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Abstract 

Polygonatum cyrtonema Hua is a traditional Chinese medicinal plant acclaimed for its therapeutic potential in diabetes 
and various chronic diseases. Its rhizomes are the main functional parts rich in secondary metabolites, such as flavo-
noids and saponins. But their quality varies by region, posing challenges for industrial and medicinal application of P. 
cyrtonema. In this study, 482 metabolites were identified in P. cyrtonema rhizome from Qingyuan and Xiushui counties. 
Cluster analysis showed that samples between these two regions had distinct secondary metabolite profiles. Machine 
learning methods, specifically support vector machine-recursive feature elimination and random forest, were utilized 
to further identify metabolite markers including flavonoids, phenolic acids, and lignans. Comparative transcriptom-
ics and weighted gene co-expression analysis were performed to uncover potential candidate genes including CHI, 
UGT1, and PcOMT10/11/12/13 associated with these compounds. Functional assays using tobacco transient expres-
sion system revealed that PcOMT10/11/12/13 indeed impacted metabolic fluxes of the phenylpropanoid pathway 
and phenylpropanoid-related metabolites such as chrysoeriol-6,8-di-C-glucoside, syringaresinol-4’-O-glucopyranosid, 
and 1-O-Sinapoyl-D-glucose. These findings identified metabolite markers between these two regions and provided 
valuable genetic insights for engineering the biosynthesis of these compounds.
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Background
Polygonatum cyrtonema Hua is an ancient and tradi-
tional herbal plant in China (Fig.  1A). The rhizome of 
this plant, rich in a diverse array of secondary metabo-
lites including triterpenoid saponins, steroids, and fla-
vonoids, offers a myriad of health benefits [1]. These 
include the prevention of diabetes in obese individu-
als, enhancement of insulin secretion, improvement of 
insulin resistance, antibacterial properties, anti-tumor 
effects, anti-inflammatory properties and anti-aging 
benefits [2, 3]. P. cyrtonema primarily grown in for-
ests in the southern region of China [4]. Studies have 
noted differences in the phytochemical compositions of 
P. cyrtonema from various regions [5, 6]. However, key 
metabolite markers of P. cyrtonema between regions is 
unclear, which will inevitably affect the development 
of related industrial and medicinal application. Hence, 
it is significant to detect specific metabolic indicators 
for differentiating the quality of P. cyrtonema grown in 
various regions.

Recently, machine learning methods have significantly 
enhanced the detection of metabolite markers in plant 
and human [7, 8]. The support vector machine-recur-
sive feature elimination (SVM-RFE) is a common multi-
variate approach in machine learning that is extensively 
employed for selecting features and classifying high-
throughput data [9]. Furthermore, the random forest 
(RF), known for its superior accuracy and interpretability, 
has gained prominence in predictive modeling for fea-
ture biomarkers [7, 10]. Consequently, machine learning 
has proven instrumental in efficiently identify metabolite 
markers from voluminous metabolomic datasets. Further 
elucidation of the underlying biosynthetic mechanisms 
of these signature metabolites across different regions is 
particularly crucial.

Accumulation of plant secondary metabolites are usu-
ally originated from the phenylpropanoid pathway, such 
as coumarins, lignans, flavonoids, phenolic acids, and 
lignins [11]. The phenylpropanoid pathway typically ini-
tiates in plants by synthesizing phenylalanine through 

