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Abstract 

Background Drought and salinity stress have been proposed as the main environmental factors threatening food 
security, as they adversely affect crops’ agricultural productivity. As a potential solution, the application of plant 
growth regulators to enhance drought and salinity tolerance has gained considerable attention. γ-aminobutyric acid 
(GABA) is a four-carbon non-protein amino acid that accumulates in plants as a response to stressful conditions. This 
study focused on a comparative assessment of several machine learning (ML) regression models, including radial 
basis function, generalized regression neural network (GRNN), random forest (RF), and support vector regression 
(SVR) to develop predictive models for assessing the effect of different concentrations of GABA (0, 10, 20, and 40 mM) 
on various physio-biochemical traits during periods of drought, salinity, and combined stress conditions. The physio-
biochemical traits included antioxidant enzyme activities (superoxide dismutase, SOD; peroxidase, POD; catalase, 
CAT; and ascorbate peroxidase, APX), protein content, malondialdehyde (MDA) levels, and hydrogen peroxide  (H2O2) 
levels. The non-dominated sorting genetic algorithm-II (NSGA-II) was employed for optimizing the superior prediction 
model.

Results The GRNN model outperformed the other ML algorithms and was therefore selected for optimiza-
tion by NSGA-II. The GRNN-NSGA-II model revealed that treatment with GABA at concentrations of 20.90 mM 
and 20.54 mM, under combined drought and salinity stress conditions at 20.86 and 20.72 days post-treatment, 
respectively, could result in the maximum values for protein content (by 0.80 and 0.69), APX activity (by 50.63 
and 51.51), SOD activity (by 0.54 and 0.53), POD activity (by 1.53 and 1.72), CAT activity (by 4.42 and 5.66), as well 
as lower MDA levels (by 0.12 and 0.15) and  H2O2 levels (by 0.44 and 0.55), respectively, in the ‘Atabaki’ and ‘Rabab’ 
cultivars.

Conclusions This study demonstrates that the GRNN-NSGA-II model, as an advanced ML algorithm with a strong 
predictive ability for outcomes in combined stressful environmental conditions, provides valuable insights 
into the significant factors influencing such multifactorial processes.
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Background
Plant responses to individual stresses have been exten-
sively studied [1–3]. However, in natural environ-
ments, plants must cope with multiple simultaneous 
abiotic stresses [4]. Soil salinity and drought are two 
particularly important abiotic stresses that often occur 
together and have a more severe impact on global crop 
productivity compared to each stress alone [4, 5]. Soil 
salinity is primarily caused by neutral salts like NaCl 
and  Na2SO4, with NaCl being the most prevalent [6]. 
When plants are exposed to drought and salinity stress, 
one of their physiological reactions is the production of 
reactive oxygen species (ROS). At high concentrations, 
ROS can cause damage to various cellular components 
such as proteins, cell membranes, and nucleic acids 
(DNA and RNA) [7, 8]. Plant cellular compartments 
such as chloroplasts, mitochondria, and peroxisomes 
generate various types of ROS [9]. Hydrogen peroxide 
 (H2O2) is the most stable type of ROS, making it one 
of the most studied ROS. Plants have developed vari-
ous strategies to counteract the harmful effects of ROS 
and stress-induced damage. One such strategy is the 
antioxidant defense system, which includes enzymatic 
and non-enzymatic antioxidants that help maintain 
redox homeostasis, scavenge ROS, and alleviate stress 
damage [10]. Some important antioxidant enzymes 
involved in the defense against ROS include superoxide 
dismutase (SOD), peroxidase (POD), ascorbate peroxi-
dase (APX), and catalase (CAT). SOD, present in vari-
ous plant cellular compartments, serves as the initial 
enzyme, converting superoxide into  H2O2 and oxygen 
[11]. CAT, APX, and POD contribute to the conversion 
of  H2O2 into water, providing protection against oxida-
tive damage [12]. Under stressful conditions, the fam-
ily of isoenzymes known as APX functions as a ROS 
scavenger, showing a specific affinity for peroxide sub-
strate [13, 14]. It is also involved in the ascorbate–glu-
tathione cycle (ASA-GSH), which safeguards plants by 
scavenging harmful ROS [15]. While plants have natu-
ral defense mechanisms, they may not be sufficient to 
cope with the combined effects of drought and salinity. 
Recent studies have shown that the exogenous applica-
tion of plant growth regulators or bio-stimulants can 
play a crucial role in improving plant physiological 
responses to stress. For example, γ-aminobutyric acid 
(GABA), a non-protein amino acid, has been found as 
a signaling molecule and a metabolite in plants to reg-
ulate defense responses to various abiotic and biotic 

stresses [16]. The exogenous application of GABA has 
been shown to enhance plant growth, alleviate oxida-
tive damage caused by stress, and improve stress toler-
ance in different crop species by scavenging ROS and 
increasing antioxidant enzyme activities [2, 17, 18]. 
GABA treatment has been particularly effective in pro-
tecting crops from oxidative damage caused by salinity 
or water deficit in various studies involving Trifolium 
repens cv. Haifa [2], Zea mays [19], Helianthus annuus 
L. [20], and Phaseolus vulgaris L. [21].

Pomegranate (Punica granatum L.) is a prominent 
subtropical fruit commonly cultivated in horticulture, 
believed to have originated in Iran and the Himalayas 
in northern India [22]. In the entire world, Iran has the 
largest pomegranate production, cultivar diversity, and 
quality. However, Iran’s agrosystem has faced substan-
tial challenges in recent years due to severe droughts, 
substandard water resources, and soil salinity [1]. These 
adverse conditions have had a severe impact on pome-
granate crop production, primarily due to the plant’s 
heightened vulnerability to abiotic stressors prevalent 
in tropical and subtropical regions, such as drought 
and salinity. The combined effects of drought and salin-
ity stress significantly compromise the yield of pome-
granate plants. Consequently, pomegranate serves as an 
ideal candidate for investigating the protective effects 
of exogenous GABA against the harsh conditions of 
water deficit and salinity stress.

