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Abstract 

Background Camellia olelfera petals are colorful, and have high ornamental value. However, the color formation 
mechanism of C. olelfera petals with different color is still unclear. In our study, WGCNA method was applied to inte‑
grate metabolites and transcriptomes to investigate the coloration mechanism of four C. olelfera cultivars with differ‑
ent petal colors.

Results Here, a total of 372 flavonoids were identified (including 27 anthocyanins), and 13 anthocyanins were 
significantly differentially accumulated in C. olelfera petals. Among them, cyanidin‑3‑O‑(6’’‑O‑p‑Coumaroyl) gluco‑
side was the main color constituent in pink petals, cyanidin‑3‑O‑glucoside, cyanidin‑3‑O‑galactoside, cyanidin‑3‑O‑
rutinoside, and cyanidin‑3‑O‑(6’’‑O‑malonyl) glucoside were the main contributors to candy pink petals, and peo‑
nidin‑3‑O‑glucoside was the important color substance responsible for the red petals of C. oleifera. Furthermore, six 
structural genes (Co4CL1, CoF3H1, CoF3’H, CoANS, CoUGT75C1-4, and CoUGT75C1-5), three MYBs (CoMYB1, CoMYB4, 
and CoMYB44-3), three bHLHs (CobHLH30, CobHLH 77, and CobHLH 79–1), and two WRKYs (CoWRKY7 and CoWRKY22) 
could be identified candidate genes related to anthocyanins biosynthesis and accumulation, and lead to the pink 
and red phenotypes. The regulatory network of differentially accumulated anthocyanins and the anthocyanins related 
genes in C. olelfera petals were established.

Conclusions These findings elucidate the molecular basis of the coloration mechanisms of pink and red color in C. 
olelfera petals, and provided valuable target genes for future improvement of petals color in C. olelfera.
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Background
Camellia olelfera AbelC.oleosa (Lour.) Rehd. is the flower 
of Camellia oleifera belonging to the genus Camellia [1, 
2]. C. oleifera flower is known for its abundant resources, 
beautiful flower type, long flowering period, and has high 
ornamental value [3]. In addition, C. oleifera petals have 
strong antioxidant, anticancer, nourishing, lipid-lower-
ing, hypoglycemic, nourishing, detoxification due to their 
abundance of nutrients and active substances, including 
phenols, amino acids, and flavonoids [4, 5]. Most of C. 
oleifera petals color is white, and there are few researches 
on the variations of different petals colors. Therefore, 
producers and researchers continue to explore the 
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formation mechanism of C. oleifera petals color, enrich 
the petals color, and fully realize the economic value and 
ornamental value of C. oleifera flower resources.

Anthocyanins display an essential role in the coloration 
of different parts of plants, which are the main source 
of pigments in flowers, fruits, leaves and seeds of many 
angiosperms, and especially exhibit a significant role in 
the formation of petal color [6, 7]. Petal color, an impor-
tant indicator, reflects the growth status, reproduc-
tive capacity and ability to adapt to the environment of 
plants [8, 9]. Anthocyanin is a water-soluble substance 
that exists in the cell vacuoles of petals, which could pro-
duce white, pink, red, blue, and purple colors [10, 11]. 
In recent years, many scholars have begun focus on the 
anthocyanins in different petals and the molecular mech-
anism of flower color formation [12, 13]. The anthocya-
nin biosynthesis, accumulation pathway and related gene 
expression have been extensively investigated in many 
plants [14, 15]. The biosynthesis pathway of anthocyanin 
belongs to a specific branch pathway of flavonoid biosyn-
thesis pathway, and the biosynthesis of anthocyanins are 
regulated by structural genes and transcription factors 
[16, 17]. The biosynthetic pathway of anthocyanin starts 
from the phenylalanine metabolic pathway, and the bio-
synthetic reaction is catalyzed by the structural genes 
encoding the following enzymes: chalcone synthase 
(CHS), chalcone isomerase (CHI), flavonol 3′ -hydroxy-
lase (F3′H), flavanone-3′ 5′ -hydroxylase (F3′5′H), dihy-
droflavonol-4-reductase (DFR), anthocyanin synthase 
(ANS/LDOX), and UDP‐glucose: flavonoid 3‐Ogluco-
syltransferase (UFGT) [18]. Transcription factors also 
display a vital role in anthocyanin biosynthesis, which 
indirectly regulate anthocyanin biosynthesis by regulat-
ing the transcription and expression of structural genes. 
And, transcription factor families regulating anthocyanin 
biosynthesis pathway mainly include MYB, bHLH and 
WD40 [19, 20]. These transcription factors could form 
MBW complex and activate the promoter of structural 
genes, thereby regulating the transcription and expres-
sion of anthocyanin structural genes [21, 22].