Fig. 1  Metabolomic analysis of P. cyrtonema from two sites in Qingyuan and Xiushui Counties. A Diagram of P. cyrtonema plant. B PCA analysis 
of the two sites. C Component analysis of the identified metabolites from P. cyrtonema. D Complexheatmap of all metabolites identified by relative 
quantification
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the glycolysis and shikimic acid pathway [12–14]. After-
wards, phenylalanine ammonia lyase (PAL), cinnamate-
4-hydroxylase (C4H), and 4-coumaryl-CoA ligase (4CL) 
catalyze the reaction in a sequential manner to generate 
cinnamic acid, hydroxycinnamic acid, and CoA-linked 
4-coumarate, respectively [15]. These metabolites are 
directed into two principal downstream pathways: the 
biosynthesis of monophenols and flavonoids. Lignin 
production is primarily regulated by hydroxycinnamoyl 
transferase (HCT), which plays an essential role in con-
trolling the subsequent monophenol metabolism [16]. 
This is followed by the catalytic activities of cinnamoyl-
CoA reductase (CCR) and cinnamyl-alcohol dehydro-
genase (CAD). Downstream flavonoid metabolism is 
believed to be controlled by the pivotal chalcone syn-
thase (CHS). After CHS synthesizes the chalcone, it 
undergoes conversion to flavanone through the action of 
CHI. Subsequently, a sequence of enzymes including fla-
vanone 3-hydroxylase (F3H), flavonol synthase (FLS), and 
flavonoid synthase (FNS) facilitate the generation of dihy-
droflavonols, quercetin, and apigenin, correspondingly 
[17]. Despite the extensive knowledge on the phenylpro-
panoid pathway genes in A. thaliana, the comprehen-
sion of biosynthesis of this way in P. cyrtonema remains 
largely elusive. Currently, application of weighted gene 
co-expression network analysis (WGCNA) has gained 
prominence for elucidating the genetic architecture 
underlying the biosynthesis of secondary metabolites, 
which integrates comprehensive transcriptomic and 
metabolomic data [18]. This method considers the asso-
ciation degree among genes by analyzing the pairwise 
correlations of gene expression profiles, which offers 
considerable advantages in the exploration of secondary 
metabolite biosynthesis [18, 19].

In this study, we used a widely targeted metabolome 
approach to identify 482 metabolites from 21 different 
wild genotypes of P. cyrtonema growing in Qingyuan and 
Xiushui counties. Subsequently, the RF and SVM-RFE 
machine learning techniques were employed to distin-
guish characteristic metabolites between Qingyuan and 
Xiushui counties. By comparative transcriptome and 
WGCNA analyses, candidate genes of these compounds 
were mined. The PcOMT10/11/12/13 genes were char-
acterized using tobacco transient transformation system. 
All these results revealed the biomarkers of metabolites 
in these two counties and their accumulation mechanism 
in P. cyrtonema.

Materials and methods
Plant materials and sampling
Twenty one wild genotypes of P. cyrtonema were col-
lected from Qingyuan and Xiushui counties (Table S1) 
and transplanted to the plantation of Zhejiang A&F 

University. During the year 2017, the rhizomes of P. cyr-
tonema were disinfected using a 1% concentration of car-
bendazim for a duration of 60 min. Subsequently, they 
were washed with tap water and placed in a pot contain-
ing nutrient-rich soil. During the year 2020, three sets of 
P. cyrtonema rhizome samples with removal of fibrous 
roots were collected, rapidly frozen in liquid nitrogen and 
stored at -80 °C [20].

Identification and quantification of metabolites 
through widely targeted metabolome approach.

Metabolites were extracted, identified, and quantified 
following the method described by Han et al. (2023). In 
short, the rhizome samples were freeze-dried and then 
pulverized using a mixer (Retsch, Haan, Germany). The 
freeze-dried tissue (0.1 g) was dissolved in extraction 
buffer, and the mixture was incubated at 4  °C for 12 h. 
The extraction solution was centrifuged with 14,000 
rpm for 8 min. Subsequently, the extracted samples 
were analyzed using an ultrahigh-performance liquid 
chromatography-electrospray ionization-tandem mass 
spectrometry (UPLC-ESI–MS/MS). Following UPLC, 
the effluent was connected in succession to an ESI-triple 
quadrupole linear ion trap (Q TRAP)-MS [20].

The triple quadrupole linear ion trap mass spectrom-
eter (QTrap) was operated using Analyst 1.6 software 
(AB Sciex) to gather scans from the linear ion trap (LIT) 
and triple quadrupole (QQQ). Polypropylene glycol solu-
tions at concentrations of 10 and 100 mol/L were used 
for instrument tuning and mass calibration for QQQ and 
LIT scans. QQQ scans were obtained using the multiple 
reaction monitoring (MRM) mode, with the collision 
gas (nitrogen) set at 5 psi. For each MRM transition, the 
DP and CE were optimized. The eluted metabolites were 
monitored at each time interval by monitoring a specific 
MRM transition (Fig. S1; Table S2) [20].