The response of plants to stress is highly complex, 
influenced by multiple factors and their interactions, 
poses challenges for traditional statistical analysis 
methods. Traditional statistical techniques like linear 
regression and variance analysis are more suitable for 
analyzing small datasets with limited dimensions and 
are inappropriate for inferring the nonlinear and com-
plex relations in biological systems [23, 24]. Moreo-
ver, these techniques are prone to data over-fitting. In 
recent years, machine learning (ML) algorithms have 
emerged as a cutting-edge computational tools for 
analyzing complex, non-linear, high-dimensional, and 
non-deterministic datasets in various fields, including 
plant science [25, 26]. Deep learning (DL), a subset of 
ML, utilizes hierarchical representations and complex 
nonlinear functions trained from previous layers to 
automatically learn from data [27]. Convolutional neu-
ral networks (CNN), deep neural networks (DNN), and 
long-short term memory (LSTM) are state-of-the-art 
DL architectures widely used in remote sensing, crop 
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disease prediction, and plant variety classification [28–
30]. ML algorithms such as artificial neural networks 
(ANNs), support vector machines (SVMs), and random 
forest (RF) have been successfully used to overcome 
the challenges posed by non-linear datasets [26, 31]. 
These computer-based technologies utilize all spectral 
datasets to address multicollinearity in multiple linear 
regression models [31]. Radial basis function (RBF), 
and generalized regression neural network (GRNN) are 
two most well-known ANN types that have been widely 
and effectively applied in plant science [32, 33]. The pri-
mary advantage of ANNs is their ability to learn, adapt, 
and generalize to changing experimental conditions, 
allowing the models to be used with new data [34]. 
They can also perform non-linear multiple regression 
[34, 35]. The RF algorithm is a supervised algorithm 
that can be used for both classification and regres-
sion tasks. It is an ensemble method based on deci-
sion trees, where multiple dense trees are constructed 
using bootstrapped training data samples [36]. The use 
of the bootstrap aggregation method in the RF model 
helps to reduce the variability in the prediction model 
[37]. In addition to ANN and RF, SVM has been devel-
oped as another approach for data modeling, offering 
solutions to clustering, classification, and regression 
problems [38]. SVMs often employ a large number 
of learning problem formulations to solve quadratic 
optimization problems, resulting in the SVM training 
producing results that are at the global optimum [32, 
39]. While these models have excellent learning capa-
bilities, they lack interpretability. Therefore, it is neces-
sary to link optimization techniques with mathematical 
models to interpret the results and determine the sig-
nificant effects of independent variables on depend-
ent variables. In this context, the genetic algorithm 
(GA) is an evolutionary single-objective optimization 
algorithm that is considered one of the effective ML 
approaches for achieving the best results for a given 
objective. This method is inspired by Charles Darwin’s 
concepts of "survival of the fittest" and "natural selec-
tion" [40]. However, for interpreting multi-objective 
problems, evolutionary multi-objective optimization 
algorithms are more suitable. One of the most common 
used algorithms is the non-dominated sorting genetic 
algorithm-II (NSGA-II), which can simultaneously 
optimize several conflicting fitness functions and gen-
erate multiple alternative solutions in a single run [41]. 
Despite the considerable potential of ML techniques 
in optimizing and predicting plant responses to vari-
ous abiotic and biotic stresses, their utilization in this 
field remains relatively limited. Although there are only 
a few studies available on the implementation of ML 
techniques for modeling and optimizing plant-based 

physio-biochemical traits, successful applications have 
been documented in specific cases. For instance, ML 
techniques have been effectively employed to opti-
mize the phenolic profile of Vitis vinifera [25], extract 
metabolites from Capsicum annuum [42], and evaluate 
the antioxidant and antimicrobial activity of Cucumis 
metuliferus pulp, skin, and seed [43]. These reports 
highlight the promising outcomes achieved through the 
integration of ML techniques in the realm of plant sci-
ence, paving the way for further exploration and poten-
tial advancements in the field.

The purpose of this study is to establish a ML-based 
method to find the optimal studied parameters associ-
ated with the physio-biochemical responses of pome-
granate plants subjected to salinity and drought stress. 
The key highlights of this study encompass the following 
aspects: (1) examining how two pomegranate cultivars 
respond to different concentrations of GABA treatment, 
drought stress, salinity stress, and combined stress condi-
tions in terms of their physio-biochemical responses; (2) 
comparing the performance of commonly used ML algo-
rithms such as RBF, GRNN, RF, and SVR; and (3) deter-
mining the most accurate and efficient ML algorithm 
and linking it with NSGA-II to predict optimal physio-
biochemical parameters based on the optimal param-
eters studied. In summary, this study makes the following 
novel contributions:

• Comparing the appropriateness of RBF, GRNN, 
RF, and SVR nonlinear methods for modeling 
the effects of GABA treatment, during periods 
of drought, salinity, and combined stress condi-
tions on oxidative stress parameters, antioxidant 
enzyme activities, and protein content of pome-
granate.

• Identifying the optimal experimental variables to 
optimize the antioxidant enzyme activities, protein 
content, and oxidative stress parameters through 
optimizing the developed model using NSGA-II.

To the best of our knowledge, this study represents 
the first successful application of ML algorithms to pre-
dict the physio-biochemical responses of plants under 
drought-salinity stress.

Materials and methods
Plant material and GABA treatment 
This study was performed on two-year-old pomegranate 
plants (Punica granatum cv. ‘Rabab’ and ‘Atabaki’) which 
were cultured in 10L black plastic pots with soil and leaf 
litter (3:2 w/w) and kept in a greenhouse with a tempera-
ture of 28 ± 1 °C, relative humidity of 60 ± 5%, and a pho-
toperiod of 16/8  h (light/dark). Every four days, plants 



Page 4 of 18Zarbakhsh et al. BMC Plant Biology           (2024) 24:65 

were fertilized using ½ Hoagland’s nutrient solution. 
After four months, plants were subjected to the follow-
ing stress treatments for 45 days: (i) control (untreated); 
(ii) moderate drought stress (D; 60% of field capacity); 
(iii) moderate salt stress (S; 60  mM of NaCl); and (iv) 
combined drought and salinity stress (D × S; 60% of field 
capacity and 60  mM of NaCl). To evaluate the effects 
of GABA treatment, plants were sprayed with different 
concentrations of GABA (0, 10, 20, and 40  mM) three 
times at 15-day intervals and immediately exposed to 
stress treatments. Samples of fully developed leaves, with 
four biological replicates, were harvested after 14 d, 30 
d, and 45 d of stress exposure, respectively, and directly 
frozen in liquid nitrogen and stored at -80 °C for further 
analysis.

The measurement of leaf oxidative damage 
To prepare for the extraction of malondialdehyde (MDA) 
and hydrogen peroxide  (H2O2) (Fig.  1a), fresh frozen 
leaves (0.5  g) were homogenized in 5  mL of extraction 

buffer with 1% trichloroacetic acid (TCA), and then, the 
resulting homogenate extract was centrifuged for 10 min 
at 12,000  rpm and 4  °C. The obtained supernatant was 
used for further analysis.

