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Abstract 

Background  Corynespora leaf spot is a common leaf disease occurring in sesame, and the disease causes leaf yellow-
ing and even shedding, which affects the growth quality of sesame. At present, the mechanism of sesame resistance 
to this disease is still unclear. Understanding the resistance mechanism of sesame to Corynespora leaf spot is highly 
important for the control of infection. In this study, the leaves of the sesame resistant variety (R) and the sesame sus-
ceptible variety (S) were collected at 0–48 hpi for transcriptome sequencing, and used a combined third-generation 
long-read and next-generation short-read technology approach to identify some key genes and main pathways 
related to resistance.

Results  The gene expression levels of the two sesame varieties were significantly different at 0, 6, 12, 24, 36 and 48 
hpi, indicating that the up-regulation of differentially expressed genes in the R might enhanced the resistance. 
Moreover, combined with the phenotypic observations of sesame leaves inoculated at different time points, we 
found that 12 hpi was the key time point leading to the resistance difference between the two sesame varie-
ties at the molecular level. The WGCNA identified two modules significantly associated with disease resistance, 
and screened out 10 key genes that were highly expressed in R but low expressed in S, which belonged to transcrip-
tion factors (WRKY, AP2/ERF-ERF, and NAC types) and protein kinases (RLK-Pelle_DLSV, RLK-Pelle_SD-2b, and RLK-
Pelle_WAK types). These genes could be the key response factors in the response of sesame to infection by Corynes-
pora cassiicola. GO and KEGG enrichment analysis showed that specific modules could be enriched, which manifested 
as enrichment in biologically important pathways, such as plant signalling hormone transduction, plant-pathogen 
interaction, carbon metabolism, phenylpropanoid biosynthesis, glutathione metabolism, MAPK and other stress-
related pathways.

Conclusions  This study provides an important resource of genes contributing to disease resistance and will deepen 
our understanding of the regulation of disease resistance, paving the way for further molecular breeding of sesame.
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Background
Sesame (Sesamum indicum L.) is an important oil plant 
species with nutritious, medicinal, and edible uses [1]. 
One study suggested that globally, the total annual con-
sumption of sesame as food and oil accounts for about 
35% and 65%, respectively [2]. However, due to the 
impact of many biological and abiotic stresses, the ses-
ame planting area and total production have decreased 
globally. Corynespora leaf spot (CLS) is also a serious 
disease of sesame in the main producing areas of China, 
and its pathogen Corynespora cassiicola can infect flow-
ers, fruits and roots,  causing leaf drying and falling off, 
affecting plant photosynthesis, resulting in seed wilt and 
reduced oil content. In addition, the remaining spores 
on the withered and shed sesame leaves are buried in 
the soil, and when sesame seeds are sown the next year, 
the spores begin to spread with rain and wind, forming 
a cycle of infection [3, 4]. For CLS, chemical or physical 
controls have a key role in control. However, these meas-
ures are not a permanent solution in preventing fungal 
infection damage. Breeding resistant sesame cultivars is 
regarded as the most cost-effective measure for control-
ling the damage caused by C. cassiicola. Exploring resist-
ance genes and gene regulatory networks is a prerequisite 
for the molecular breeding of sesame resistance to C. 
cassiicola. Therefore, there is an urgent need to study the 
disease resistance of sesame to help improve the poten-
tial of sesame production.

In natural, plants are vulnerable to a variety of patho-
gens. Therefore, plants have evolved a complex but 
sophisticated and efficient immune system to fight off 
infection by pathogens. The application of bioinformat-
ics technology has made new progress in our under-
standing of plant‒pathogen interactions [5]. Comparative 
transcriptional analysis using RNA-seq is a commonly 
used method to search for genes differentially expressed 
between two samples. This method is also generally used 
to mine plants for genes involved in disease resistance, 
as has been done in peanut [6], grape [7], pear [8] and 
apple [9]. Genomic analysis has been also used in sesame 
[10]. Komivi Dossa reported the RNA-seq profiles of two 
contrasting sesame genotypes under waterlogging stress 
and after recovery in 2019 [11]. Su et  al. [12] identified 
6736 DEGs from a transcriptome analysis and found that 
highly expressed genes are involved in plant hormone 
signal transduction and heat shock protein regulation, 
thereby enhancing the heat tolerance of sesame. In addi-
tion to being used to study responses to abiotic stress, 
the transcriptome is also widely used in biological stress 
studies. Radadiya et  al. [13] selected a resistant sesame 
variety and a susceptible sesame variety and inoculated 
both with Macrophomina phaseolina at the same time; 
transcriptome analysis was carried out, and 1153 and 

1226 differentially expressed genes, respectively, were 
identified. Through transcriptome analysis, relevant stud-
ies have suggested that the defence response of sesame 
to Macrophomina phaseolina is a complex biological 
process involving many plant hormones and disease-
resistance related genes, such as those involved in JA/ET 
and SA signalling pathways [14]. Although RNA-seq has 
been used successfully for identifying C. cassiicola–host 
interactions in several different hosts, no study has yet 
been conducted to understand C. cassiicola–host inter-
actions in sesame [15–17]. Transcriptome analysis plays 
an important role in screening resistance genes and iden-
tifying plant‒pathogen interactions. In addition, patho-
gen stress, which occurs in the reproductive stage, has 
the most negative effect on crop production. Therefore, 
it is necessary to analyse the interactions between resist-
ant and susceptible sesame varieties and C. cassiicola via 
RNA-seq.

To the best of our knowledge, there is no information 
available about transcriptome differences between resist-
ant varieties and susceptible varieties of sesame under C. 
cassiicola stress. Nevertheless, transcriptome research 
is one of the necessary tools for understanding biologi-
cal processes. On the basis of the second generation of 
high-throughput sequencing platforms, RNA-seq tech-
nology cannot be used to obtain complete transcripts or 
assemblies accurately, and unrecognized isoforms, tran-
scription of a homologous genes, gene expression, and 
super families, make it difficult to understand the mean-
ing of biological activities at a deeper level. Full-length 
transcriptome sequencing based on single-molecule real-
time sequencing (SMRT-seq) technology does not inter-
rupt the RNA fragment and instead involves the direct 
reverse transcription of the obtained full-length cDNA. 
The ultra-long read (median10 kb) system of the platform 
houses the sequence information of a single complete 
transcript, which does not need to be assembled for later 
analysis [18–20].

