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are urgently needed to improve crop production and 
ensure global food security.

Cross-breeding, mutation breeding and transgenic 
breeding are the major techniques used for crop improve-
ment for decades [7]. Cross-breeding, which relies on 
genetic recombination, is labor-intensive and time-con-
suming [7, 8]. Transgenic breeding technique with genet-
ically modified organisms can be achieved by randomly 
integrating exogenous DNA into plant genomes [9, 10]. 
In contrast to transgenic breeding, mutation breeding not 
only shortens breeding time but also has the advantage of 
being considered as non-GM [11]. Thus products gener-
ated by this approach can obtain governmental agency’s 
regulatory approval more easily, such as the Clearfield® 
[12, 13] and Provisia™ series [14] products. Nevertheless, 
the use of mutagenesis breeding remains limited owing 
to the random creation of unwanted off-target mutations 
and the low mutation frequency of on-target genes [15].

Background
Enormous challenges in crop improvement will be faced 
in the coming decades to meet the food demands with 
the global population predicted to reach 10  billion by 
2050 [1]. Up to 60% increase in crop production yield is 
needed to feed this global population [2]. However, global 
food production suffers from severe challenges due to cli-
mate change [3], reduced arable land [4], decreased water 
resources [5], and biotic and abiotic stresses [6]. Limited 
source of useful genetic variations for agriculture traits 
is also a significant obstacle in crop breeding. Therefore, 
scientific breakthroughs and technological innovations 
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Background Enhanced agricultural production is urgently required to meet the food demands of the increasing 
global population. Abundant genetic diversity is expected to accelerate crop development. In particular, the 
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genetic diversity through direct artificial gene modification. However, recent studies have shown that most crop 
improvement efforts using CRISPR/Cas techniques have mainly focused on the coding regions, and there is a 
relatively lack of studies on the regulatory regions of gene expression.
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provided. This review provides new research insights for crop improvement using genome editing techniques.
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Since the elucidation of its biochemical mechanism 
in 2012 [16, 17], the CRISPR/Cas9 system has been 
successfully used to accelerate crop improvement and 
obtain desirable agronomic traits such as increased yield, 
improved quality, stress tolerance and herbicide resis-
tance, owing to its simplicity, efficiency, and high speci-
ficity [18, 19].

This review provides a comprehensive overview of 
the applications of genome editing technology for crop 
improvement. The introduction briefly summarizes the 
development of CRISPR/Cas-mediated genome editing 
systems and the importance of gene expression regula-
tory elements. This review will focuses on the develop-
ment and use of CRISPR/Cas-mediated genome editing 
techniques in crops through engineering regulatory 
regions to introduce genetic diversity. Finally, future 
research directions for the application of CRISPR/Cas-
mediated genome editing in crop improvement are 
discussed.

Genome editing systems and DNA repair mechanisms
In plants, the CRISPR/Cas-based techniques introduce 
site-specific double strand DNA breaks (DSBs) that 
can be repaired via two main pathways: nonhomolo-
gous end-joining (NHEJ) and homology-directed repair 
(HDR) [20] (Fig. 1a). NHEJ is the main DSB repair path-
way [21]which depends on an error-prone repair system 
that often introduces large or small sequence insertions, 
deletions (indels), or substitutions [22]. HDR-mediated 
genome editing can achieve precise mutations at a target 
site, but the efficiency is very low since it is a minor DNA 
repair pathway in most eukaryotic cells [23].

In addition to NHEJ-mediated and HDR-mediated 
genome editing, base editors have been developed to 
induce precise nucleotide substitutions at targeted sites 
without requiring double strand breaks (DSBs), donor 
DNA templates, or reliance on homology-dependent 
repair (HDR) [24, 25]. At present, cytosine base edi-
tors (CBEs) and adenine base editors (ABEs), have been 
developed to catalyze the conversion of C•G base pairs 
to T•A base pairs [26] and A•T base pairs to G•C base 
pairs [27], respectively (Fig.  1b). Recently, a novel and 
precise genome-editing technology, named prime edit-
ing, was also developed that enables the introduction 
of insertions, deletions and all 12 classes of point muta-
tions without requiring DSBs or donor DNA templates 
(Fig. 1c); prime editor was initially developed in mamma-
lian cells and was shown to function efficiently in plants 
[28, 29]. To date, these genome editing systems have 
been successfully used to obtain precise and predictable 
genome modifications in plants for trait improvement 
[30].