Petals color diversity is mainly caused by the different 
types and contents of anthocyanins [23]. The main col-
oring substance of red purple and red Rhododendron 
triflorum is cyanidin, whereas the main color-producing 
pigment in Rhododendron nivale and Rhododendron ore-
otrephes is malvidin [24]. The cyanidin-3-O- (6’’-O-mal-
onyl) glucoside, and cyanidin-3-O-rutinoside, 
peonidin-3-O-glucoside, cyanidin-3-O-glucoside, and 
pelargonidin-3-O-glucoside were the main anthocya-
nins in Camellia japonica petals, which were the main 
coloring substances responsible C. japonica petals [6]. 
Pink tea tree flower has more anthocyanin content than 
white tea tree flower, such as cyanidin-O-syringic acid, 

cyanidin-3-O-glucoside and petunidin-3-O-glucoside 
pigment [3]. Peonidin derivatives were the main color-
ing compounds that determined the Rosa rugosa pet-
als color, and cyanidin-3,5-O-diglucoside and peonidin 
3,5-O-diglucoside are two dominant anthocyanins in R. 
rugosa petals, among which the total content of cyani-
din-3,5-O-diglucoside determines the color intensity of 
the petals, such as pink or purple, light red or deep red 
[25]. With the development of omics technology, more 
researches have combined metabolome and transcrip-
tome to explore the traits formation mechanism and reg-
ulatory genes of horticultural plants. However, the types 
and contents of anthocyanins in C. oleifera petals have 
not been reported, and the formation mechanism of petal 
color is still unclear.

In the present study, UPLC-MS/MS technology was to 
comprehensively characterize the differentially accumu-
lated anthocyanins compounds in four C. oleifera pet-
als with different color, and a comprehensive RNA-seq 
experiment was to screen out the potential genes related 
to anthocyanins accumulation. The results of this study 
were helpful to understand the anthocyanin biosynthesis 
in pink, candy pink, and red C. oleifera petals, and pro-
vide valuable insights for further study of the regulatory 
network of anthocyanin biosynthesis and lay an impor-
tant theoretical guidance for improvement and breeding 
specific color of C. oleifera petals.

Materials and methods
Plant materials
Four C. oleifera cultivars with different petal color, culti-
vated in Shaanxi C. oleifera germplasm resources reposi-
tory in Nanzheng District, Shaanxi Province, China, with 
the tree age of 45 years, were selected as the experimental 
materials. The four C. oleifera cultivars, namely “Camel-
lia yuhsienensis” (White, W), “Camellia reticulate” 
(Pink, P), “Camellia semiserrata” (Candy pink, CP), and 
“Camellia chekiangoleosa” (Red, R), were white, pink, 
candy pink and red, respectively (Fig. 1). Petals were col-
lected with three biological replicates on March 8, 2023. 
Then, the petals were immediately stripped, put into 
liquid nitrogen, and brought back to the laboratory for 
storage at -80 °C for the anthocyanin determination and 
RNA extraction.

Identification and quantitative analysis of metabolites
The abundances of specific anthocyanin compounds 
were then quantified with ultra performance liquid chro-
matography (UPLC)-tandem mass spectrometry (MS/
MS). Fresh petals samples were freeze-dried, ground 
to powder in a grinder (MM 400, Retsch) at 30  Hz for 
1.5 min, then stored at -80 °C until further analysis. For 
each sample, 100 mg of powder was extracted in 1.0 mL 
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of methanol. The extracts were vortexed for 5 min, then 
treated with ultrasonication for 10  min. Samples were 
centrifuged at 12,000 × g at 4 °C for 3 min and the super-
natant was removed. The supernatants were collected 
and filtrated through a membrane with a 0.22-μm pore 
size (Anpel Laboratory Technologies, Shanghai, China).