The acquisition of full-length cDNA sequences is the 
basis of the most important structural and functional 
genomics research. Full-length transcriptome contain 
expression information of gene sequences, which is 
important for functional analysis at the transcription and 
translation levels. In the past few years, an increasing 
number of PacBio full-length transcriptome have been 
sequenced and assembled. These studies have helped us 
to identify numerous new genes and alternatively spliced 
isoforms in many species, including potato [21], sorghum 
[22], Larix kaempferi [23], Italian ryegrass root [24] and 
kiwifruit [25]. Overall, the above studies demonstrated 
that third-generation sequencing complements second-
generation sequencing in the quantitative determination 
of eukaryotic transcripts and contributes to the discovery 
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of an increasing number of alternatively spliced isoforms 
[26]. In this study, transcript-level responses of resistant 
and susceptible varieties of sesame infected by C. cas-
siicola were explored via second- and third-generation 
sequencing technologies. Our results provide bases for 
a better understanding of the resistance response of ses-
ame and potential candidate genes for further sesame 
resistance studies.

Results
Statistical analysis of transcriptome sequencing data 
of resistant and susceptible sesame varieties
To further improve the accuracy of the PacBio SMRT-
seq results, thirty-six Illumina RNA-seq libraries con-
structed from sesame leaves treated at different time 
points before and after inoculation were subjected to 
second-generation sequencing to correct the polished 
isoforms of PacBio SMRT-seq with Lordec software [27] 
and to quantify the full-length transcripts that had been 
obtained. According to the conditions full passes >  = 3 
and sequence accuracy greater than 0.9, a circular con-
sensus (CCS) sequence was extracted from the original 
sequence and corrected (Table S1).

Full-length transcriptome sequencing of resistant and 
susceptible sesame were completed, and 35.75 Gb and 
33.07  Gb of data, respectively, were obtained. SMRT-
seq yielded 492,210 and 454,360 CCS reads after pol-
ishing, among which 388,993 and 367,963 full-length 
nonchimeric (FLNC) reads were obtained (Fig.  1A-B). 
In total, 135,433 and 126,193 consensus sequences 
were obtained by clustering the FLNC sequences, and 
135,357 and 126,102 high-quality consensus sequences 
were obtained (Tables S2 and S3). The integrity of the 
high-quality full-length transcripts was evaluated by 
BUSCO. There were 2880 complete BUSCOs in both 
the R and S groups, with 1249 complete BUSCOs 

(43.37%) in the R group and 1231 complete BUSCOs 
(42.74%) in the S group (including single-copy and 
duplicated BUSCOs), respectively (Fig. 1C).

Analysis of alternative splicing (AS)
Precursor mRNAs (pre-mRNAs) generated by gene 
transcription can be spliced in a variety of ways. Dif-
ferent exons are selected to produce different mature 
mRNAs, which can be translated into different proteins 
and constitute the diversity of biological traits. This 
post-transcriptional mRNA processing is called vari-
able splicing or alternative splicing. The generation of 
fusion transcripts may be related to variable splicing, 
and full-length transcriptome sequencing can be used 
to identify the structure of fusion transcripts accurately.

We counted the number of the above five variable 
splicing events detected in the transcripts (Fig.  2). In 
R and S, 29,082 and 28,799 AS events were predicted, 
respectively. We found that intron retention constituted 
the highest proportion– 62.98% and 63.28%, respec-
tively, but mutually exclusive exons constituted the 
lowest proportion – only 0.91% and 0.92%, respectively 
(Fig. 2B, D). In the KEGG pathway enrichment, the dif-
ferential AS genes of R were significantly enriched in 
“Biosynthesis of amino acids”, “Spliceosome”, “Glyoxy-
late and dicarboxylate metabolism” and “Glycerophos-
pholipid metabolism”; interestingly, the differential AS 
genes of S were significantly enriched in “Spliceosome”, 
“Carbon metabolism”, “mRNA surveillance pathway” 
and “Biosynthesis of amino acids” (Fig. 2A, C). All the 
differential AS genes sets were enriched in the spli-
ceosome. Glyoxylate and dicarboxylate metabolism 
was found to be a unique pathway in R, while Carbon 
metabolism was unique to S.

Fig.1  Summary of PacBio RS II single molecule real-time (SMRT) sequencing. A FLNC read length distribution of each size bin of R; B FLNC 
read length distribution of each size bin of S; C Transcriptome integrity assessment results of R and S (Note: n and the corresponding number 
in the figure are the single-copy gene set of related species and the number of genes in the gene set)



Page 4 of 20Jia et al. BMC Plant Biology           (2024) 24:64 

Functional notes and structure analysis of transcripts
The new transcripts obtained from the variable splic-
ing analysis were functionally annotated, and the 
number of transcripts annotated by each database 
was counted (Table S4). NR sequence alignment was 
used to predict the species most closely related to 
sesame. Through sequence alignment, 95.14% of the 
sequences were consistent with the published sesame 
transcriptome sequence (Fig.  3A). A total of 74,877 
transcripts were annotated; of these, 65,738 transcripts 
were annotated in the eggNOG database (Fig.  3C). 
The lncRNAs were classified and mapped according 
to their positions in the reference genome annotation 
information (Fig.  3B). The density distribution of dif-
ferent SSR types was statistically analysed. The most 
predominant SSR type was the dinucleotide repetition 
type, followed by the Mononucleotide repetition type 
(Fig. 3D).

Analysis of differentially expressed genes in response to C. 
cassiicola
To observe the leaf symptoms of resistant and susceptible 
varieties after C. cassiicola infection, we inoculated ses-
ame leaves with C. cassiicola, and sterile water was used 
to serve as a mock inoculation. The leaves were observed 
at 0 (preinoculation), 6, 12, 24, 36, and 48 h post-inocula-
tion (hpi). Spot symptoms developed at 12 hpi, and mild 
spots were observed at the inoculation site in the S group. 
In addition, before mild spots were observed in the R 
group, the S group were infected and significant punctate 
spots appeared at 24 hpi. The R group developed slight 
symptoms resulting from inoculation at 48hpi (Fig. 4A); 
Samples were collected at 0 (preinoculation), 6, 12, 24, 36 
and 48 hpi for transcriptome sequencing, and each time 
point contained three replicates.