Simca-P software (version 13.0, Umetrics AB, Umea, 
Sweden) was used to perform orthogonal partial least 
squares discriminant analysis (OPLS-DA) and unsu-
pervised principal component analysis (PCA) on the 
processed data. The R software was used to conduct hier-
archical clustering analysis of metabolites across samples 
[21]. To identify differentially accumulated metabolites 
(DAMs), screening criteria such as log2(Fold Change) ≥ 1, 
p-value ≤ 0.05, or variable importance in the projection 
(VIP) ≥ 1 were applied. The metabolic data for these two 
wild genotypes (T118_21 and T26_14) were obtained 
from Han et al. (2023).

Identification of signature metabolites accumulated 
in Qingyuan and Xiushui counties
According to Han et al. (2024), feature metabolites were 
identified by using the RF function of “caret” package. 
The selection was based on the significance of these 
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metabolites in classification, considering the variations 
among the metabolome samples. To prevent sample size 
bias and overfitting, 100 replicas of the random forest 
model were trained and tested using a well-balanced ten-
fold cross-validation approach. Using the “e1071” library 
in R, a support vector machine (SVM) model was built, 
and metabolites with an average rank below 30 were cho-
sen as the featured metabolites. Next, we deduced the 
metabolites that overlapped between the two classifiable 
models [21].

RNA sequencing and analysis
The MiniBEST Plant RNA Extraction Kit (TaKaRa) was 
used to extract total RNA. RNA concentration and qual-
ity were evaluated with the Agilent 2100 Bioanalyzer. A 
total of 45 RNA-seq libraries were created via NEB Next 
Ultra RNA Library Preparation Kit (NEB, E7530) and the 
NEB Next Multiplex Oligos (NEB, E7500). Next, paired-
end sequencing was carried out using an Illumina Hiseq 
2500 platform. The Trinity software was employed  to 
compute the transcript abundance of genes in tran-
scripts per million (TPM). Differentially expressed genes 
were identified with |log2 (fold change) |≥ 1 and p-value 
(Padj) < 0.05, as detected by DESeq [20]. The RNA-seq 
data included in this study were obtained from Han et al. 
(2023).

Weighted Gene Co‑expression Network Analysis (WGCNA)
The WGCNA package (version 1.6.6) in R software 
(version 3.4.4) was used to construct weighted gene co-
expression networks and identify associated modules; 
r > 0.90 and p < 0.001 were defined as the criteria for iden-
tifying significant modules related to flavonoids, whereas 
r ≥ 0.80 and p ≤ 0.001 were established as the criteria for 
significant modules related to phenolic acids and lignans. 
Hub genes related to the compounds were considered 
to meet two criteria, including a single gene-trait cor-
relation over 0.90, and an edge weight greater than 0.1. 
Gephi was used to display the network of co-expression 
genes [21]. The RNA-seq data included in this study were 
obtained from Han et al. (2023).

Tobacco transient expression assay
PcOMT10, PcOMT11, PcOMT12 and PcOMT13 CDS 
were cloned into the modified plant expression vector 
pCAMBIA1380-35S::GFP and subsequently injected 
into Agrobacterium tumefaciens GV3101 [20]. All con-
structions were expressed transiently in Nicotiana 
benthaniana leaves. Three days after injection, posi-
tive transgenic leaves were identified using real-time 
quantitative PCR. Widely targeted metabolomics was 
used to identify phenylpropanoids in overexpressed 

transgenic tissues. In these trials, three biological rep-
licates were employed.