Lipid peroxidation or MDA content was quantified 
according to Bai et  al. [44] with some modifications. 
Around 0.25  mL of supernatant was added to a 1  mL 
reaction mixture consisting of 20% (w/v) TCA and 0.5% 
(w/v) TBA, and the mixture was boiled in a water bath at 
95 °C for 30 min. Subsequently, the mixture was immedi-
ately cooled in an ice bath. The supernatant absorbance 
was measured at 450, 532, and 600  nm using an Epoch 
Microplate Spectrophotometer (BioTek Instruments, 
Inc., USA) and expressed on a µmol per g FW basis.

The generation of  H2O2 was determined according to 
the method of potassium iodide (KI) [45]. The reaction 
mixture in a total volume of 1  mL included 250  µl of 
supernatant, 250 µl of K-phosphate buffer (100 mM, pH 
7.0), and 500 μl of KI (1 M). The oxidation product was 

Fig. 1 Schematic diagram of the step-by-step methodology used in this study including (a) measurement of physiochemical traits, b data 
modeling through artificial neural networks (ANN), random forest (RF), and support vector regression (SVR), and (c) main steps of optimization 
process of physiochemical traits through non-dominated sorting genetic algorithm-II (NSGA-II)
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measured at λ = 390 nm and the results were expressed as 
 H2O2 in mg per g FW.

Assessment of antioxidant enzyme activities and protein 
content 
To prepare the extraction of antioxidant enzymes (SOD, 
POD, CAT, and APX) and total soluble protein (Fig. 1a), 
fresh leaf tissues (0.5  g) were homogenized with 5  mL 
of 50  mM  K-phosphate buffer (pH 7.0) containing 1% 
polyvinylpyrrolidone and 0.2  mM ethylenediamine-
tetraacetic acid (EDTA). The mixture was centrifuged at 
12,000 g for 15 min at 4 °C, and then the acquired super-
natant was used to determine the activities of the antioxi-
dant enzymes and soluble proteins.

Superoxide dismutase (SOD) activity was determined 
by adding 50 μl of enzyme extraction to 950 μl SOD reac-
tion solution (50 mM phosphate buffer, 75 μM nitroblue 
tetrazolium (NBT), 13 mM L-methionine, 2 μM ribofla-
vin, and 0.1  mM EDTA-Na2). The enzyme mixture was 
placed for 15 min in 4000 lx light; however, the blank was 
placed in the dark. The absorbance of enzyme solution 
and blank was compared at 560 nm by using a spectro-
photometer (JENWAY-7315, Staffordshire, UK) [46]. The 
results were expressed as units per mg FW.

Peroxidase (POD) activity was measured according to 
the protocol described by Chance and Maehly [47]: 20 μl 
of enzyme extract was mixed with 2.8 mL of POD reac-
tion solution (13 mM guaiacol, 5 mM  H2O2, and 50 mM 
pH 7.0 phosphate buffer). The absorbance values were 
determined in terms of oxidized µM of guaiacol spec-
trophotometrically at 470 nm for 3 min. The results were 
expressed as units per mg FW.

Catalase (CAT) activity determination was carried 
out as a decrease in absorbance at λ = 240 nm for 1 min 
following the disappearance of  H2O2 by the method 
of Dhindsa et  al. [48]. The reaction mixture contained 
50  mM phosphate buffer (pH 7.0), 15  mM  H2O2, and 
15  μl of enzyme extract. The results were expressed as 
units per mg FW.

The activity of ascorbate peroxidase (APX) was per-
formed following the procedure developed by Nakano 
and Asada [49] at an absorbance of 290  nm for 1  min. 
Briefly, 50  μl enzyme solution was mixed with 0.5  mM 
ASA, 1.2 mM  H2O2, 0.1 mM EDTA, and 50 mM sodium 
phosphate buffer (pH 7.0), and the absorption changes of 
enzyme activity were calculated as units per mg FW.

The amount of soluble protein was determined by fol-
lowing the method of Bradford [50] by using bovine 
serum albumin as the standard curve and expressed as 
mg per g of FW. An aliquot of supernatant (20  μl) was 
analyzed using Coomassie Brilliant Blue-G250 solu-
tion as dye, and the absorbance readings were taken at 

λ = 595 nm. As a result, protein content was expressed as 
mg per g FW.

Statistical analysis and modeling tools 
To determine significant differences between the inde-
pendent and dependent variables, an analysis of variance 
(one-way ANOVA) was carried out based on a completely 
randomized design (CRD) with the factorial arrangement 
using SAS software (version 9.4; SAS Institute, Cary, NC). 
The correlation between dependent variables was per-
formed using Pearson correlation in the corrplot package 
of R software version 4.3.1. A principal component analy-
sis (PCA-biplot) based on a correlation matrix was cre-
ated using Minitab version 16 statistical software.

In the current study, the four most well-known ML algo-
rithms were utilized to build the predicting models: radial 
basis function (RBF), generalized regression neural net-
work (GRNN), RF, and SVR (Fig. 1b). The factors studied 
or experimental variables (GABA exogenous treatment, 
stress treatment, and days post-treatment (DPT)) were 
determined as inputs, and physio-biochemical responses 
of pomegranate (SOD, POD, APX, CAT, protein,  H2O2, 
and MDA) were determined as outputs in two pomegran-
ate cultivars (‘Rabab’ and ‘Atabaki’) (Fig. 1b). Prior to using 
modeling tools, in order to prevent the influence and 
dominance of a particular dataset over prediction outputs, 
datasets were standardized by the z-score normalization 
technique Eq. (1). A regression task typically involves train-
ing and testing sets comprising some data samples. Based 
on trial and error, 85 percent and 15 percent of 192 data-
sets of each pomegranate cultivar were randomly used in 
the training and test steps of each modeling technique, 
respectively. Several biological studies have confirmed the 
effectiveness of machine learning algorithms in modeling 
datasets similar to the dataset used in this research such 
as banana fruit yield with 108 datasets [51], callus growth 
and development in Cannabis sativa with 132 datasets [52], 
Juglans regia L. proliferation with 215 datasets [53], and 
gene transformation in Nicotiana tabacum with 246 data-
sets [54]. To find the best ML models, the hyperparameters 
were estimated using a grid or randomized search tech-
nique. All ML models’ prediction performance was evalu-
ated using K-fold cross-validation procedure [53, 55]. This 
technique divides the training data into k equal-sized folds. 
One fold is used as a validation set and the rest as a train-
ing set. The model is trained and tested on each fold. The 
average performance on the k validation sets estimates the 
model’s skill on new data. This technique reduces the mod-
el’s variance and prevents over-fitting or under-fitting [56]. 
MATLAB software v2020b as a statistical computational 
tool was used to design the structure of modeling algo-
rithms and optimization processes.
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where Xj
i
 , µj , and σj refer to the ith instance of the jth value, 

the mean and standard deviation of the jth value.