Fig. 2  Identifcation of alternative splicing (AS) events and functional analysis. A KEGG enrichment analysis for differential AS genes in R; B Statistics 
of the number of AS events in R; C KEGG enrichment analysis for differential AS genes in S; D Statistics of the number of AS events in S
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The number of differentially expressed gene sets 
was counted in Table S5. In the S group, the number 
of DEGs showed a gradually increasing trend from 0 to 
48 hpi; in the R group, the number of DEGs increased 
gradually from 0 to 36 hpi, but decreased at 48 hpi 
(Fig. 4B, C). It is speculated that this change trend may 
be related to the function of disease resistance. As a 
result, a total of 5,364 (2,436 up-regulated and 2,928 
down-regulated) genes were identified as potential 
resistance responsive genes in R at 12 hpi. Similarly, a 
total of 4,201 (2,136 up-regulated and 2,065 down-reg-
ulated) genes were found to be associated with positive 
and negative responses to C. cassiicola in S at 12 hpi 
(Fig. 4D).

As shown in Fig.  4D, by comparing the variation in 
DEGs between the R and S group at the same time 
point, we found that the number of DEGs between R 

and S was the highest at 12 hpi. Combined with the 
phenotypic observations of sesame leaves inoculated at 
different time points, these results indicated that both 
R and S were subjected to C. cassiicola for 12 hpi, which 
was the key time point that led to the resistance differ-
ence between the two varieties at the molecular level.

Analysis of transcriptome data at different time points 
between the R and S group under C. cassiicola stress
PCA (Fig. S1) showed that S0, S6, and S12 and R0, R6, 
and R48 were grouped together (left), while S24, S36, 
and S48 and R12, R24, and R36 were clearly clustered 
together (right). These results indicated that a higher 
similarity in transcriptional programming and obvious 
transcriptional differences between R and S occurred 
under C. cassiicola stress for 0–12 hpi and under C. cas-
siicola stress for 24–48 hpi, respectively. Furthermore, 

Fig. 3  Functional notes and structure analysis of transcripts. A Comparison of homologous sequences among species in the NR database; 
B lncRNA position classification drawing. Note: Four different types of lncRNAs (lincRNA: long non-coding RNAs in intergene regions; 
Antisense- lncRNA: Antisense long non-coding RNA; lntronic-lncRNA: intron long non-coding RNA; sense_lncRNA: positive-sense long non-coding 
RNA), and the ordinate is the corresponding lncRNA number; C EggNOG function classification of consensus sequence; D Classification 
and repetition numbers of simple repeat sequences (SSRs). Mononucleotides: (p1), Dinucleotides: (p2), Trinucleotides: (p3), Tetranucleotides: (p4), 
Pentanucleotides: (p5), Hexanucleotides: (p6), compound SSRs: (c) and compound SSRs with overlapping positions: (c*)
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the difference of R and S gene expression at 12 hpi also 
indicated that 12 hpi was the key time point leading to 
the resistance difference between the two varieties at the 
molecular level.

R had more up-regulated and down-regulated genes 
than S did after inoculation at 12 hpi. These genes were 
identified as potential contributors to the R group hav-
ing higher resistance ability than the S group. In addi-
tion, among these potential resistant responsive genes, 
only 361 up-regulated genes overlapped in R and S 
(Fig.  5A, B). These 361 up-regulated genes are also 
potential positive responsive genes in R. Therefore, we 
believe that these 361 up-regulated genes are resistance 
genes that lead to the higher resistance ability of R. At 6 
hpi, there was no significant difference in up-regulated 
gene expression between R and S, but more than half 
of these genes had higher expression in the R group 
than in the S group at 12 hpi (Fig. 5C), this result indi-
cated that the key time point for R to initiate resistant 

defense response was 12 hpi. Interestingly, most of the 
genes in S were down-regulated at 12 hpi and up-reg-
ulated at 24 hpi compared with those in R, indicating 
that the defence response genes in S after C. cassiicola 
infection were not induced successfully during the early 
infection stage, which might be the cause of C. cas-
siicola susceptibility in the S group. At the same time, 
there was no significant difference in the expression 
of 96 down-regulated genes in R and S, indicating that 
down-regulated genes were not closely related to dis-
ease resistance (Fig. 5D). On the whole, by further com-
paring R and S, it was found that the up-regulated of 
DEGs induced by pathogens in R may be the basis of 
resistance enhancement.

Identification and functional annotation of differentially 
expressed resistant responsive genes between R and S
We conducted pairwise comparisons between unin-
oculated and C. cassiicola-inoculated leaves (R12 vs. R0, 

Fig. 4  The variation of DEGs in R and S. A Leaf symptoms in the R group and S group after inoculation with C. cassiicola; B Comparison 
of differentially expressed genes in the R group at different time points; C Comparison of differentially expressed genes in the S group at different 
time points. D Comparison of differentially expressed genes in the R group and S group at different time points
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S12 vs.S0) to identify genes that respond to C. cassiicola 
infection at each time point in each variety. According to 
the GO annotation analysis, the DEGs were divided into 
the biological process, molecular function, and cellular 
component categories (Fig. 6A, C).

In the biological process category, the majority of 
DEGs belonged to metabolic process and cellular pro-
cess. In the cellular component category, the number of 
DEGs in the cell and membrane GO terms were most 
common. For the molecular function category, the most 
abundant DEGs were annotated under binding and cata-
lytic function.

TopGO analysis further revealed that the plant hor-
mone signal transduction, plant–pathogen interaction 
and carbon metabolism were among the most highly 
enriched terms (Fig. S2). To identify active biological 
pathways enriched with DEGs in the two sesame varie-
ties, the KEGG pathway database was searched. Based on 
the KEGG enrichment analysis, the top 20 top-ranking 
pathways were determined; these are presented in the 

form of a bubble diagram (Fig. 6B, D). Under the stress of 
C. cassiicola, the DEGs were enriched mainly in carbon 
metabolism, starch and sucrose metabolism, biosynthesis 
of amino acids and phenylpropanoid biosynthesis. These 
results indicated that there were significant differences in 
the transcription levels of carbon metabolism and phe-
nylpropanoid biosynthesis genes between the different 
varieties under C. cassiicola stress.

In the R group, the MAPK signalling pathway - plant, 
plant–pathogen interaction, ribosome, starch and 
sucrose metabolism, carbon metabolism and glutathione 
metabolism were also enriched. In the S group, the 
MAPK signalling pathway-plant, phenylpropanoid bio-
synthesis, starch and sucrose metabolism, and circadian 
rhythm-plant, which may play significant role in response 
to C. cassiicola, were all enriched (P < 0.05). Addition-
ally, the pathways of the MAPK signalling pathway-plant 
and starch and sucrose metabolism were both obviously 
enriched in R and S (Fig. 6B, D). These results indicated 
that C. cassiicola stress could regulate the complex 

Fig. 5  Heatmap of differentially expressed resistance genes between R and S. A Venn diagram comparing up-regulated DEGs in R and S at 12 hpi; 
B Venn diagram comparing down-regulated DEGs in R and S at 12 hpi; C Heatmap of up-regulated common genes in R and S at 12 hpi; D Heatmap 
of down-regulated common genes in R and S at 12 hpi
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biological pathways of sesame, and there were shared and 
different pathways between varieties that may function 
in response to C. cassiicola. Therefore, plant–pathogen 
interactions and plant hormone signal transduction may 
contribute to differences in the resistance of R and S.