Extraction of RNA and real‑time quantitative PCR 
(RT‑qPCR)
Total RNA was extracted using the MiniBEST Plant 
RNA Extraction kit (TaKaRa, Japan). The cDNA was 
obtained by PrimerScript RT Enzyme Mix I kit (TaKaRa, 
Japan). RT-qPCR was analyzed by SYBR® Premix Ex Taq 
II (TaKaRa, Japan) and a CFX96 TouchTM Real-Time 
PCR System (BIO-RAD, USA). Melt-Curve analysis 
(60 °C—95 °C, 0.5 °C increment for 5 s per step) was used 
to test the amplicon specificity after the PCR was run as 
follows: 30 s at 95 °C for pre-denaturation, 40 cycles of 5 
s at 95 °C for denaturation, and 30 s at 60 °C for anneal-
ing (Takara, Japan) [20]. The comparative Ct (Ct: cycle 
threshold) approach was applied for relative quantifica-
tion. Each analysis required technical replicates and three 
independent biological replicates, respectively. Primers 
are listed in Table S3.

Results
Metabolite identification among 21 genotypes
To better understand fluctuating variations in bioac-
tive substances among 21 different genotypes from 
Qingyuan and Xiushui counties, a total of 482 metabo-
lites in P. cyrtonema rhizomes were successfully iden-
tified using UPLC-ESI–MS/MS (Table S4). The PCA 
analysis revealed a strong sample correlation within 
region, but a distinct separation between the two 
counties (Fig.  1B). These metabolites were then cate-
gorized into 11 distinct groups, which included lignans 
and coumarins (8 metabolites), lipids (89), nucleotides 
and derivatives (17), organic acids (36), steroids (52), 
phenolic acids (50), alkaloids (51), amino acids and 
derivatives (50), carbohydrates (23), flavonoids (81), 
and others (25) (Table S5; Fig.  1C and S2). Of those, 
phenylpropanoids accounted for 28.83% of the total 
metabolites. Clustering analysis of these compounds 
also demonstrated a noticeable differentiation between 
the two regions (Fig. 1D), suggesting variations in the 
accumulation of these metabolites under different cul-
tivation conditions.

Machine learning‑based selection of the best metabolite 
markers
Machine learning methods were used to screen metabo-
lite markers based on a total of 482 metabolites identi-
fied by widely targeted metabolome analysis. Based on 
the average rank and cv error, 30 feature metabolites 
were ultimately determined using SVF-RFE (Table S6; 
Fig.  2A). Furthermore, the top RF model, which relied 
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on 44 trees, recognized 20 metabolites as feature indica-
tors (Table S7; Fig.  2B and C). After the classification by 
RF, the metabolites that were considered most significant 
were quercetin-3-O-(6’’-malonyl) galactoside, padelaoside 
C, 9-Hydroxy-12-oxo-10(E), 15(Z)-octadecadienoic acid, 
epipinoresinol, and salicin. Three overlapping metabo-
lites identified by SVM-RFE and RF methods, including 
apigenin-7-O-(2’’-glucosyl)arabinoside, L-Azetidine-2-car-
boxylic acid, seryl threonine were screened using Venn 
diagrams (Fig. S3). Finally, based on the significance of 
machine learning classification, three metabolites were 
selected as metabolite markers including quercetin-3-O-
(6’’-malonyl) galactoside, salicin and epipinoresinol, 
belonging to flavonoids, phenolic acids and lignans respec-
tively. Furthermore, clustering analysis also revealed a dis-
tinct regional differentiation for the aforementioned three 
classes of coumpounds from the two regions (Fig.  2D), 
demonstrating that these compounds can effectively dis-
tinguish the quality of P. cyrtonema from the two locations.

Mining and characterization of key candidate genes 
involved in flavonoid biosynthesis
Two genotypes T118_21 (Qingyuan County) and T26_14 
(Xiushui County) were selected to conduct comparative 
analysis of flavonoid compounds, which showed that 
these metabolites had significantly different contents 
between the two genotypes (Fig. 3A and B).