Radial basis function
The structure of neurons and layers of RBF is like the mul-
tilayer perceptron model. In a typical RBF, there are three 
layers: an input layer, one hidden layer with the non-linear 
radial basis transfer function, and a linear output layer. 
Commonly, the Gaussian function ( ϕi(x) ) is located in the 
hidden layer as a transfer (activation) function (Eq. 2).

where x represents the input vector; ci and σi are RBF 
function center and positive real number, respectively.

where wi denotes output layer weight, and n is the num-
ber of hidden neurons.

Generalized regression neural network
The GRNN model is a regression-based neural network 
and a RBF-ANN variant [57]. It learns from a single-pass 
network and has higher accuracy and speed than back 
propagation ANN. It uses arbitrary function approxima-
tion between input and output layers and predicts the out-
put from the training data. The algorithm has four layers 
(input, pattern, summation, and output). The input layer 
receives the input vector and passes it to the pattern layer. 
The pattern layer connects to two neurons in the summa-
tion layer: S and D neurons. They compute the weighted 
and unweighted sum of the pattern neuron responses, 
respectively. The GRNN algorithm uses normalized 
Gaussian kernels and linear activation functions in the 
hidden and output layer, respectively. The output set is 
normalized through the summation and output layer. The 
output of GRNN is calculated by Eqs. (4) and (5).

where D2
i  represents the Gaussian function between any 

Xi and Yi observed data,Yi represents the average of all 

(1)X
j
(i)=

X
j
i − µj

σj

(2)ϕi(x) = e

(
−
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σ2i

)
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ϕiwi
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(
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)

the weighted output data, Yi shows the ith output variable 
and σ is the width parameter.

Random forest regression
The RF algorithm is a non-parametric ensemble ML tech-
nique for classification and regression and is widely used 
in scientific fields [58]. This tree-based ML model cre-
ates multiple decision trees (ntree) from the independ-
ent variables using the “bootstrap” or “bagging” method 
(randomly selected from approximately 70% of the train-
ing samples) to combine them into a single model. Also, 
about one-third of the observations in the learning set are 
not used in the model construction out-of-bag (OOB) to 
assess the RF model’s prediction performance. RF does 
not need a separate set to evaluate the model because of 
the bagging and OOB approaches [36]. Some advantages 
of the RF algorithm are that it is less prone to over-fitting, 
robust to outliers and noise, and free of data distribution 
assumptions [59, 60]. RF, by combining different inde-
pendent predictors, can avoid the problem of over-fitting 
[61]. For optimal model prediction, different parameters 
(node size, mtry, and ntree) of the model building were 
set as shown in Eq. (6).

where xi represents the value of the sample proportion, 
D(θk) is a different bootstrapped sample, and K is the 
number of each tree ( TD(θk)) (k = 1, 2, … K).

Support vector regression
The SVM is a powerful ML method with a theoretical root 
[62] that was first developed for classification problems, 
i.e., SVC, and then extended to regression problems—
SVR [59]. Here, we briefly describe the basic idea of SVR 
that we used in this study. In the training set, each data 
instance has some attributes or features and one ‘‘target 
value’’ (class labels). The kernel function was used to map 
the original input into the feature space. The linear func-
tion fit of the kernel-based SVR is given by Eq. (7).

where f  , b , and w determine output value, bias, and 
weight for the ith sample point, respectively. Eventually, w 
and b coefficients will be determined in an optimization 
process:

(6)i.̂y(xi)=
1

K

∑K

k=1
TD(θk)(xi)

(7)f(x,w)=wTx+b

(8)Min=R(C)=
1

2
�w�2 + C

1

l

l∑

i=1

L
(
yi,fi(x,w)

)
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where Lǫ , C , and ǫ (epsilon) represents insensitive loss 
function (e), the trade-off between model complexity and 
training error, and an acceptable error (insensitive tube), 
respectively. The following equation is employed to deter-
mine Lagrange multipliers for the dual function of the 
problem:

where k
(
xi, xj

)
 represents kernel function, which xi and xj 

are each input vectors. Subjected to:

b and w are weight and a bias calculated by minimiz-
ing the risk function. The supporting vector is a set of 
Lagrange multipliers with non-zero grades. Then, SVR is 
determined as follows:

The parameters were initialized as: ( C , ǫ , and k ) and the 
radial basis function (RBF) was employed as the kernel 
function.

Evaluation of model accuracy and performance 
In the present study, a comparison of the performance and 
accuracy of the predicted ML models was evaluated via the 
regression coefficient  (R2) and the error indicators includ-
ing root mean square error (RMSE) and mean bias error 
(MBE, or bias).
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where Yobs and Yest display the observed values and the 
estimated values, respectively.

Multi‑objective optimization process via NSGA‑II
The best ML algorithm was introduced to the non-dom-
inated sorting genetic algorithm (NSGA-II) to achieve 
the optimal values of inputs GABA exogenous, stress 
treatment, DPT, and predict the optimal values of out-
puts SOD, POD, APX, CAT, Protein,  H2O2, and MDA 

(Fig. 1c). In this regard, several parameters of the NSGA-
II algorithm for the problem were assessed for the best 
outcome (non-dominated solutions). First, an individual 
population was created-encoded as chromosomes-that 
represents the variables of the optimization problem to 
be solved. Second, elite populations were selected by a 
tournament selection operator to create a new popula-
tion using the crossover and mutation method. Also, the 
crossover function was considered based on the two-
point crossover. According to the computational analysis, 
a good balance between solution quality and computa-
tional efficiency can be achieved by setting the NSGA-II 
parameters. In the current study, the total crossover rate, 
initial population size, the maximum number of genera-
tions, and mutation rate were, respectively, considered as 
0.8, 50, 200, and 0.05 in the ‘Atabaki’ cultivar and 0.8, 50, 
200, and 0.01 in the ‘Rabab’ cultivar. These values were 
determined through a trial-and-error process.

Validation experiments 
In the lab, the predicted input variables obtained from 
GRNN-NSGA-II were experimentally evaluated to 
approve the reliability and efficiency of the utilized 
model. The obtained validation experiment results were 
compared with predicted results with four biological rep-
licates based on a completely randomized design.

Results
Effects of exogenous GABA and drought‑salinity stress 
on pomegranate physio‑biochemical response 
The ANOVA results demonstrated that the each of 
the four factors studied (cultivar, exogenous GABA, 
stress treatment, and DPT) affected the plant’s physio-
biochemical traits (Table S1). Based on the results, the 
plants’ response to the stress conditions was higher than 
in the control (non-stress) conditions. In this regard, in 
two pomegranate cultivars, drought and salinity stress 
increased the activities of antioxidant enzymes (APX, 
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SOD, POD, and CAT) and protein content, but more so 
in drought-salinity stress. Also, oxidative stress param-
eters (MDA and  H2O2 contents) increased quickly in 
leaves when exposed to stress conditions (Table S1).