Gene expression regulation elements
Plant growth and development requires precise gene 
regulation, controlled at the transcriptional, post-
transcriptional and translational levels [31]. Up- or 
down- regulation of gene expression can be achieved by 
introducing mutations in different regulatory control ele-
ments, including promoters, introns, alternative splic-
ing (AS) sites and untranslated regions (UTRs) [32–35]. 
These approaches for generating novel variations have 
been applied to crop improvement [36], for example, to 
accelerate plant domestication and achieve desirable 
traits by altering gene expression levels without the com-
plete knockout of genes [37] (Fig. 2).

UTRs contain highly conserved structural motifs 
involved in regulating gene expression. Gene expression 
and function are regulated by the production of mul-
tiple mRNA variants [38–40]. The regulation of gene 
expression at the translational level is mainly modulated 
by UTRs [41, 42]. From the cap site to the start codon 
(excluded) is the 5´UTR that may contain important 
regulatory elements such as ribosome entry site (RES), 
secondary structure, upstream ATGs, and upstream 
open reading frames (uORFs) [43, 44]. These elements 
may play major roles in translational regulation, includ-
ing mRNA stabilization, folding, and ribosome interac-
tions. Similarly, the 3´UTR spans from the stop codon 
(excluded) to the poly-A tail, containing numerous bind-
ing sites for regulatory factors [45]. Many regulatory fac-
tors involved in the post-transcriptional gene expression 
regulation regulate biological processes, such as mRNA 
turnover, localization, and translation efficiency [46, 47]. 
In addition, 3´UTRs were shown to mediate protein-
protein interactions through facilitating alternative pro-
tein complex formation, resulting in the diversification of 
protein functions [48, 49].

Promoters are non-coding DNA sequences that acti-
vate gene transcription. Promoters are located at the 5’ 
upstream of the coding region, containing core promoter 
regions and upstream promoter response elements that 
recognize and bind RNA polymerase and transcriptional 
factors, thereby regulating downstream gene expression 
[50, 51]. The core promoter region is generally located 
near the transcription start site, which regulates the tran-
scription initiation of genes, including the transcription 
start site, TATA-box, initiation factor, and downstream 
promoter element [52–54]. Promoter response elements, 
such as enhancers, CAAT-box, GC-box and G-box, are 
usually located upstream of the core promoter region, 
and determine the specificity, activity and efficiency of 
gene transcription [53].

Although introns are not directly involved in the 
translation of mRNA for protein synthesis, they play an 
important role in the regulation of gene expression [55]. 
In many cases, the presence of introns in eukaryotic gene 
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coding regions can improve the gene expression. Introns 
are excised during post-transcriptional processing [56]. 
Alternative splicing sites lead to the formation of alterna-
tively spliced mRNA variants, including some with intron 
retention, which affect gene expression levels or generate 
alternative protein molecules with different activities [57, 
58]. For example, studies have identified a cis-regulatory 
element CME in the intron of FLC gene that can elimi-
nate the “vernalization memory” derived from the par-
ents [59, 60], indicating the importance of introns in the 
gene expression regulation.

CRISPR/Cas-mediated editing of regulatory elements for 
crop improvement
Through numerous studies on development and opti-
mization, CRISPR/Cas systems have demonstrated their 
power in introducing genetic modification in various 
crops and potential in accelerating genetic improvement 
in crops, such as increased yield, improved quality, herbi-
cide resistance, and disease and insect resistance.

Coding sequence editing for trait improvement
Increasing the crop yield is the primary purpose of 
crop breeding. The knockout of functional genes, such 
as Gn1a, DEP1, GS3, and IPA1, which negatively regu-
late yield parameters such as panicle architecture, grain 

Fig. 1 Genome editing systems and DNA repair mechanisms. (a) CRISPR/Cas9 system and repair pathways; (b) Illustration of CBE and ABE base editors; 
(c) Prime editing system and repair mechanisms
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number, grain size, and plant architecture, has been 
shown to improve rice yield [61–64]. Moreover, bet-
ter quality requirements rather than higher yields have 
attracted increasing attention as people’s living standards 
improve. Mutations in the Rc and SBEII genes have been 
used to develop rice lines with increased anthocyanin 
and amylose contents, respectively [65, 66]. Knocking out 
the FAD2 gene in rape increased the oleic acid content in 
grains [67]. These mutants resulted in greatly improved 
crop quality.