Further, a comparative transcriptome analysis 
between the two genotypes was also conducted on 
the two genotypes. A total of 625 significantly dif-
ferential expressed genes (DEGs) were identified 
(Fig.  3C). Four candidate genes related to flavonoids 
synthesis were selected fromt those DEGs (Fig. S4), 
and were named PcOMT10, PcOMT11, PcOMT12 
and PcOMT13, respectively, based on the phyloge-
netic analysis (Fig. S5; Table S8). WGCNA was also 
applied to identify significantly correlated metabo-
lites-modules based on transcripts and 14 flavonoid 
metabolites (Fig.  3D). There was a strong correlation 

Fig. 2  Machine learning methods identify characteristic metabolites. A SVM-RFE, a support vector machine—recursive feature elimination 
approach. B The number of decision trees and the relationship to the error rate. C Top 20 of feature metabolite results in the random forest method. 
D Complexheatmap of all phenylpropane metabolites in two sites
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between apigenin-6-C-xyloside-8-C-arabinoside and 
apigenin-6-C-glucoside-8-O-xylcoside with the green 
module respectively, suggesting the similar accumula-
tion mechanisms of these compounds involved in flavo-
noid biosynthesis. Further, hub genes in darkturquoise 
and green modules, including the flavonoid structural 
genes CHI, UGT1 and UGT2, as well as an ERF gene 
that positively correlating with the UGT1 gene, were 
identified.

To investigate their roles in the accumulation of fla-
vonoid compounds, we constructed the correspond-
ing plant expression vectors (Fig. S6) and performed 
transient transformation experiments in N. bentha-
niana. The qRT-PCR showed that the expression 
levels of PcOMT11/12/13 were markedly upregu-
lated compared with the control in N. benthaniana 
leaves (Fig.  3E). Notably, overexpression of PcOMT12 
resulted in a significant increase in the content of 

Fig. 3  Mining of key candidate genes in flavonoid biosynthesis. A Volcano plot of flavonoids metabolites; B Relative content of flavonoids 
compounds. C Volcano map of differentially expressed genes (p-value < 0.05). D Correlation of flavonoids and modules. E qRT-PCR 
of PcOMT10/11/12/13 in N. benthaniana leaves. F Changes in chrysoeriol-6,8-di-C-glucoside content after overexpression in N. benthaniana leaves. 
G Flavonoid biosynthesis pathway and expression of key genes in the P. cyrtonema. Green genes show that compound accumulation is inhibited, 
whereas red genes promote compound accumulation
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chrysoeriol-6,8-di-C-glucoside in N. benthaniana 
leaves (Fig.  3F). Furthermore, the overexpression of 
PcOMT11 and PcOMT13 led to a substantial increase 
and decrease, respectively, in the levels of chrysoe-
riol-7-O-gentiobioside. This indicates their respec-
tive roles in promoting and inhibiting accumulation 
(Fig. 3G).

Mining and characterization of key candidate genes 
involved in phenolic acids and lignans biosynthesis
Comparative analysis of content of phenolic acids 
and lignans two genotypes between T118_21 and 
T26_14 revealed there are 11 different metabolites, 
including three upregulated and eight downregulated 

metabolites (Fig.  4A and B). According to WGCNA 
analysis, there was a strong positive correlation 
between p-Coumaroylmalic acid and the blue mod-
ule; salicin exhibited the highest correlation with the 
lightgreen module; epipinoresinol exhibited a strong 
correlation with the lightpink4 module (Fig. S7). 
Finally, we identified two candidate genes, includ-
ing UGT3 and NAC in the lightgreen module, and 
NAC might negatively regulate the UGT3 gene. Based 
on comparative transcriptome analysis, three DEGs 
PcOMT10, PcOMT11 and PcOMT12 were identified. 
When PcOMT10 and PcOMT11 were overexpressed 
respectively in N. benthaniana leaves, the contents of 
both syringaresinol-4’-O-glucopyranosid (Fig. 4C) and 

Fig. 4  Mining of key candidate genes in the biosynthesis of phenolic acids and lignans. A Volcano plot of phenolic acids and lignans metabolites. 
B Heatmap of relative content of phenolic acids and lignans compounds. C Changes in syringaresinol-4’-O-glucopyranosid content after gene 
overexpression in N. benthaniana leaves. D Changes in 1-O-Sinapoyl-D-glucose content after gene overexpression in N. benthaniana leaves. E 
Phenolic acids and lignans biosynthesis pathway and expression of key genes in the P. cyrtonema. Green genes show that compound accumulation 
is inhibited, whereas red genes promote compound accumulation
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1-O-sinapoyl-D-glucose (Fig.  4D) were significantly 
decreased whereas the content of metabolite marker 
epipinoresinol increased with the overexpression of 
PcOMT12 (Fig. 4E).