In all samples, APX, SOD, POD, CAT, and protein con-
tent first exhibited an increasing trend among 14 and 
30 DPT plants and then considerably decreased on the 
last day of stress treatment (45 DPT); however, the val-
ues of APX, SOD, POD, CAT, protein, and MDA at 45 
DPT were higher than at 14 DPT. In contrast, MDA and 
 H2O2 concentrations in the leaves of both pomegranate 
cultivars exhibited the opposite trend and decreased sig-
nificantly as the stress treatments progressed. However, 
a slight decrease in the values of activities of antioxi-
dant enzymes, i.e., APX and SOD of the ‘Rabab’ culti-
var leaves at 45 DPT under drought stress was observed 
over those plants at 14 DPT. Also, in the ‘Rabab’ cul-
tivar, similar changes were obtained in SOD activity 
under salinity stress, control treatment, and drought-
salinity stress at 45 DPT in comparison with 14 DPT. 
However, although antioxidant enzyme activities and 
oxidative stress parameters in leaves had apparent vari-
ations across different experimental DPT, it is notice-
able that GABA-treated samples that were exposed to 
drought and salinity stress showed the highest activities 
of antioxidant enzymes; whereas, GABA treatment sig-
nificantly reduced oxidative-relative traits (MDA and 
 H2O2 contents) at all experimental periods. The signifi-
cant changes in the investigated parameters were mainly 
caused by increasing the concentration of GABA. In both 
cultivars, the plants that received GABA treatment and 
combined drought-salinity exhibited higher antioxidant 
enzyme activity and lower oxidative stress than those 

that received drought and salt stress alone. Under nor-
mal (non-stress) conditions, exogenous GABA has no 
significant impact on investigated parameters, except for 
POD, CAT, and  H2O2, which were elevated after GABA 
treatment (P < 0.05). Furthermore, observed changes in 
investigated values of leaves in the untreated and GABA-
treated plants in control (non-stress) or stress conditions 
were relatively similar in both cultivars (‘Atabaki’ and 
‘Rabab’). To better detect the differences between the 
GABA treatments, cultivars, drought and salinity stress, 
and DPT, PCA-biplot analysis was calculated among all 
the physio-biochemical parameters of both cultivars. The 
first two principal components (PCs) of the ‘Atabaki’ cul-
tivar explained 66% (39% and 27%, respectively) and in 
the ‘Rabab’ cultivar explained 67% (41% and 26%, respec-
tively) of the total variance in the seven variables space 
(Fig. 2). The first PC axis of both (‘Atabaki’ and ‘Rabab’) 
cultivars was related in one extreme (positive values) 
with high values of traits (protein, CAT, POD, and APX), 
which is confirmed based on Pearson coefficients of cor-
relation analysis (Figs.  2a, b, 3a, and b). The opposite 
extreme of the first PC (negative values) was related to 
the  H2O2 trait. The second PC was illustrated mainly by 
variations in the protein and SOD. Furthermore, in the 
‘Atabaki’ cultivar, particularly in GABA treatment con-
ditions, the 14th DPT showed a close relationship with 
 H2O2 content, the 30th DPT showed a higher association 
with SOD and POD, and the 45th DPT displayed a higher 
association with protein, CAT, APX, and MDA as com-
pared to the other DPT. The ‘Rabab’ cultivar, particularly 
in GABA treatment conditions, showed higher values of 
 H2O2 on the 14th DPT, higher values of APX, CAT, POD, 
protein, and SOD on the 30th DPT, and an intermediate 

Fig. 2 Principal component analysis (PCA) for the pomegranate physio-biochemical properties under studied treatments (a) ‘Atabaki’ (b) ‘Rabab’. 
Sample signature: stress treatments are represented as control (C), drought (D), salinity (S), and drought-salinity (D × S). Also, different concentrations 
of GABA treatment represented as 0, 10, 20, and 40 mM. Blue, red, and green color indicates the 14, 30, and 45 DPT, respectively
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association with values of SOD, APX, and CAT on the 
45th DPT (Fig. 2a, b). In both cultivars, a positive corre-
lation between  H2O2 and MDA was observed, as well as 
a negative correlation among the  H2O2, SOD, and POD, 
and among the  H2O2 and protein, which were observed 
in the ‘Atabaki’ and ‘Rabab’ cultivars, respectively (Fig. 3).

Determination of optimal prediction model 
In this study, we employed several ML algorithms (RBF, 
GRNN, RF, and SVR) to model and estimate pomegran-
ate physio-biochemical responses. With the help of resid-
ual analysis (RMSE and MBE) and a variable  R2 value, we 
could select the best-performing model with more con-
fidence. GRNN prediction results for the test subset are 
shown in Figs.  4 and 5. Also, statistical indicators of all 
models that were utilized to show the performance of the 
predictive models are given in Table 1. Results exhibited 
a high  R2 value with low RMSE and MBE values for all 
models. However, the  R2 values of protein and  H2O2 are 
relatively lower than the other outputs, indicating the low 
compatibility between inputs and outputs of protein and 
 H2O2. In general, comparative analysis of models (Table 1) 
showed very small differences between models for output 
variables. Although the  R2 of SVR, RF, and RBF for esti-
mating some physio-biochemical parameters was higher 
than that of GRNN, their RMSE and MBE values were 
lower. Considering the  R2 and accuracy of model predic-
tion, the GRNN algorithm performed better in estimat-
ing output datasets than the other ML algorithms. All the 
training and test set  R2 values of the ‘Atabaki’ and ‘Rabab’ 
cultivars in the GRNN model were above 0.679 and 0.845, 