The samples were separated on the QTRAP 6500 
LC–MS/MS platform (AB Sciex, Framingham, MA, 
USA) using an ACQUITY BEH C18 column (1.7  µm, 
2.1 mm*100 mm) (Waters, Milford, MA, USA). Solvent A 
was 0.1% formic acid in water and Solvent B was 0.1% for-
mic acid in methanol. The gradient program was as fol-
lows: 19:1 Solvent A:B at 0 min; 1:1 Solvent A:B at 6 min; 
1:19 Solvent A:B from 12–14 min; and 19:1 Solvent A:B 
from 14–16 min. The flow rate was 0.35 mL/min, the col-
umn temperature was 40  °C, and the injection volume 
was 2 μL. The electrospray ionization (ESI)-MS/MS con-
ditions were as follows: ion source, ESI + ; source temper-
ature, 550 ℃; ion spray (IS) voltage, 5500 V; curtain gas 
pressure, 35 psi. Peaks were detected and quantified with 
MetWare (http:// www. metwa re. cn/).

The integration and correction of chromatographic 
peaks were carried out by MultiaQuant software (AB 
SCIEX, Concord, ON, Canada), and metabolite data anal-
ysis was conducted by using Analyst 1.6.3 software (AB 
SCIEX, Concord, ON, Canada). The distinction between 
groups was maximized by partial least squares-discrimi-
nant analysis (OPLS-DA), and based on the OPLS-DA 
results, the differential metabolites were screened by 
combining fold change and the variable importance in 
projection values (VIP). VIP ≥ 1 and fold change ≥ 2 or 
fold change ≤ 0.5 were set as the selection standard dif-
ferential metabolites.

Complementary DNA (cDNA) library construction and RNA 
sequencing
Total RNA was extracted from the C. oleifera petals using 
the RNAprep Pure Plant Kit (Tiangen, Beijing, China) 

following the manufacturer’s instructions. The RNA con-
centration and purity were measured on a NanoDrop 
2000 (Thermo Fisher Scientific, Wilmington, DE, USA). 
RNA integrity was assessed using the RNA Nano 6000 
Assay Kit with the Agilent Bioanalyzer 2100 system (Agi-
lent Technologies, Santa Clara, CA, USA). Sequencing 
libraries were generated using the NEBNext Ultra RNA 
Library Prep Kit for Illumina (New England Biolabs, 
Ipswich, MA, USA) following the manufacturer’s instruc-
tions. Index codes were added to identify each sample. 
Clean reads were aligned to the C. oleifera reference 
genome using Hisat2. Successfully aligned sequences 
were assembled and expression levels calculated with 
StringTie software to establish a transcriptome library.

Functional annotation of differential expression genes 
(DEGs)
DEGs between four petals samples were identified 
with the ‘DESeq2’ R package (v1.16.1). The thresholds 
were false discovery rate (FDR)-adjusted p < 0.05 and 
|log2(fold change [FC])|≥ 1. DEG expression patterns 
were displayed as heat maps, which were generated in 
R software. Enrichment analyses were conducted in the 
DEG sets using Gene Ontology (GO, http:// www. geneo 
ntolo gy. org/) annotation terms and Kyoto Encyclopedia 
of Genes and Genomes (KEGG, http:// www. genome. jp/ 
kegg/) biochemical pathways with the ‘cluster Profiler’ 
package in R, correcting for gene length bias. GO terms 
with corrected p-values < 0.05 were considered signifi-
cantly enriched.

Weighted gene co‑expression network analysis
The screened DEGs and differentially accumulated 
metabolites were applied to build a regulatory network 
through weighted gene co-expression network analysis 
(WGCNA) tools on Metware Cloud platform. Further-
more, the correlation coefficients between the hub genes 
in the modules and the differential metabolites were 

Fig. 1 Different flower colors among four C. oleifera varieties, namely “C. yuhsienensis” (W), “C. taishunensis” (P), “C. reticulate” (CP), and “C. 
chekiangoleosa” (R)

http://www.metware.cn/
http://www.geneontology.org/
http://www.geneontology.org/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
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calculated, then we selected the candidate genes with the 
correlation values ≥ 0.8 or ≤  − 0.8 with the differential 
metabolites, and drew an interaction network diagram 
among the candidate genes and metabolites.