Biosynthetic model of metabolite markers‑related 
phenylpropanoid compounds in P. cyrtonema
Based on metabolite markers between the two regions 
and comparative transcriptome analysis of two rep-
resentative genotypes, we constructed a biosynthetic 
model of important phenylpropanoids in P. cyrtonema. 
The manifestation of the four genes PcOMT10/11/12/13 
in N. benthaniana, were consistent with the pattern of 
compound accumulation in P. cyrtonema (Fig.  5). Sur-
prisingly, PcOMT12 has a promotional effect on the 
synthesis of several oxymethylated phenylpropane com-
pounds, such as epipinoresinol, 4-O-glucosyl-sinapate 
and chrysoeriol-6,8-di-C-glucoside. Moreover, PcOMT13 

only somewhat inhibited the accumulation of chrys-
oeriol-7-O-gentiobioside content. The PcOMT10/11 
showed the same catalytic effect in the synthesis of syrin-
garesinol-4’-O-glucopyranosid and vanillic acid.

Discussion
P. cyrtonema is a Chinese traditional and classic dual-
purpose plant for food and medicine with a number of 
biological properties, such as anti-aging, nourishing 
Yin, anti-inflammation, and immune regulation [2, 4]. 
In this study, large differences in rhizome metabolites of 
P. cyrtonema among different germplasms and regions 
have been investigated (Fig. S2). Identifying metabolite 
markers in non-model plants remains challenging. Tra-
ditional analytical methods may identify a larger num-
ber of metabolites; whereas with the use of machine 
learning methods it is able to focus on a few compounds 
with a larger weighting, which greatly narrows the scope 

Fig. 5  Analysis of the biosynthetic pathway of phenylpropane in P. cyrtonema. In the pathway diagram, red genes indicate promotion of compound 
accumulation, while green genes indicate inhibition of compound accumulation
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[21]. Over the past few years, some researcher have 
begun using machine learning techniques for fruit fla-
vor identification [7]. By machine learning techniques, 
ten metabolic biomarkers were identified to distinguish 
specific Chinese cherry accessions [22]. In this study, 
we detected significant metabolite markers including 
quercetin-3-O-(6"-malonyl) galactoside, salicin, and epi-
pinoresinol linked to the distinctions between Qingyuan 
and Xiushui counties using machine learning methods. 
Each of these metabolites contributes significantly to 
the plant’s growth and medicinal properties. Querce-
tin-3-O-(6"-malonyl) galactoside, for instance, is associ-
ated with the enzymatic browning of iceberg lettuce [23] 
and has been observed in higher concentrations in Ribes 
nigrum L. grown in northern regions compared to south-
ern ones [24]. Salicin, commonly extracted from herba-
ceous plants, is used to alleviate pain in acute rheumatic 
conditions [25]. Additionally, forsythoside synthesis 
involves epipinoresinol, a prevalent compound in For-
sythia [26].

Through WGCNA, our study identified four key path-
way genes, including CHI and UGT1/2/3, as well as two 
regulatory genes, ERF and NAC, which specifically mod-
ulate UGT1 and UGT3, respectively. CHI, catalyzing nar-
ingenin, serves as a pivotal intermediate in the flavonoid 
biosynthesis pathway [27]. Notably, we observed a posi-
tive correlation between CHI and vitexin-2"-O-galacto-
side in our analysis.