respectively, which indicates good performance and high 
predictability. So, the GRNN algorithm was the best-
performing regression model over all other models. With 
respect to Table  1, calculated  R2 revealed the order of 
GRNN, RF, and SVR vs. RBF models were: 0.803, 0.780, 
and 0.736 vs. 0.608 for protein content of ‘Atabaki’; 0.869, 
0.907, and 0.900 vs. 0.856 for protein content of ‘Rabab’; 
0.953, 0.962, and 0.953 vs. 0.945 for APX of ‘Atabaki’; 
0.967, 0.965, and 0.966 vs. 0.966 for APX of ‘Rabab’; 0.971, 
0.967, and 0.966 vs. 0.970 for SOD of ‘Atabaki’; 0.951, 
0.963, and 0.947 vs. 0.950 for SOD of ‘Rabab’; 0.968, 0.970, 
and 0.958 vs. 0.920 for POD of ‘Atabaki’; 0.956, 0.954, and 
0.954 vs. 0.952 for POD of ‘Rabab’; 0.941, 0.862, and 0.926 
vs. 0.900 for CAT of ‘Atabaki’; 0.961, 0.965, and 0.965 vs. 
0.946 for CAT of ‘Rabab’; 0.938, 0.929, and 0.930 vs. 0.913 
for MDA of ‘Atabaki’; 0.934, 0.923, and 0.921 vs. 0.919 for 
MDA of ‘Rabab’; 0.740, 0.616, and 0.757 vs. 0.723 for  H2O2 
of ‘Atabaki’; 0.951, 0.918, and 0.931 vs. 0.896 for  H2O2 of 
‘Rabab’. Moreover, in both pomegranate cultivars, the 
regression lines of coefficient  (R2) have confirmed a strong 
correlation between the real observed and predicted val-
ues of the GRNN for all physio-biochemical parameters 
(Figs. 4 and 5).

Optimization process 
The developed GRNN model, as the best ML algorithm 
with the highest prediction accuracy, was optimized 
using the NSGA-II algorithm to estimate the optimized 
level of inputs and finding the highest values of protein, 
APX, POD, CAT, SOD, and lowest values of MDA and 
 H2O2 for the theoretical physio-biochemical traits of 

Fig. 3 Pearson correlation analysis of physio-biochemical parameters of (a) ‘Atabaki’ and (b) ‘Rabab’ cultivars in response to studied parameters
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pomegranate fruits. The results of this multi-objective 
evolutionary search can be seen in Table 2. The optimi-
zation process by the GRNN-NSGA-II algorithm accu-
rately predicted that the application of 20.90  mM of 

GABA treatment under drought-salinity stress condi-
tions at 20.86 DPT would result in the maximum values 
of protein (0.80), APX (50.63), SOD (0.54), POD (1.53), 
and CAT (4.42) and minimum values of MDA (0.12), 

Fig. 4 The scatter plot of observed values versus estimated values of (a) protein content, b ascorbate peroxidase (APX), c superoxide dismutase 
(SOD), d peroxidase (POD), e catalase (CAT), f malondialdehyde (MDA), and g hydrogen peroxide  (H2O2) derived from generalized regression neural 
network model (GRNN) model in ‘Atabaki’ cultivar
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and  H2O2 (0.44) for the ‘Atabaki’ cultivar, and that 
20.54  mM of GABA treatment under drought-salinity 
stress after 20.72 DPT would result in the maximum 

values of protein (0.69), APX (51.51), SOD (0.53), POD 
(1.72), and CAT (5.66) and minimum values of MDA 
(0.15), and  H2O2 (0.55) for the ‘Rabab’ cultivar.

Fig. 5 The scatter plot of observed values versus estimated values of (a) protein content, b ascorbate peroxidase (APX), c superoxide dismutase 
(SOD), d peroxidase (POD), e catalase (CAT), f malondialdehyde (MDA), and g hydrogen peroxide  (H2O2) derived from generalized regression neural 
network model (GRNN) model in ‘Rabab’ cultivar
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Table 1 Performance Comparison of ML algorithms