Cis‑acting element analysis
The promoter regions (defined as the 2000-bp regions 
upstream of the translation start sites) of key genes sus-
pected to be responsive to light or sucrose were analyzed 
to identify putative cis-acting elements. Each promoter 
region was analyzed using the tool on the PlantCARE 
website (https:// bioin forma tics. psb. ugent. be/ webto ols/ 
plant care/ html/).

Quantitative reverse transcription (qRT)‑PCR analysis
The primer sequences for qRT-PCR (Table  S1) were 
designed in accordance with the mRNA sequences 
gained from Integrated DNA Technologies (IDT) web-
site. qRT-PCR was performed on a Step One PULS Real-
Time Detection System (ABI, Foster, CA, USA) using 
the SuperReal fluorescence quantitative premix rea-
gent (SYBR Green) kit (Tiangen, Beijing, China). Gene 
expression was normalized with the 2-ΔΔCt method using 
β-actin as the internal control.

Results
Flavonoid metabolome profile in Camellia oleifera petals
Based on the UPLC-MS/MS detection platform, a total of 
372 flavonoid metabolite species were identified, includ-
ing 26 proanthocyanidins, 8 biflavones, 38 tannins, 22 
flavanols, 83 flavonols, 85 flavonoids, 27 anthocyanins, 
11 dihydroflavonols, 27 flavanones, 6 aurones, 23 chal-
cones (including C-glucosylquinochalcones), and 9 oth-
ers. All details were provided in Table S2. It was observed 
that samples from different-colored petals were clustered 
together, indicating that the generated metabolic data 
were highly reliable. Interestingly, a clear separation was 
found between white, pink petal samples (W and P) and 
candy pink, red petals samples (CP and R), suggesting 
that the metabolites profiles in those four samples were 
obviously distinct. The results of the heatmap demon-
strated that four petal samples with different color were 
divided into two clusters, the metabolites between W, P, 
CP and R petals exhibited a different accumulation level 
(Fig. S1).

The differentially accumulated metabolites (DAMs) 
between pairwise comparisons among W_vs_P, P_vs_CP, 
and CP_vs_R were screened by the variable importance 
in projection values (VIP) ≥ 1 and fold change ≥ 2 or fold 
change ≤ 0.5. The W_vs_P comparison and P_vs_CP 
comparison had the largest number of upregulated and 
down-regulated DAMs (Fig. 2A). Among these compari-
sons, there were 176 DAMs (125 up-regulated and 51 

down-regulated) in the W_vs_P comparison, 220 DAMs 
(72 up-regulated and 148 down-regulated) in the P_vs_
CP comparison, and 61 DAMs (14 up-regulated and 47 
down-regulated) in the CP_vs_R comparison, respec-
tively (Fig. 2B). KEDD pathway enrichment analyses were 
carried out to gain further insights into the biochemical 
pathway to which the DAMs belonged. The top three 
enriched KEGG pathway between the 3 comparisons 
were anthocyanin biosynthesis, flavonoid biosynthesis, 
and flavone and flavonol biosynthesis (Fig. 2C-E). Given 
the role of anthocyanins and flavonoids in petals colora-
tion, we deduced that the DAMs in anthocyanin biosyn-
thesis pathway and flavonoid biosynthesis pathway might 
be likely the key metabolites underlying the variations in 
C. oleifera petals.

