but also may be related to the biosynthesis of 
tanshinones.

Interestingly, we also found that DEGs (WRKY22, 
WRKY52, JAR1, DELLA, TGA, and GID1) involved 
in plant-pathogen interaction, plant hormones were 
not only upregulated under drought stress, but also 
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strongly connected to the key enzyme genes related 
to tanshinones biosynthesis (Figs 10 and 12e). Stud-
ies have shown that the SA treatment could promote 
the tanshinone accumulation through the SmGGPPS, 
SmCPS, and SmKSL genes [74].  JA could regulate the 
biosynthesis of tanshinones via the JAZ9-MYB76 com-
plex in  S. miltiorrhiza [75]. And GA could promote 
hairy roots growth and increase the contents of tanshi-
nones [76]. Therefore, we speculated that these genes 
have dual functions of responding to drought stress 
and regulating the accumulation of tanshinones. All of 
these hypothesis needs to be further verified.

Conclusion
In our research, transcriptome and metabolomic 
analyses were combined to investigate the molecular 
pathways behind S. miltiorrhiza’s response to moder-
ate drought stress. Moderate drought stress led to the 
accumulation of phenylpropanoids, flavonoids, and dit-
erpenoids, including fumarate, ferulic acid, xanthohu-
mol, apigenin, and phytocassanes, which could protect 
the S. miltiorrhiza plant from adverse factors, thereby 
improving its resistance to drought. The DEGs, espe-
cially WRKY22, WRKY52, GID1, JAR1, DELLA, and 
TGA, involved in plant-pathogen interaction, phenyl-
propanoid and flavonoid biosynthesis, and plant hor-
mone signal transduction may have the dual functions 
of responding to drought stress and regulating the 
accumulation of tanshinones. The specific regulatory 
mechanism will be the focus of future research. This 
research provides a theoretical foundation for studying 
the genetic regulation of drought stress tolerance and 
tanshinones accumulation. Simultaneously, this will 
facilitate further study of the more complex regulatory 
mechanisms of S. miltiorrhiza under moderate drought 
stress.
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