Cultivar Subset Model Performance metrics Protein APX SOD POD CAT MDA H2O2

‘Atabaki’ Training RBF R2 0.704 0.934 0.978 0.917 0.931 0.906 0.918

RMSE 0.026 2.574 0.010 0.045 0.213 0.015 0.077

MBE -2.207 0.0003 4.277 -0.800 8.271 -14.391 -31.558

GRNN R2 0.827 0.981 0.981 0.980 0.958 0.950 0.957

RMSE 0.020 1.378 0.010 0.022 0.167 0.011 0.052

MBE 0.0002 -21.160 0.0001 9.554 -0.0004 -17.986 -7.805

RF R2 0.762 0.970 0.981 0.973 0.917 0.942 0.892

RMSE 0.024 1.754 0.009 0.026 0.242 0.012 0.118

MBE -0.0002 -0.052 18.270 0.0007 -0.009 0.0002 -0.004

SVR R2 0.713 0.980 0.971 0.958 0.941 0.925 0.908

RMSE 0.025 1.377 0.011 0.028 0.184 0.014 0.083

MBE 0.002 0.012 0.0004 0.001 0.018 -0.001 0.001

Testing RBF R2 0.763 0.945 0.970 0.920 0.900 0.913 0.723

RMSE 0.043 2.753 0.011 0.054 0.372 0.017 0.131

MBE 0.004 0.246 0.002 0.008 0.101 0.002 0.038

GRNN R2 0.803 0.953 0.971 0.968 0.941 0.938 0.740

RMSE 0.034 2.585 0.011 0.036 0.335 0.014 0.107

MBE 0.007 0.269 0.002 0.009 0.063 0.002 0.016

RF R2 0.780 0.962 0.967 0.970 0.862 0.929 0.616

RMSE 0.036 2.308 0.012 0.034 0.461 0.015 0.134

MBE 0.002 0.538 0.0005 0.002 0.084 0.002 0.038

SVR R2 0.736 0.953 0.966 0.958 0.926 0.930 0.757

RMSE 0.037 2.581 0.012 0.038 0.379 0.015 0.107

MBE 0.009 0.239 0.002 0.004 0.099 0.004 0.024

‘Rabab’ Training RBF R2 0.909 0.991 0.973 0.985 0.958 0.941 0.925

RMSE 0.021 1.480 0.011 0.043 0.127 0.013 0.063

MBE -1.781 -0.0005 -1.746 8.967 1.150 -29.518 -1.153

GRNN R2 0.955 0.995 0.987 0.993 0.972 0.946 0.962

RMSE 0.016 1.160 0.007 0.027 0.102 0.013 0.045

MBE 0.0004 0.010 0.870 0.000 -0.0003 19.038 -20.110

RF R2 0.930 0.994 0.977 0.992 0.966 0.944 0.955

Cultivar Subset Model Performance metrics Protein APX SOD POD CAT MDA H2O2

RMSE 0.018 1.229 0.010 0.031 0.116 0.013 0.049

MBE -0.0007 -0.009 -26.472 -0.0008 0.0006 -0.0003 -0.0012

SVR R2 0.937 0.993 0.982 0.990 0.959 0.924 0.951

RMSE 0.018 1.38 0.009 0.039 0.124 0.015 0.052

MBE 0.002 0.112 -10.158 -0.005 -0.011 -23.775 0.005

Testing RBF R2 0.856 0.966 0.950 0.952 0.946 0.919 0.896

RMSE 0.030 2.970 0.015 0.079 0.175 0.019 0.088

MBE 0.007 0.120 0.002 0.005 0.017 0.005 -0.019

GRNN R2 0.869 0.967 0.951 0.956 0.961 0.934 0.951

RMSE 0.028 3.032 0.015 0.078 0.149 0.017 0.056

MBE 0.006 0.590 0.004 0.011 0.020 0.004 -0.010

RF R2 0.907 0.965 0.963 0.954 0.965 0.923 0.918

RMSE 0.025 3.025 0.013 0.079 0.143 0.018 0.073

MBE 0.008 0.415 0.004 0.009 0.024 0.002 -0.008

SVR R2 0.900 0.966 0.947 0.954 0.965 0.921 0.931

RMSE 0.025 2.990 0.015 0.075 0.142 0.019 0.064

MBE 0.0012 0.593 0.002 0.005 0.020 0.006 -0.006
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Validation experiments 
Based on the results obtained from the validation 
experiment (Table  3), there was a negligible difference 
between the optimized-predicted results achieved from 
GRNN-NSGA-II and the experimental validation data 
for all of the pomegranate physio-biochemical responses. 
Indeed, based on the validation experiment, the pre-
dicted input variables using GRNN-NSGA-II resulted in 
0.82 the protein, 60.21 the APX, 0.50 the SOD, 1.60 the 
POD, 5.25 the CAT, 0.08 the MDA, and 0.37 the  H2O2 in 
the ‘Atabaki’ cultivar (Table  3). Also, based on the vali-
dation experiment, the predicted input variables using 
GRNN-NSGA-II resulted in 0.73 the protein, 49.25 the 
APX, 0.48 the SOD, 1.31 the POD, 5.12 the CAT, 0.10 the 
MDA, and 0.46 the  H2O2 in the ‘Rabab’ cultivar (Table 3).

Discussion
Plants’ primary defense responses to drought and salin-
ity are very similar, as both conditions lead to reduced 
growth, photosynthesis, and stomatal aperture due to 
water stress. However, when plants face a combination 
of drought and salinity stress, their defensive reactions 
can differ from those observed under individual stress 
conditions. For instance, during prolonged periods of 
drought stress, root elongation occurs, and when plants 
are exposed to long-term salt stress, in addition to dehy-
dration in plant organs, plants experience ionic stress and 

produce heavier roots with higher amounts of accumu-
lated chloride, which in turn exerts an additional negative 
effect on plant growth. Therefore, metabolic responses 
to combined stress conditions are distinct and cannot be 
extrapolated from plant single stress responses [4]. The 
generation of ROS frequently causes membrane dete-
rioration and organelle and cellular structural disintegra-
tion, and ultimately cell death [63]. ROS overproduction 
is associated with lipid peroxidation and the accumula-
tion of MDA [17], which are considered biomarkers of 
oxidative stress caused by abiotic and biotic stresses [64]. 
 H2O2, one of the extensively studied ROS, can oxidize 
proteins, lipids, and nucleic acids at high concentrations, 
rendering antioxidant enzymes and photosystems I and 
II inactive.

In general, the antioxidant enzymatic system is one 
of the plants’ defense mechanisms to scavenge ROS 
caused by stress. Also, to adjust to drought and salinity-
induced osmotic stress, plants accumulate compatible 
solutes or non-enzymatic secondary metabolites includ-
ing proline, protein content, and soluble sugars [65, 66]. 
However, the efficacy of antioxidant enzymes in miti-
gating oxidative damage and their activity in response 
to stress depends on factors such as plant genotype/
cultivar (resistant or sensitive), plant developmental 
stage, and severity and duration of drought or salin-
ity stress [67]. In general, previous studies about the 

Table 1 (continued)
RBF Radial basis function, GRNN Generalized regression neural network model, RF random forest, SVR Support vector regression, R2 Coefficient of determination, RMSE 
Root mean square error, MBE Mean bias error, CAT  Catalase, SOD Superoxide dismutase, APX Ascorbate peroxidase, POD Peroxidase, MDA Malondialdehyde, and H2O2 
hydrogen peroxide

Table 2 Multi-objective NSGA-II optimization of GRNN model to predict the best physio-biochemical parameters of pomegranate

DPT Days post-treatment, CAT  Catalase, SOD Superoxide dismutase, APX Ascorbate peroxidase, POD Peroxidase, MDA Malondialdehyde, and  H2O2 Hydrogen peroxide

Optimal level of independent variables Optimal level of dependent variables

cultivar Stress GABA DPT Protein APX SOD POD CAT MDA H2O2

‘Atabaki’ D × S 20.90 20.86 0.80 50.63 0.54 1.53 4.42 0.12 0.44

‘Rabab’ D × S 20.54 20.72 0.69 51.51 0.53 1.72 5.66 0.15 0.55

Table 3 Validation experiment of the predicted data through GRNN-NSGA-II for physio-biochemical traits of pomegranate

Values in each column represent means ± SD. CAT  Catalase, SOD Superoxide dismutase, APX Ascorbate peroxidase, POD Peroxidase, MDA Malondialdehyde, and 
 H2O2 Hydrogen peroxide

Treatment Protein APX SOD POD CAT MDA H2O2

Ideal point of 
NSGA‑II process in 
‘Atabaki’ cultivar

0.82 ± 0.037 60.21 ± 2.393 0.50 ± 0.027 1.60 ± 0.387 5.25 ± 0.224 0.08 ± 0.004 0.37 ± 0.042