Analysis of related metabolites in anthocyanin synthesis 
pathway
A total of 27 anthocyanins were identified in C. oleifera 
petals, including cyanidin, peonidin, pelargonidin, delphi-
nidin and malvidin (Table 1). There were 22 differentially 
accumulated anthocyanins (22 up-regulated) in W_vs_P 
comparison (Table  S3), 22 differentially accumulated 
anthocyanins (8 up-regulated and 14 down-regulated) 
in P_vs _CP comparison (Table  S4), and 2 differentially 
accumulated anthocyanins (1 up-regulated and 1 down-
regulated) in CP_vs_R comparison (Table  S5). Among 
them, cyanidin-3-O-(6’’-O-p-Coumaroyl) glucoside, 
cyanidin-3-O-arabinoside, pelargonidin-3-O-glucoside, 
delphinidin-3-O-galactoside and peonidin-3-O-glucoside 
in P petals were increased by 458.44-, 263.94-, 191.00-, 
166.80-, 159.34-fold, respectively, compared with those 
in W petals. Cyanidin-3-O-glucoside, cyanidin-3-O-
galactoside, cyanidin-3-O-rutinoside, and cyanidin-3-O-
(6’’-O-malonyl) glucoside in CP petals were increased 
by 11.92-, 5.03-, 3.80-, and 3.72-fold, respectively, com-
pared with that in P petals, while cyanidin-3-O-(6’’-O-
p-Coumaroyl) glucoside were decreased by 0.28-fold. 
Peonidin-3-O-glucoside in R petals was 4.63-fold higher 
than that in CP petals, and cyanidin-3-O-(6’’-O-malonyl) 
glucoside was decreased by 0.20-fold. Cyanidin-3-O-
(6’’-O-p-Coumaroyl) glucoside was the main color 
constituent in pink petals, cyanidin-3-O-glucoside, cya-
nidin-3-O-galactoside, cyanidin-3-O-rutinoside, and 
cyanidin-3-O-(6’’-O-malonyl) glucoside were the main 
anthocyanins in candy pink petals, and peonidin-3-O-
glucoside was the important coloring substance in the 
red petals. Cyanidin-3-O-glucoside, cyanidin-3-O-
galactoside, cyanidin-3-O-rutinoside, peonidin-3-O-
glucoside, cyanidin-3-O-(6’’-O-malonyl) glucoside, and 
cyanidin-3-O-(6’’-O-p-Coumaroyl) glucoside were spec-
ulated to be important anthocyanins for the coloration of 
C. oleifera petals, and the difference in content might be 

https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
https://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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the main reasons for the difference in C. oleifera petals 
with different color.

Transcriptome sequencing and identification of DEGs in C. 
oleifera petals
To further elucidate the molecules mechanisms of C. 
oleifera petals coloration, Deiiovo-RNAseq was per-
formed to investigated the variations in genes expression 
profiles among the four petals samples. The transcrip-
tome profiling was performed on twelve libraries (4 pet-
als × 3 biological repeats) yield a total of 95.20 Gb clean 
data with 92.00% or more of bases scoring Q30 (Table 2), 
with mapping rates between 75.45% and 81.07%. In 
all, 60,720 genes comprising 27,429 known genes and 
33,291 novel genes were detected from the 12 librar-
ies (Table S6). PCA results of the 12 samples were clus-
tered together, indicating the transcriptome sequencing 
data was reliable. Similar to the metabolites, there was 
an obvious separation between white-, pink-colored petal 
samples and candy pink-, red-colored petals samples, 
implying the changes in metabolites in different color 
petals were tightly governed by differential expression 
genes.

Using an FDR-adjusted p-value threshold of 0.05 and 
a |log2(fold change)| threshold of 1, selected pairwise 
comparisons among the W, P, CP, and R petals samples 
yielded a total of 24,334 DEGs. There were 15,375 DEGs 
(8318 up-regulated and 7057 down-regulated) in W_vs_P 
comparison, 15,157 DEGs (7532 up-regulated and 7625 
down-regulated) in P_vs_CP comparison, and 8037 
DEGs (3879 up-regulated and 4158 down-regulated) in 
CP_vs_R comparison (Fig.  3A). There were 6099, 4374, 
and 1963 unique DEGs in the comparison of W_vs_P, 
P_vs_CP, and CP_vs_R, respectively. The results demon-
strated that 2337 genes were differentially expressed in 
the common across the three comparisons, suggesting 
that those DEGs might be the key genes related to color 
expression of C. oleifera petals.