Furthermore, genome editing techniques also have 
widespread applications for improving crop resistance 
traits, especially in herbicide resistance breeding. To date, 
various crop species that showed tolerance to ALS-inhib-
iting herbicides have been developed, including rice [68, 
69], maize [70], wheat [71, 72], tobacco [73], watermelon 
[74], oilseed rape [75], tomato, and potato [76]. Similarly, 
crop resistance to ACCase inhibitors has been developed 
in wheat and rice [71, 77]. CRISPR/Cas9-directed muta-
genesis has also been used to engineer resistance to crop 
diseases and pests. Tolerance to several catastrophic dis-
eases, such as bacterial blight, blast, and tungro spherical 
virus, can be generated in rice by disrupting susceptibil-
ity genes using CRISPR/Cas9 [78–81]. Mutations in the 
cytochrome P450 gene CYP71A1 using the CRISPR/Cas9 
technique resulted in resistance to brown planthoppers 
and borers by suppressing serotonin biosynthesis [82].

However, these mutations occur in the coding region, 
which may have deleterious pleiotropic effects, and lead 
to loss-of-function mutants with undesirable plant phe-
notypes [83]. Thus, engineering gene expression regu-
latory regions may be a preferred approach for crop 
improvement (Table 1).

Disruption of promoters to improve crop traits
Rice production is threatened by several diseases caused 
by plant pathogens [84]. Bacterial blight, caused by Xan-
thomonas oryzae pv. Oryzae (Xoo), is a destructive bac-
terial disease and can reduce rice yield by up to 75%. 
SWEET genes have been reported to be susceptibility 
genes for bacterial blight [85]. Rice lines with broad-
spectrum resistance to bacterial blight were generated 
by targeting and mutating the promoter region of OsS-
WEET genes [86–88]. Similarly, promoter mutations in 
the Xa13 gene, a fully recessive allele related to bacterial 
blight, using the CRISPR/Cas9 system can also result in 
bacterial-blight-resistant rice [89]. Moreover, editing 
the PthA4 effector binding CREs in the promoter of the 
susceptibility gene CsLOB1 in citrus showed enhanced 
resistance to citrus canker caused by Xanthomonas citri 
subsp. citri [90–92].

Amylose content (AC) is a major physiochemical 
property that determines the eating and cooking qual-
ity (ECQ) of rice [93]. AC is governed by the Waxy 

Fig. 2 Effect of mutations in the gene coding region and regulatory sequences on gene expression level for crop improvement. (a) Expression levels of 
wild-type plants; (b) Coding region mutations have influence on gene expression; c, d, e, f, g, h. Mutations in regulatory control regions can affect gene 
expression levels or expression patterns; i. Ideal plants with various elite agronomic traits
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(Wx) gene that encodes granule-bound starch synthase 
I (GBSSI), an enzyme that controls amylose synthesis in 
the endosperm [94]. Recently, novel Wx alleles generated 
using CRISPR/Cas9-mediated gene knockout resulted in 
fine-tuned grain AC and produced glutinous rice. Editing 
promoter or 5´UTR intronic splicing site of the Wx gene 
fine-tuned gene expression at transcriptional and post- 
transcriptional levels, produced various ACs (amylose 
contents) by generating diverse quantitative trait alleles 
in rice and improved the rice quality [95]. Moreover, 
amylose content can be fine-tuned by creating several 
novel Wx alleles in the japonica cultivar Nipponbare by 
editing key cis-acting elements that regulate gene expres-
sion in the Wxb promoter using CRISPR/Cas9 technology 
[96].