Ideal point of 
NSGA‑II process in 
‘Rabab’ cultivar

0.73 ± 0.056 49.25 ± 2.638 0.48 ± 0.031 1.31 ± 0.343 5.12 ± 0.322 0.10 ± 0.052 0.46 ± 0.043
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activity of antioxidant enzymes under salinity or water 
deficit conditions have revealed that the levels of anti-
oxidant enzymes change differently, that is, they may 
increase, remain steady, or even decrease [68]. Our cur-
rent findings demonstrated a significant increase in the 
content of  H2O2, and consequently, MDA (oxidative 
stress parameters) under drought and salinity exposure 
stress. Interestingly, despite the increase in oxidative 
stress parameters, the activities of antioxidant enzymes 
(APX, SOD, POD, and CAT) and protein content also 
increased in the leaves of both cultivars under stress 
conditions. Hence, as the previous findings by research-
ers confirmed that there are different morphophysi-
ological responses to abiotic stresses in pomegranate 
cultivars [22], we interpret these results as evidence 
that utilized cultivars are relatively resistant to water 
and salt stress. It is interesting to note that antioxidant 
enzyme activities and protein content in both cultivars 
increased markedly on the 30th DPT under stress treat-
ment, whereas, at the end of the experimental period 
they showed a trend from ascent to descent. However, at 
the end of the experimental period, the activity of anti-
oxidant enzymes and protein content was higher than 
the 14th DPT. Similar results in previous studies have 
been reported on the up-regulation of the antioxidant 
defense system to reduce injury from oxidative stress 
during drought or salinity conditions in pomegran-
ate and various crops, such as black pepper [69], maize 
[70], and pistachio rootstocks [71]. In agreement with 
previous studies on other plant species under different 
environmental stress conditions [17, 19, 20], exogenous 
GABA supplied under drought-salinity stress condi-
tions effectively enhanced the activities of antioxidant 
enzymes and reduced the production of ROS  (H2O2) 
and MDA in pomegranate plants under drought-salin-
ity stress conditions. This suggests that the ability of 
GABA-treated plants to regulate the osmotic balance 
and ROS scavenging in plant cells might be mainly due 
to the regulating activation of enzymatic metabolism 
during prolonged periods of drought and salinity stress. 
For instance, Abdel Razik et al. [20] reported the protec-
tive role of exogenous GABA in alleviating the oxidative 
stress induced by drought and heat stress and increasing 
the SOD, APX, and POD enzyme activities to control 
ROS in sunflower plants. Also, Wang et al. [19] demon-
strated that GABA treatment helps to improve salt tol-
erance in maize seedlings by increasing the antioxidant 
enzyme systems such as SOD, CAT, APX, and POD and 
reducing the rate of MDA and superoxide anion ( O•−

2  ) 
content. Similarly, inhibition of  H2O2 production, and 
oxidative damage to cell membranes through GABA 
application were observed in other crops subjected to 
drought and salt stress [2].

The influence of complex interactions between inde-
pendent (input) variables on the physio-biochemical 
parameters of pomegranate cultivars in the current study 
is a complex and non-linear process, and analysis with 
traditional statistical techniques is insufficient for pre-
dicting exact the combination of inputs for the observed 
output variables. Therefore, we turned our attention to 
advanced technologies to gain insight into this mecha-
nism. Computer-based software models have proven 
effective in predicting the outcome of various biological 
properties. In recent years, models based on ML have also 
been widely applied to identify and predict many other 
complex plant stress responses, such as disease resistance 
gene expression [72], transcription factor expression [73], 
crop yield [28, 74], morphological traits [33], and spe-
cialized metabolite biosynthesis [75]. However, previous 
studies primarily focused on evaluating individual mod-
els for modeling and predicting physio-biochemical plant 
studies [25, 76, 77], and a comprehensive comparison of 
different ML algorithms has not been conducted. In this 
study, we employed four ML algorithms (RBF, GRNN, 
RF, and SVM models) to model and estimate the results. 
To accurately evaluate the performance of these models, 
several performance metrics  (R2, RMSE, and MBE) were 
considered for all ML algorithms. The results suggest that 
the GRNN model performed as robustly as the RBF, RF, 
and SVR models. However, overall, the GRNN technique 
demonstrated greater robustness than the other ML 
models in predicting pomegranate physio-biochemical 
traits. Previous findings in various plant biological sci-
ences have strongly stated that GRNN is an accurate pre-
diction model for modeling and prediction of results [51, 
57, 78]. It is important to note that the input variables, 
output variables, and the specific model employed [23] 
influence the prediction capabilities of ML models. To 
interpret the results, NSGA-II was utilized to identify the 
key independent variables and predict the optimal com-
bination of dependent variables. NSGA-II has been suc-
cessful in various fields, including plant science [33, 79, 
80]. In this study, the GRNN-NSGA-II method predicted 
that treatment with exogenous GABA at concentrations 
of 20.90 and 20.54 mM under drought-salinity stress, at 
20.86 and 20.72 DPT, respectively, would maximize the 
activity of antioxidant enzymes and protein content, 
while minimizing the values of  H2O2 and MDA traits in 
the ‘Atabaki’ and ‘Rabab’ pomegranate cultivars. Subse-
quently, the predicted results obtained from the devel-
oped method (GRNN-NSGA-II) were validated through 
experimental validation. These findings demonstrate 
that the mentioned advanced methodology is an effec-
tive approach for easier interpreting the results of GABA 
concentrations under drought and salinity stress, spe-
cifically in relation to the physiological and biochemical 
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changes in pomegranate. In the future, the use of pow-
erful computational tools with optimized techniques will 
provide new insights into monitoring complex environ-
mental conditions and their interaction effects. The data 
derived from this study can serve as a basis for future 
research on estimating physio-biochemical responses to 
abiotic stresses in pomegranate plants. However, more 
comprehensive studies are required to clearly elucidate 
the molecular mechanism of antioxidant enzymes that 
are regulated by GABA exogenously. Future research 
should also explore the metabolic pathways affected by 
GABA and drought and the salinity and role of GABA as 
a stress signaling molecule, its influence on other physi-
ological reactions against ROS such as gene and protein 
expression, and its effect on secondary metabolites and 
polyphenolic compounds. Incorporating a comprehen-
sive experimental design that considers these variables is 
crucial for a thorough understanding of GABA’s poten-
tial in enhancing soil drought-salinity tolerance of plants. 
It is important to note that the advantages of GABA in 
enhancing soil drought-salinity tolerance have not been 
well understood in previous research, and the potential 
impact of GABA on the physio-biochemical traits of 
pomegranate has not been explored.

Conclusion
In this research, we used four different ML algorithms, 
namely the RBF, GRNN, RF, and SVR, for the first time, 
to estimate the changes in antioxidant enzymes activ-
ity, protein content, MDA, and  H2O2 of pomegranate 
based on the effect of various GABA concentrations 
under drought and salinity stress and their interac-
tions. Application of ML models showed that the 
GRNN model performed better than the other algo-
rithms in terms of  R2 and error measures for estimat-
ing results. Moreover, with the optimization method 
(GRNN-NSGA-II), we could interpret the results of 
different ranges of GABA concentration and drought 
and salinity stress effects on each cultivar more easily. 
The GRNN-NSGA-II model identified the best GABA 
concentration to reduce drought and salinity-induced 
damage in pomegranate. Based on the results of this 
study, exogenous GABA improved antioxidant enzyme 
systems and protein content, leading to a decrease of 
 H2O2 and MDA content. Therefore, the knowledge 
from this study showed that the ML methods are reli-
able and easy tools for estimating the effect of exog-
enous GABA on the physio-biochemical traits of 
pomegranates under drought and salinity. Also, this 
strategy has great potential as an analytical method 
in applying stress monitoring on different crops on a 
large scale.
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