Co‑expression network analysis identified key modules 
correlated with resistance to C. cassiicola
To mine the hub genes expressed in response to C. cas-
siicola, weighted gene co-expression network analysis 
(WGCNA) was performed to link gene expression levels 
with different time-points. A total of 5551 filtered genes 
(with FPKM > 0.1) differentially expressed between R and 
S post-inoculation were further investigated by WGCNA. 
Each branch represented a co-expression module with 
different colours representing different modules. These 
DEGs were clustered into fourteen modules labelled with 
different colours (Fig. 7A, B). Furthermore, to identify the 
modules that were significantly associated with different 
time points in R and S, module–trait correlation relation-
ships were constructed (Fig. 7C).

We found that the gene expression patterns in two 
modules (MEorangered4 and MEdarkmagenta) were 

significantly correlated with the infection time of R and 
S. For instance, the expression levels of genes in the 
MEorangered4 module showed a positive correlation in 
the R group, while genes in the module showed a nega-
tive correlation in the S group. In addition, the expression 
levels of genes in the MEdarkmagenta module were low 
before 12 hpi in the R group and S group, but then grad-
ually increased at 24 hpi and 36 hpi to various extents; 
specifically, the MEdarkmagenta module was found to be 
associated with specific infection stages. WGCNA results 
showed that gene expression in the two aforementioned 
modules was specifically correlated with resistance. The 
expression patterns of the genes in these two modules are 
shown in Fig. 7C.

In order to mine the key genes and understand the 
relationship between the genes within the modules, 
Cytoscape software and plugin of Cyto-Hubba [28] was 
used to construct gene networks, which are shown in 
Fig. 8. An analysis was conducted on the top 20 nodes of 
connectivity in the MEorangered4 and MEdarkmagenta 
modules, and we found some hub genes related to dis-
ease resistance in the modules (Fig. 8).

Fig. 6  Functional annotations of DEGs in R and S under C. cassiicola stress. A GO classification of DEGs in R; B KEGG pathway enrichment of DEGs 
in R; C GO classification of DEGs in S; D KEGG pathway enrichment of DEGs in S
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In the MEorangered4 module, two resistance genes 
were identified, namely, LOC105177062 (glutathione 
S-transferase F9), LOC105172911 (chromatin remodel-
ling protein SHL), where LOC105172911 (PHD) encodes 
a transcription factor.

In the MEdarkmagenta module, six hub genes, 
namely, gene-LOC105157740 (glutathione S-trans-
ferase), gene-LOC105174379 (glutathione S-trans-
ferase), gene-LOC105175128 (RLK-Pelle_DLSV), 
gene-LOC105177925 (RLK-Pelle_WAK_LRK10L-1), 
gene-LOC105169175 (bZIP), and gene-LOC105166840 
(PLATZ), are considered to be involved in the response 
to various biotic or abiotic stresses, these genes encoded 
two protein kinases and two transcription factors. Hence, 
these hub genes and biological pathways might play a 
vital role in modulating the defence response to C. cas-
siicola infection in sesame.

TF and PK responses to C. cassiicola
We identified 80 TFs belonging to 30 TF families in 
these two modules (MEorangered4 and MEdarkma-
genta modules). The WRKY, AP2/ERF-ERF, NAC, MYB, 
HSF, bHLH, C2H2, and bZIP families of TFs were sig-
nificantly enriched in R and S under C. cassiicola stress, 
of which WRKY, AP2/ERF-ERF and NAC were pre-
dominant, with 13, 9 and 9 differentially expressed TFs, 
respectively (Fig.  9A, B). For the WRKY, AP2/ERF-ERF 
and NAC families, the response of C. cassiicola stress 

was very similar. In the R group, the expression of some 
genes was significantly up-regulated, but in the S group, 
the up-regulated expression of these genes was not obvi-
ous (Fig. 9B). Moreover, the R group resulted in a much 
greater number of up-regulated genes in these TFs, and 
after inoculation with C. cassiicola, the responses were 
typically higher (in terms of fold-change) than were those 
of the S group.

We identified 77 PKs belonging to 30 families in these 
two modules, and the three most abundant PK families 
were RLK-Pelle_DLSV, RLK-Pelle_SD-2b, and RLK-
Pelle_WAK. As shown in Fig.  9C and D, 77 PK genes 
were differentially expressed in these two modules, of 
which 35 genes were common to both varieties and 
showed similar expression patterns. For instance, several 
protein kinase genes, including RLK-Pelle_DLSV, RLK-
Pelle_SD-2b, and RLK-Pelle_WAK, were up-regulated in 
both R and S (Fig. 9D). Our results suggest that the genes 
in these two modules may be involved in disease resist-
ance during the infection process of C. cassiicola, but this 
finding requires further verification.

Sesame resistant‑related genes and pathways
In order to explore the disease resistance mechanism 
of sesame, we examined changes in the transcription 
of potential resistance-related genes in R and S. Most 
of the genes related to disease resistance were induced 
to be expressed at the early stage of infection (12 hpi). 

Fig. 7  Identification of DEGs by WGCNA. A Module level clustering diagram; B Summary of the number of module genes; C Module-trait 
associations; (Each column corresponds to different time points in R and S, and each row corresponds to the characteristic gene of the module. The 
correlation between two is indicated in the module by the pearson correlation coefficient and p value in parentheses
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Furthermore, other DEGs were found to be enriched in the 
main resistance-responsive metabolic pathways such as the 
carbohydrate metabolism, starch and sucrose metabolism, 
and secondary metabolism pathways. The accumulation 
of starch and carbohydrates in leaves is a common phe-
nomenon after the pathogen infects plants. In our study, 
it was found that the expression of genes related to the 
metabolic pathway of starch and sucrose changed greatly 
after infection by C. cassiicola in both R and S. These 
genes (LOC105174799, LOC105166206, LOC105166205, 
LOC105173883, LOC105173367, LOC110011237) were 
highly enriched in the starch and sucrose metabolism 
pathway, among which the gene LOC110011237 (rau-
caffricine-O-beta-D-glucosidase) began to be highly 

expressed at 6 hpi with C. cassiicola, and the expression 
trend decreased gradually at 36 hpi.