Additionally, scientists have identified a wide range of 
cis-regulatory mutations through targeting the putative 
SlWUS CArG element and SlCLV3 promoter. A series 
of mutants were generated with different fruit sizes and 
quantitative trait variation for elite crop breeding and 
domestication of wild relatives [97, 98]. Engineering the 
promoters for quantitative variation of yield-related CLE 
gene using CRISPR-Cas9 genome editing demonstrated 
the potential of promoter mutations for the modifica-
tion of grain yield-related trait genes to enhance crop 
yields [99]. Mutating the key regulatory elements of the 
main QTL SLG7 promoter in rice improved SLG7 gene 
expression, created new allelic variations with reduced 
chalkiness, thus providing a new strategy for the rapid 
improvement of appearance quality of rice [100].

Interestingly, promoter insertion and swapping have 
great potential for crop improvement via CRISPR/Cas9-
mediated HDR. Insertion of the GOS2 promoter into 

the 5´UTR or replacement of the promoter of ARGOS8 
gene by CRISPR/ Cas9 technology resulted in increased 
expression of ARGOS8 and created drought-resistant 
maize [101]. Moreover, editing the promoter region 
may be an effective strategy for reducing the pleiotropic 
effects. For example, a 54 bp deletion in the promoter of 
IPA1, a gene that showed a trade-off effect between til-
ler number and panicle size, can simultaneously increase 
tiller number and panicle size through overcoming their 
tradeoff, which greatly enhanced grain yield [102]. Muta-
genesis in the promoter of WOX9 gene in tomatoes 
resulted in multiple pleiotropic phenotypes in both veg-
etative and inflorescence development, suggesting that 
targeted promoter mutations using genome editing can 
reveal conserved gene functions, which can reduce unde-
sirable effects in crop improvement [103].

Regulating genes expression by mutating UTRs
Untranslated regions (UTRs) are known to regulate gene 
expression and protein function by producing multiple 
mRNA variants [40]. Thus, mutations in the UTRs may 
lead to the development of desirable phenotypes, for 
instance, deleting the 5´UTR of CRTISO gene reduced 
gene expression, and subsequently causing changes in 
fruit color in tomato [104].

In plants, about 30% of mRNAs contain uORFs located 
in the 5´UTR [105], suggesting uORFs are widespread 
regulatory elements and may play important roles in 
regulating the downstream mORF (main open reading 
frame) via translational repression [106, 107]. Therefore, 
engineering uORFs by genome editing can also be an 
effective approach for crop improvement [108]. In cer-
tain cases, it is easier to upregulate gene expression by 

Table 1 Crop traits that have been improved through engineering regulatory regions by genome editing technologies
Regulation region Crops Genes Related traits Method of editing References
Promoter rice OsSWEET bacterial blight deletion  [85–88]

rice Xa13 bacterial blight deletion  [89]
rice Wx amylose content deletion  [94–96]
rice SLG7 chalkiness deletion  [100]
rice IPA1 grain yield large deletion  [102]
maize CLE grain-yield deletion  [99]
maize ARGOS8 drought replaced  [101]
tomato SlCLV3 fruit size deletion  [97, 98]
tomato WOX9 inflorescence deletion  [103]
citrus PthA4 citrus canker deletion  [90–92]

5’UTR tomato CRTISO fruit color deletion  [104]
uORF lettuce LsGGP paraquat resistance large deletion  [109]

strawberry FvebZIPs1.1 sugar content base substitution  [110]
tomato SlGGP1 ascorbic acid deletion  [98]
rice OsDLT quantitative traits base substitution  [111]

RNA splicing Arabidopsis HAB1 abscisic acid synthesis base substitution  [113]
Arabidopsis RS31A genotoxic base substitution  [113]
rice Or β -carotene indels  [114]
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altering the uORF than by changing the coding sequences 
and promoters.

Zhang et al. edited the uORF of several genes, AtBRI1, 
AtVTC2, LsGGP1 and LsGGP2, and obtained enhanced 
mRNA translation of these genes with increased level of 
the encoded proteins. Moreover, they obtained mutants 
with paraquat tolerance by designing sgRNAs to modify 
the two uORFs of LsGGP1 and LsGGP2, respectively 
[109]. Similarly, editing the highly conserved SC-uORF of 
the transcription factor gene FvebZIPs1.1 in strawberries 
demonstrated a way to increase the sugar content with-
out causing unfavorable agronomic performance [110]. 
uORF mutations in SlGGP1 gene that encodes a vita-
min C-biosynthetic enzyme substantially increased foliar 
ascorbic acid levels in wild tomatoes [98]. Recently, Xue 
et al. generated a suite of uORFs via editing the 5´UTR 
of OsDLT gene involved in the brassinosteroid transduc-
tion pathway and obtained various plant heights and til-
ler numbers in rice [111].