To understand the functions of DEGs in each of the 
three comparison groups, we conducted GO anno-
tation enrichment analysis. Differential GO cluster-
ing analysis focused on three major categories: cellular 
component, biological process, and molecular function. 
Enriched molecular function terms included “UDP-
glucosyltransferase activity”, “glucosyltransferase activ-
ity”, and enriched biological process terms included 

Fig. 2 A Venn diagram. B Numbers of differential metabolites in W, P, CP and R, red indicated up‑regulated differential metabolites, and blue 
indicated down‑regulated differential metabolites. C W‑vs‑P; D P‑vs‑CP; E CP‑vs‑R, abscissa indicated the rich factor corresponding to each pathway, 
ordinate indicated the pathway name, dot color indicated p‑value, and dot size indicated the number of enriched differential metabolites. We 
obtained permission to use the KEGG software from the Kanehisa laboratory (Ref: 231,702). W: “C. yuhsienensis” petals, P: “C. reticulate” petals, CP: “C. 
semiserrata” petals, R: “C. chekiangoleosa” petals
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Table 1 Differentially accumulated anthocyanins in four C. oleifera petals

W: “C. yuhsienensis” petals, P: “C. reticulate” petals, CP: “C. semiserrata” petals, R: “C. chekiangoleosa” petals

Compounds Molecular weight 
(Da)

Ion abundance

W P CP R

Cyanidin‑3‑O‑(6’’‑O‑malonyl) glucoside 5.35E + 02 6.11E + 04 4.99E + 05 1.86E + 06 3.63E + 05

Cyanidin‑3,5‑O‑diglucoside 6.11E + 02 2.23E + 03 5.87E + 06 7.78E + 05 7.43E + 05

Cyanidin‑3‑O‑gentiobioside 6.11E + 02 1.12E + 03 5.70E + 06 1.08E + 05 1.66E + 05

Cyanidin‑3‑O‑sambubioside‑5‑O‑glucoside 7.43E + 02 2.55E + 03 3.00E + 05 1.51E + 04 1.06E + 04

Cyanidin‑3‑O‑xyloside 4.19E + 02 9.00E + 00 1.70E + 05 7.65E + 05 1.38E + 06

Pelargonidin‑3‑O‑rutinoside 5.79E + 02 7.75E + 06 6.41E + 06 9.24E + 06 1.27E + 07

Cyanidin‑3‑O‑glucoside 4.49E + 02 2.78E + 03 1.51E + 06 1.80E + 07 2.35E + 07

Malvidin‑3‑O‑(6’’‑O‑malonyl) glucoside 5.79E + 02 3.59E + 05 2.99E + 05 3.78E + 05 3.20E + 05

Cyanidin‑3‑O‑galactoside 4.49E + 02 3.76E + 04 1.19E + 07 6.00E + 07 7.15E + 07

Cyanidin‑3‑O‑(6’’‑O‑caffeoyl‑2’’‑O‑xylosyl) glucoside 7.43E + 02 3.23E + 03 6.66E + 06 9.00E + 00 5.15E + 03

Cyanidin‑3‑O‑(2’’‑O‑xylosyl) glucoside‑5‑O‑glucoside 7.43E + 02 3.86E + 03 3.33E + 05 1.47E + 04 1.07E + 04

Pelargonidin‑3,5‑O‑diglucoside 5.95E + 02 4.57E + 04 2.46E + 06 6.62E + 04 9.14E + 04

Cyanidin‑3‑O‑(6’’‑O‑p‑Coumaroyl) glucoside 5.95E + 02 3.92E + 04 1.80E + 07 4.95E + 06 6.52E + 06

Cyanidin‑3‑O‑(6’’‑O‑caffeoyl) glucoside 6.11E + 02 9.45E + 03 2.42E + 06 1.30E + 05 6.50E + 04

Peonidin‑3‑O‑glucoside 4.63E + 02 9.89E + 03 1.58E + 06 2.75E + 06 1.28E + 07

Cyanidin‑3‑O‑arabinoside 4.19E + 02 9.58E + 02 2.53E + 05 9.04E + 05 1.70E + 06

Pelargonidin‑3‑O‑glucoside 4.33E + 02 5.79E + 04 1.11E + 07 6.60E + 06 6.27E + 06

Peonidin‑3‑O‑(6’’‑O‑p‑coumaroyl) glucoside 6.09E + 02 2.79E + 04 3.46E + 06 6.16E + 05 6.42E + 05