Some protein kinases and transcription factors, 
including RLK-Pelle_DLSV, RLK-Pelle_SD-2b, RLK-
Pelle_WAK, WRKY, AP2/ERF-ERF, and NAC, play vital 
roles in the resistance response to C. cassiicola. These 
PK- and TFs-encoded differentially expressed genes 
were significantly highly expressed in the R group, but 
were expressed at low levels in the S group (Fig. 10). The 
description of DEGs is provided in Table S6. These TFs 
and PKs that may be involved in C. cassiicola-mediated 
defence responses through the activation of disease 
resistance signalling and downstream defence pathways. 
It is suggested that these differentially expressed genes 
play a key role in the response to C. cassiicola stress in 

Fig. 8  The expression patterns of the co-expressed genes in the representative modules. A MEorangered4 module; B Hub genes interaction 
network diagram of MEorangered4 module; C MEdarkmagenta module; D Hub genes interaction network diagram of MEdarkmagenta module
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resistant variety. Based on data analysis of differential 
gene expression in the transcriptome, a pattern response 
diagram of the interactions between sesame and C. cas-
siicola was shown as Fig. 11.

Validation of RNA‑Seq by qRT‒PCR
To validate the reliability of the RNA-seq data, 8 
DEGs were selected and tested by qRT‒PCR; these 
genes encoded RLK-Pelle_DLSVs (LOC105165468, 
LOC105165464), RLK-Pelle_LRRs (LOC105162544, 
LOC105168559), a kirola-like protein (LOC105156235), 
glutathione S-transferase (LOC105177062), and a zinc-
finger homeodomain protein (LOC105159248) from 
the MEorangered4 and MEdarkmagenta modules. The 
trends of these genes at different treatment time points 
observed via qRT‒PCR were similar to those observed 
via RNA-seq, which validated the reliability of our tran-
scriptome data (Fig. 12).

Discussion
C. cassiicola is the causal agent of the most common 
leaf disease of plants in the world. This fungus can 
infect the flowers, stems and leaves of sesame, and 
Corynespora leaf spot is the most substantial disease. 
Sesame is an oilseed crop species challenged by many 
biotic stresses. At present, transcriptome analysis data 
of sesame charcoal rot, stem blight and other diseases 
have been reported [13]. To date, the molecular mecha-
nisms of resistance to Corynespora leaf spot in sesame 
have not yet been reported. Due to the advantages of 
transcriptome analysis in the study of plant‒pathogen 
interactions, transcriptome analysis has been widely 
used to study the mechanisms of crop stress response 
[29–31]. Previous large-scale sequencing of cDNA has 
been instrumental for gene discovery in sesame, but 
the sequences rarely cover entire transcripts due to the 
limitation of NGS technologies [32]. SMRT sequenc-
ing produces longreads and is particularly useful for 

Fig. 9  Identification of TFs and PKs. A The number of predicted TFs in the transcriptome data; B Heatmap of the differentially expressed hub DEGs 
encoding TFs; C The number of predicted PKs in the transcriptome data; D Heatmap of the differentially expressed hub DEGs encoding PKs
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non-model species for which whole-genome sequenc-
ing data are lacking [33, 34]. With the continuous 
improvement of sequencing technology, the applica-
tion of third-generation sequencing technology in the 
study of plant interaction is also very common [35–
37]. Here, our results provide the first comprehensive, 
high-quality, full-length transcriptome of the sesame 
cultivars ‘Henan No.1’ and ‘Jinzhi No.3’ via a combi-
nation of SMRT-seq and RNA-seq, with correction of 
SMRT reads using Illumina reads. SSR is a series repeat 
sequence consisting of several nucleotides (generally 
1 ~ 6) as repeating units, which is tens of nucleotides 
long. The sequences on both sides of each SSR are gen-
erally relatively conservative single-copy sequences. As 
a molecular marker, SSR is of great significance in plant 
disease resistance breeding [38, 39]. Maanju et al. [40] 
used a set of aphid specific 10 SSR markers to analyze 
the genetic diversity and population structure of 109 
barley genotypes against  R. maidis, and They found 
that only 2 genotypes were found to be resistant against 
Corn-leaf aphid (CLA). Sonah et al. [41] established an 

online database of genome-wide SSR markers called 
‘BraMi’ (Brachypodium microsatellite markers), enrich-
ing resources for plant genome research. By analysing 
the sequence structure of the newly discovered tran-
scripts, we predicted 50,832 SSR sequences, which 
provided abundant molecular markers for the later 
development of sesame resistance genetic breeding. 
In the study, the short reads produced by 36 RNA-seq 
libraries were used for alignment against the PacBio 
datasets to calculate FPKM values. Thus, all the tran-
scripts used for subsequent analysis are complete, 
reducing misassembly of genes, especially in those gene 
families with high sequence identity. These data may 
greatly help researchers study sesame at the molecular 
level.

When plants encounter stress, AS can result in a series 
of defensive stress responses [21]. Recent studies have 
revealed that several defence genes undergo alternative 
splicing that is often affected by pathogen infection [42]. 
AS may play an important role as traditional transcrip-
tion control in defence against pathogen infection [43]. 

Fig. 10  Bubble Chart showing the most significant DEGs at each time point comparison of both R and S. The DEGs at 6 time points are depicted 
by respective colour codes
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Li et al. identified a spliceosome protein (SR45a) involved 
in the post-transcriptional regulation of the Arabidopsis 
thaliana salt tolerance [44]. By using full-length tran-
scriptome sequencing, we also found significant dif-
ferences in AS types between resistant and susceptible 
varieties of sesame. In this study, 29,082 and 28,799 AS 
events were predicted in R and S, respectively, each with 
different alternative splicing events. These results suggest 
that different alternative splicing events may be involved 
in the resistance. However, the underlying regulatory 
mechanism of how sesame regulates resistance signals 
through multiple transcript isoforms is still poorly under-
stood, and further studies are needed. Transcriptome 
studies on C. sublineola-infected sorghum have shown 
that AS plays a crucial role in the defence response to 
fungal invasion [43], which is similar to the conclusion of 
this study.