RNA splicing affects gene expression
Protein expression level is also regulated at the post-tran-
scriptional level. Alternative splicing (AS) of precursor 
mRNAs (pre-mRNAs) occurs in over 60% of intron-con-
taining genes and plays a critical role in gene expression 
regulation [112]. The base editing technology is a pow-
erful tool for manipulating plant gene splicing in gene 
expression regulation and functional studies.

Xue et al. mutated the 5′ splice sites of four genes: 
HAB1, T30G6.16, RS31A and Act2 in Arabidopsis, and 
obtained a G-to-A or G-to-C conversion at the desired G 
of the 5′ splice site and the neighboring G, demonstrating 
that disruption of the 5’ splice site affected abscisic acid 
synthesis, toxin response, and intron-mediated enhance-
ment (IME), respectively [113].

Improving the β -carotene content in crops is also an 
important target of plant breeding. Splice variants in the 
orange (Or) gene play crucial roles in the effective accu-
mulation of β-carotene. Endo et al. changed the splic-
ing junction of Or gene at the third exon and intron by 
genome editing and realized the accumulation of β -car-
otene in rice callus, and then developed the golden rice 
lines [114].

Conclusions and perspectives
During the past decade, CRISPR/Cas-based genome edit-
ing technologies coupled with functional genomics have 
greatly promoted the genetic improvement of crops and 
have made important progress in improving crop’s yield, 
quality, and resistance to herbicides, diseases, and pests. 
However, several challenges remain to be addressed.

At present, unlike mutation in the protein-coding 
region which often results in the loss of gene function, 
editing of the gene regulatory regions leads to phenotypic 

outcomes that are quantitative and may be difficult to 
assess [115]. In addition, non-homologous end joining 
(NHEJ), an error-prone repair system that causes random 
insertions or deletions (indels) near the target sequence, 
is the predominant repair pathway, which does not sup-
port precise modification and often generates unex-
pected mutations [21, 22]. Although precision genome 
editors are continuously being developed, especially PE 
systems that can achieve template-free replacement of 
bases, the editing efficiency remains low [116, 117]. To 
overcome these limitations, it is necessary to optimize 
editing of regulatory region, develop an efficient editing 
system for precise editing to introduce desirable traits 
and expand the molecular breeding resources. The newly 
developed CRISPR-Cas12a promoter editing (CAPE) sys-
tem introduced quantitative trait variation (QTV) con-
tinuums for starch content and grain size by targeting the 
promoters of OsGBSS1 and OsGS3, respectively, provid-
ing an effective strategy for realizing the QTV of impor-
tant agronomic traits in crops [118].

Moreover, the CRISPR/Cas-mediated mutagenesis of 
regulatory regions provides a method for inducing subtle 
phenotypic changes by achieving desirable level of gene 
expression. Currently, it is difficult to predict the expres-
sion levels of edited genes because of many factors, 
including secondary structure, regulatory elements and 
upstream and downstream sequences [119]. Therefore, 
developing a method for predictable endogenous gene 
expression would be necessary to obtain desired traits 
for crop improvement. For example, an efficient and 
easy method has been developed for down-regulating 
protein translation to predictable and desired levels by 
engineering uORFs, generating a series of mutants with 
varied heights and tiller numbers, as predicted, in rice 
[111]. However, precise prediction tools for other expres-
sion regulatory regions (such as promoters, 5′UTR and 
3′UTR) need further exploration and development.

Finally, although genome editing technology has been 
used in various plants, only a few edited products have 
been successfully commercialized. Though the edited 
plants may be considered nontransgenic, their social 
acceptance remains uncertain. The regulatory framework 
for gene-edited products has not yet been established in 
many countries. Hence, more efforts are needed to ensure 
a more favorable environment for regulatory support and 
public acceptance of genetically edited products.
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