Plant glycosyltransferases, known for their extensive 
role in secondary metabolism, have been comprehen-
sively characterized in various species, including Arabi-
dopsis [28], cereals [29], and rice [30]. Intriguingly, 
despite a reduction in UGT2 expression, we detected 
an increase in its associated metabolites, such as api-
genin-6-C-xyloside-8-C-arabinoside and apigenin-6-C-
glucoside-8-O-xylcoside. Furthermore, our findings 
imply that ERF may upregulate UGT1, promoting the 
accumulation of quercetin-3-O-(6"-malonyl) galactoside. 
Corroborating our results, Wan et  al. (2023) reported 
that transient overexpression of CsERF003 in citrus fruits 
markedly increased flavanones, flavonoids, and flavonols, 
alongside the upregulation of key genes involved in their 
biosynthesis, hinting at CsERF003’s regulatory role in 
flavonoid biosynthesis via UGT​ expression modulation 
[31]. Our results also suggest ERF might enhance the 
expression of UGT1 to facilitate the buildup of querce-
tin-3-O-(6"-malonyl) galactoside. Conversely, the NAC 
exhibited a negative correlation with UGT3, potentially 
enhancing salicin content. Previous studies have under-
scored NAC’s vital role in plant stress responses, pre-
dominantly by modulating flavonoid synthesis [32]. In 
A. thaliana, the NAC transcription factor ANAC078 
regulates flavonoid biosynthesis in response to high light 

stress [33], while in Norway spruce, overexpression of 
PaNAC03 led to diminished flavonol biosynthesis and 
aberrant embryo development [34]. These observations 
suggest that NAC may facilitate an increase in phenolic 
acid content while reducing flavonol levels.

The O-methyltransferase has garnered increasing 
attention due to its unexpectedly broad compatibility and 
selectivity towards a diverse array of substrates, spanning 
from the synthesis of simple catechols to intricate phe-
nylpropanoids and isoquinoline alkaloids [35, 36]. Previ-
ous studies revealed IiOMT3 methylated the 3’-hydroxy 
moiety of flavonoids such as eriodictyol and 3’-hydroxy-
daizein. Additionally, it methylated the 7-OH positions 
of flavones and facilitated the conversion of caffeic acid 
into ferulic acid [37]. In this study, substrate binding and 
specificity in plant O-methyltransferases were verified 
by the results of widely targeted metabolomics of P. cyr-
tonema and overexpressed transgenic N. benthaniana. 
Meanwhile, the four genes (PcOMT10/11/12/13) mined 
in P. cyrtonema showed similar function to those in N. 
benthaniana for catalyzing the generation of target prod-
ucts from substrates, demonstrating that these enzymes 
are relatively functionally conserved for the catalytic 
mechanism among different species. Among them, the 
PcOMT12 gene played a positive role in different target 
compound accumulation in multiple reactions and sig-
nificantly increased chrysoeriol-6,8-di-C-glucoside con-
tent after overexpression in N. benthaniana, which is 
presumed to have high catalytic activity and widely cata-
lytic substrates. It is expected to be further exploited in 
the future.

In this study, we used machine learning for the first 
time to identify three significant metabolite markers 
between Qingyuan and Xiushui counties in P. cyrtonema. 
Then multi-omics approach were used to mine and 
verify candidate genes (PcOMT10/11/12/13) with over-
expressed transient expression in N. benthaniana leaves. 
These results offer novel insights into the molecular basis 
of phenylpropanoid accumulation in P. cyrtonema.

Conclusion
Polygonatum cyrtonema Hua is an ancient and tradi-
tional medicinal plant in China. This study focused on 
the metabolomics of P. cyrtonema growing in Qingyuan 
County (Zhejiang Province) and Xiushui County (Jiangxi 
Province). Based on machine learning, we discovered three 
metabolite markers quercetin-3-O-(6"-malonyl) galac-
toside, epipinoresinol, salicin. Additionally, comparative 
transcriptome analysis mined four O-methyltransferases 
PcOMT10/11/12/13. Additionally, WGCNA helped to 
identify potential candidate genes associated with flavo-
noids such as CHI, UGT1, UGT2, ERF, as well as the phe-
nolic acids-related genes UGT3 and NAC. Furthermore, 
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transient overexpression of four OMTs were conducted 
in N. benthaniana leaves validating the role in alter-
ing metabolic flow for accumulating phenylpropanoids. 
These results are expected to provide an important basis 
for metabolites substance and subsequent genetic studies 
applied for precision breeding of P. cyrtonema facilitating 
the production of high-value-added medicinal products.
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