Through differential gene pathway analysis, Su et  al. 
[12] suggested that plant signal transduction participated 
in and enhanced the heat tolerance of sesame. To under-
stand the molecular mechanisms of this oilseed crop 

species in response to salt stress. Zhang et al. [45] exam-
ined the transcriptome and proteome profiles of two 
sesame varieties with contrasting tolerances to salinity. 
Although plants can produce some defensive responses 
under the influence of the external environment, such 
as drought, high salt and temperature, the signal defence 
mechanism of pathogen infection still needs to be further 
explored [46–48]. Our study also showed that sucrose 
and starch metabolism-related genes were significantly 
altered after treatment. Furthermore,the most enriched 
genes were also associated with phytohormones. Based 
on these data, we proposed that plant hormone signals 
aiming to initiate defence regulation in response to the 
host are essential for the subsequent development of 
sesame.

Previous transcriptome analysis has revealed that 
starch and sucrose metabolism and plant hormone signal 
transduction may play important roles in the resistance 
mechanism of plants [49, 50]. In this study, 17 DEGs were 
significantly enriched in the plant hormone signal trans-
duction pathway. Among these DEGs, those related to 

Fig. 11  A pattern response diagram of sesame to C. cassiicola 
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resistance, peroxidase activity and plant hormone signal 
transduction were prevalent and dominant. At the molec-
ular level, the GO categories “metabolic process,” “cellu-
lar process,” “catalytic activity,” “binding,” “cell”and “cell 
part”, and the KEGG pathway categories “plant‒pathogen 

interaction”, “phenylpropanoid biosynthesis” and “MAPK 
signalling pathway” were significantly enriched under C. 
cassiicola stress (Fig. 8), which was consistent with find-
ings in Arabidopsis [51], Althaea officinalis. L. [52], and 
rice [53].

Fig. 12  Quantitative RT‒PCR validation data of genes in R and S
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Plant–pathogen interactions involve a series of defence 
measures to resist fungal invasion, such as allergic reac-
tions, plant protection hormone synthesis and antibacte-
rial protein production. In the formation of these defence 
mechanisms, the fastest resistance response after fun-
gal recognition is an ROS burst, which produces a large 
number of ROS in a short time and plays a special role 
in the resistance response. In the interaction between 
wheat and stripe rust, ROS were only produced in resist-
ant varieties. Under the stress of C. cassiicola, plants 
produce TFs and PKs to perceive stress signals, thus 
increasing the ROS concentration and activating ROS 
defence/metabolic pathways for ROS clearance. When 
plants were infected by C. cassiicola, KEGG pathway 
analysis showed that pathways involving peroxisome 
and glutathione metabolism, as well as hormone signal 
transduction, were all enriched. There is strong evidence 
that glutathione transferase is involved in the regulation 
of plant stress resistance. For example, GSTFs have been 
observed in Arabidopsis [54].

The aims of this study were to gain insights into the dif-
ferences in the molecular mechanisms between resistant 
and susceptible varieties to cope with C. cassiicola infec-
tion and to identify potentially excellent disease-resist-
ance genes in the resistant variety. It has been reported 
that starch and soluble sugars [55], phytohormones 
[56], and photosynthetic efficiency [57, 58] can be used 
as important reference indicators of plant phenotypic 
change. In this study, the changes of leaf spot expansion 
at different time points were recorded as phenotypic 
observation. If there are some physiological and bio-
chemical indicators to be detected, it will be more helpful 
to improve the rigor of the experiment. In the observa-
tion of leaf phenotype, we found that mild spots were 
observed at 12 hpi in the S group, while group R did not 
develop symptoms until 48 hpi. By observing the changes 
of symptoms in leaves at 6–48 hpi, we selected key time 
points (12 h, 24 h, 36 h, and 48 h) to perform transcrip-
tome sequencing by leaf tissue. Transcriptome data 
analysis found that a large number of genes were up-reg-
ulated at 12 hpi, indicating that 12 hpi was the key time 
point for C. cassiicola infection. Additionally, due to the 
advantages of WGNCA in gene function analysis, both 
differential expression analysis and WGNCA were used 
in the present study, as has been done for maize [59], 
tomato [60], wheat [61], and Arabidopsis [62]. In this 
study, a total of ten genes co-expression modules were 
identified by weighted gene co-expression network analy-
sis, among which 2 (MEorangered4 and MEdarkmagenta 
modules) were specific modules related to resistance to 
Corynespora leaf spot. Then, we established resistance-
regulated co-expression modules and identified some 
candidate transcription factors and protein kinases, such 

as WRKY, AP2/ERF-ERF, NAC, RLK-Pelle_DLSV, RLK-
Pelle_SD-2b, and RLK-Pelle_WAK proteins, that may 
function in disease resistance.

TFs are proteins that can bind to specific nucleotide 
sequences upstream of a gene, which in turn can regulate 
the binding of RNA polymerase and DNA templates, thus 
regulating gene transcription. TFs are the master regula-
tors of plant drought resistance. Many TFs, such as AP2/
ERF, MYB, NAC, bHLH, C2H2-ZF, WRKY, and NF-Y 
TFs, have been confirmed to play roles in disease resist-
ance in different plant species [63]. New members of 
some TF families, such as the C3H, G2-like, HSF, MYB-
related, and MADS families, were found, except for some 
known TF families involved in plant disease-resistance 
[64–66]. Gao et al. [67] has reported that the transcrip-
tion factor WRKY8 plays a positive regulatory role in 
plant immunity to pathogen infection and plant response 
to drought and salt stress. One study revealed that when 
plants perceive pathogen infection, they regulate the 
resistance mechanism of different plant protection fac-
tors against the invasion of pathogens through different 
signalling pathways [68]. On the one hand, the host plant 
activates the jasmonic acid and ethylene signalling path-
ways, regulating the synthesis of the plant protection fac-
tors scopoletin and scopolin. On the other hand, another 
important plant protection hormone, capsidiol, is regu-
lated by the transcription factor ERF2-like. These results 
indicated that these TFs have a conserved function in dif-
ferent plant species to resist pathogen infection. In our 
study, TFs are key components in the plant signal path-
way, and they are involved in the signal perception and 
the expression of downstream key genes in response to 
C. cassiicola. The transcriptome of sesame revealed that 
a number of different transcription factor families were 
affected by C. cassiicola stress, including members of 
WRKY, AP2/ERF, NAC, bHLH, MYB and so on. Our 
RNA-seq data showed that pathogen infection causes 
dramatic changes in gene expression profiles, and indeed, 
many plant defence hormone signals displayed differen-
tial expression within 12 hpi. In particular, AP2/ERF-ERF 
gene (LOC105176475, LOC105163850) expression was 
significantly increased in both resistant and susceptible 
varieties at 12 hpi. Similar transcription factors include 
NAC (LOC105159455, LOC105159980, LOC105167649, 
LOC105175173) and WRKY (LOC105167193, 
LOC105175676, LOC105176853, LOC105177346). These 
results indicate that AP2/ERF-ERF, NAC and WRKY 
TFs are involved in sesame disease resistance under C. 
cassiicola stress. In addition, the protein kinase gene 
(RLK-Pelle_DLSV) also showed the same tendency of 
high expression under C. cassiicola stress, and the gene 
expression amount in R was much higher than that in S. 
Therefore, it is speculated that these genes may constitute 
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the key to the difference in disease resistance between 
resistant and susceptible varieties, which deserves more 
attention. Our analysis revealed a complex relation-
ship between different time points after infection and 
the transcriptional responses of other resistance-related 
genes, implying that PK and TF can influence both of dif-
ferent sesame varieties. Our study provided valuable and 
nearly complete sequence information on sesame. Fur-
thermore, we constructed a global molecular mechanism 
model of the resistance response in sesame (Fig. 11) with 
all this transcriptome information.

Conclusions
In this report, we investigated the resistant or suscep-
tible varieties and infection stage-specific response of 
sesame against C. cassiicola infection and found that 12 
hpi was the key time point leading to the resistance dif-
ference between the susceptibility and resistance varie-
ties. We also constructed gene co-expression networks 
for R and S by WGCNA and discovered that the MAPK 
signalling, plant–pathogen interaction, and plant hor-
mone signalling pathway activity greatly influenced host 
resistance, and 10 candidate genes (Table S6) that poten-
tially regulate sesame resistance and defence mechanisms 
were identified. This study provide a fine assembly of 
transcriptome data, which will pave the way for future 
research into sesame function at the molecular level and 
provide a rich resource for full-length genes that may be 
important for efforts aimed at improving the resistance 
of sesame.

Methods
Plant materials and inoculation of C. cassiicola
The sesame varieties used in the present research were 
Henan No.1 (resistant group, R) and Jinzhi No.3 (sus-
ceptible group, S), which were obtained from the Henan 
Sesame Research Center, Henan Academy of Agricultural 
Sciences, and the Institute of Economic Crops, Shanxi 
Academy of Agricultural Sciences, respectively. The ses-
ame seeds were germinated in plastic pots (10 cm diam-
eter, 9 cm height) containing a 3:1:1 mixture of field soil, 
peat soil, and vermiculite and then grown in a growth 
chamber (28–30℃) under a 16 h light/8 h darkness pho-
toperiod. Repeat 3 pots at each inoculation time point 
and plant 5 seedlings in each pot. All the seedlings were 
inoculated after 2 months of growth.

C. cassiicola (Number: 20180909-03) was isolated and 
stored at the Institute of Plant Protection, Henan Acad-
emy of Agricultural Sciences. All the plants were surface 
inoculated with a spore suspension (106 conidia/mL) 
applied by a hand-held spray bottle, and the inoculated 
plants were sealed with transparent plastic bags for 48 h. 

Leaves before inoculation (0  h) and leaves after inocu-
lation (6 h, 12 h, 24 h, 36 h, 48 h) were taken to obtain 
sequencing samples. Samples for each group were har-
vested separately, immediately frozen in liquid nitrogen 
and stored at -80 °C until RNA extraction for transcrip-
tome sequencing. The R group and S group contained 18 
samples: six time points × three replicates each.

Illumina transcriptome library preparation and sequencing
Total RNA was extracted using an RNeasy Mini Kit 
(Cat#74106, QIAGEN) following the manufacturer’s 
instructions, and the RIN was checked by an Agilent Bio-
analyzer 2100 (Agilent Technologies, Santa Clara, CA, 
US). The qualified total RNA was further purified by an 
RNA Clean XP Kit (Cat A63987, Beckman Coulter, Inc., 
Kraemer Boulevard Brea, CA, USA) and an RNase-Free 
DNase Set (Cat#79254, QIAGEN, GmbH, Germany). The 
samples were sent to Shanghai Biotechnology Corpora-
tion for transcriptome sequencing. The samples were also 
used for qRT‒PCR analysis.

The starting sample of the sequencing experiment 
was total RNA, which was inspected via a NanoDrop 
ND-2000 spectrophotometer and Agilent Bioanalyzer 
2100 (Agilent Technologies, Santa Clara, CA, US). The 
qualified RNA was used for library construction. Library 
construction of sequencing samples involved mRNA sep-
aration, fragmentation, first-strand cDNA synthesis, sec-
ond-strand cDNA synthesis, end repair and other steps 
involving the purified total RNA.

For all the constructed libraries, a Qubit® 2.0 Fluorom-
eter was used to measure concentration, and an Agilent 
4200 was used to measure library size. The qualified 
library was then sequenced. Sequencing reagents were 
prepared according to the Illumina User Guide, and 
the cluster flow cell was loaded onto the machine. The 
paired-end program was used for paired-end sequencing. 
The sequencing process was run by Illumina data collec-
tion software, and real-time data analysis was performed.

Illumina data analysis
The low-quality reads were filtered with Seqtk (https://​
github.​com/​lh3/​seqtk) by removing the adapter 
sequence, and the obtained high-quality clean reads 
were used for genome alignment. The spliced mapping 
algorithm of HISAT2 (version: 2.0.4) [69] was applied to 
conduct genome mapping for the preprocessed reads. 
Then, To achieve comparability of gene expression levels 
between different genes and samples, reads were trans-
formed into (fragments per kilobase of exon model per 
million mapped reads) FPKM for standardization of gene 
expression levels. The reads mapped to gene regions 
were converted into FPKM for standardization of gene 

https://github.com/lh3/seqtk
https://github.com/lh3/seqtk
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expression [70]. edgeR [71] was applied to conduct dif-
ferential gene analysis among samples, and genes iden-
tifed by edgeR with FDR ≤ 0.05 and FC ≥ 2 were defned as 
diferentially expressed.

PacBio SMRTbell library preparation and sequencing
The high-quality RNA was reverse transcribed into 
cDNA with a SMARTer® PCR cDNA Synthesis Kit, and 
PCR amplification was performed using KAPA HiFi 
PCR Kits. The PacBio Biosciences SMRT-seq platform 
provides long reads up to transcript length. A SMRT-
bell library was constructed with a SMRTbell Template 
Prep Kit(1.0). The DNA was repaired by DNA Damage 
Repair Mix (PacBio) and End Repair Mix (PacBio). Stem 
loop sequencing splices were attached to both ends of the 
cDNA fragments, and exonuclease was used to remove 
the fragments that failed to connect. After library con-
struction, the library templates and enzyme complexes 
with certain concentrations and volumes were trans-
ferred to the nanopore of the PacBio Sequel sequencer 
for single molecule real-time (SMRT) sequencing. After 
sequencing was completed, high-quality sequencing 
data were filtered, and a series of biological information 
analyses was carried out. SMRTlink (version 6.0) analysis 
software [72] was used to process the original data, and 
full-length consensus sequences were obtained after clus-
tering. Then, the full-length consensus sequences were 
used for subsequent analysis.

PacBio data analysis
The analysis was based on the IsoSeq3 (https://​github.​com/​
Pacif​icBio​scien​ces/​IsoSe​q3) process. The raw polymer-
ase reads that had a minimum number of full passes ≥ 1 
and a minimum prediction accuracy ≥ 0.80 were selected 
for producing reads of insert (ROIs). Among the sequenc-
ing results, not all ROIs were complete, and a small part 
of the sequences were chimaeras. After obtaining the full-
length transcript sequence, further processing was needed 
to remove the terminal poly-A and chimaeras to obtain full-
length nonconcatemer reads.

Functional annotation of transcripts
DIAMOND software (version 2.0.4, parameter: -k 100 -e 
-evalue 1e-5 -f 5) was used to compare the obtained new 
transcript sequences with those in the NR (ftp://​ftp.​ncbi.​
nih.​gov/​blast/​db/), SwissProt (http://​www.​unipr​ot.​org/), 
GO (http://​www.​geneo​ntolo​gy.​org/), COG (http://​www.​
ncbi.​nlm.​nih.​gov/​COG/), KOG (http://​www.​ncbi.​nlm.​
nih.​gov/​COG/), Pfam (http://​pfam.​xfam.​org/) and KEGG 
(http://​www.​genome.​jp/​kegg/) databases to obtain anno-
tation information of the transcripts.

Identifcation of AS events, lncRNAs and SSR analysis
We used Astalavista software (http://​astal​avista.​samme​
th.​net/) [73] to obtain the variable splicing types exist-
ing in each sample.

Four computational methods, namely, those associated 
with the Pfam, Cooperative Data Classification (CPC) 
[74], Coding Assessing Potential Tool (CPAT) [75], and 
Coding Non-Coding Index (CNCI) [76] databases, were 
used to identify long non-coding RNAs (lncRNAs). MISA 
(MIcroSAtellite identification tool) is a software that iden-
tifies simple repeat sequences (http://​pgrc.​ipk-​gater​sleben.​
de/​misa/), it can identify seven types of SSR by analyzing 
transcript sequences.Transcripts longer than 500  bp were 
screened from the new transcripts, and SSR analysis was 
performed using MISA (version 1.0, Parameter: Default).

Differentially expressed gene identification
To identify differentially expressed genes (DEGs), 
we used DESeq (http://​www.​bioco​nduct​or.​org/​packa​
ges/​relea​se/​bioc/​html/​DESeq.​html) to analyse gene 
expression differences between the R and S group. 
A fold = change ≥ 2 and an FDR < 0.01 were used as 
screening criteria in the detection of differentially 
expressed genes.

WGCNA and Cytoscape analysis
The WGCNA package (https://​horva​th.​genet​ics.​ucla.​edu/​
html/​Coexp​ressi​onNet​work/​Rpack​ages/​WGCNA/​index.​
html) was used to construct a co-expression network for 
transcriptome analysis. Then Pearson correlation matrix 
and network topology analysis were used to calculate the 
gene correlation of the samples at 6 time points (0, 6, 12, 
24, 36, 48 h). Use the following Settings: minimum module 
size of 50, absolute value of correlation coefficient ≥ 0.3 and 
the threshold value of pValue < 0.05, the modules related to 
each trait were screened. For each trait related module, the 
correlation of module Gene expression and corresponding 
trait (Gene Significance, GS) was calculated respectively, 
and the correlation between module gene expression and 
Eigengene was also calculated.

By using Cytoscape (version 3.7.1) and plugin of Cyto-
Hubba, the central and highly connected genes of specific 
modules in each stage were identified by visualizing the 
top 20 genes. Three computational algorithms of Cyto-
Hubba named Degree, Closeness, and MCC were used 
for detecting hub genes.

Quantitative real‑time PCR
The primers used for quantitative real-time PCR (qRT‒
PCR) were designed by Primer Premier 5.0 software [77] 
and synthesized by Sangon Biotech; they are shown in 
Table S7. A CFX 384™ real-time system (Thermo) was 

https://github.com/PacificBiosciences/IsoSeq3
https://github.com/PacificBiosciences/IsoSeq3
ftp://ftp.ncbi.nih.gov/blast/db/
ftp://ftp.ncbi.nih.gov/blast/db/
http://www.uniprot.org/
http://www.geneontology.org/
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http://www.ncbi.nlm.nih.gov/COG/
http://www.ncbi.nlm.nih.gov/COG/
http://www.ncbi.nlm.nih.gov/COG/
http://pfam.xfam.org/
http://www.genome.jp/kegg/
http://astalavista.sammeth.net/
http://astalavista.sammeth.net/
http://pgrc.ipk-gatersleben.de/misa/
http://pgrc.ipk-gatersleben.de/misa/
http://www.bioconductor.org/packages/release/bioc/html/DESeq.html
http://www.bioconductor.org/packages/release/bioc/html/DESeq.html
https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/index.html
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https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/index.html
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used to measure fluorescence quantities with a reaction 
system of 10.0 μL comprising 5.0 μL Luna®Universal 
qPCR Master Mix, 0.25 μL of forward and reverse prim-
ers, 1.0 μL of cDNA and 3.5 μL of RNase-Free dH2O. PCR 
amplifcation was carried out as follows: First, 95  °C for 
3 min. Secondly, followed by 40 cycles of 95 °C for 10 s, 
58 °C for 30 s, 72 °C for 30 s. Finally, 65 °C for 5 s, 95 °C 
for 5  s. Relative quantitation was calculated with the 2−

ΔΔCt method [78]. Each sample was replicated 3 times.

Statistical analysis
All the data in this study are the mean values of three 
biological replicates. The expression level of each gene 
was normalized to fragments per kilobase per million 
(FPKM) for comparison between different samples. The 
statistical analysis of the qRT‒PCR data in this study was 
performed using SPSS 13 software [79], and the map-
pings were generated using Excel 2010.
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