Delphinidin‑3‑O‑sambubioside 5.97E + 02 2.35E + 04 3.11E + 05 1.63E + 04 2.14E + 04

Peonidin‑3‑O‑rutinoside 6.09E + 02 2.94E + 03 4.20E + 04 2.91E + 05 3.48E + 05

Delphinidin‑3‑O‑galactoside 4.65E + 02 2.44E + 04 4.07E + 06 8.78E + 04 1.25E + 05

Cyanidin‑3‑O‑(6’’‑O‑acetyl) glucoside‑5‑O‑glucoside 6.53E + 02 8.54E + 02 3.16E + 05 5.69E + 03 9.00E + 00

Pelargonidin‑3‑O‑glucoside‑5‑O‑arabinoside 5.65E + 02 4.94E + 03 9.77E + 05 3.03E + 03 2.11E + 03

Cyanidin‑3‑O‑(6’’‑O‑acetyl) glucoside 4.91E + 02 3.40E + 03 3.61E + 05 6.19E + 05 6.61E + 05

Cyanidin‑3‑O‑sophorotrioside 7.73E + 02 9.00E + 00 3.47E + 05 1.81E + 04 1.88E + 04

Delphinidin‑3‑O‑glucoside (Mirtillin) 4.65E + 02 2.50E + 04 1.80E + 06 6.32E + 06 5.03E + 06

Cyanidin‑3‑O‑rutinoside (Keracyanin) 5.95E + 02 4.92E + 04 3.37E + 06 1.28E + 07 9.57E + 06

Table 2 Sequencing and quality statistics

W: “C. yuhsienensis” petals, P: “C. reticulate” petals, CP: “C. semiserrata” petals, R: “C. chekiangoleosa” petals

Sample Clean Reads Clean Base (Gb) Error Rate (%) Q20 (%) Q30 (%) GC Content (%)

W‑1 49,668,862 7.45 0.03 97.58 93.14 44.58

W‑2 48,129,746 7.22 0.03 97.40 92.80 44.83

W‑3 49,468,544 7.42 0.03 97.03 92.17 45.02

P‑1 55,277,188 8.29 0.03 97.41 92.72 44.94

P‑2 51,166,048 7.67 0.03 97.20 92.24 44.98

P‑3 59,686,126 8.95 0.03 97.38 92.63 44.94

CP‑1 52,244,350 7.84 0.03 97.44 92.79 44.55

CP‑2 53,492,038 8.02 0.03 97.49 92.91 44.58

CP‑3 47,874,262 7.18 0.03 97.60 93.15 44.64

R‑1 54,281,030 8.14 0.03 97.46 92.9 44.86

R‑2 48,963,938 7.34 0.03 97.50 92.86 44.65

R‑3 64,527,812 9.68 0.03 97.61 93.15 44.96
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“phenylpropanoid metabolic process”, and “secondary 
metabolite biosynthetic process”. A total of 168 and 159 
unigenes were involved in the phenylpropanoid meta-
bolic process and secondary metabolite biosynthetic 
process in the biological process, and 155 unigenes 
had UDP-glucosyltransferase activity in the molecular 
function.

KEGG pathway enrichment analyses were applied to 
gain further into the biochemical pathway to which the 
DEGs belonged. In the comparisons of W_vs_P, enriched 
pathways included “plant hormone signal transduc-
tion”, “ABC transporters”, “starch and sucrose metabo-
lism”, “phenylpropanoid biosynthesis”, and “biosynthesis 
of secondary metabolites”. The terms of “plant hormone 
signal transduction”, “amino sugar and nucleotide sugar 
metabolism”, “biosynthesis of various plant second-
ary metabolites”, “phenylalanine metabolism”, and “ABC 
transporters” were significantly enriched in the com-
parisons of P_vs_CP and CP_vs_R (Fig. 3B). We focused 
on the several pathways associated with anthocyanins 
synthesis for further analyses, because they were key 
components of environmental adaptation and special-
ized metabolite biosynthesis: “plant hormone signal 

transduction”, “flavonoid biosynthesis”, “phenylpropanoid 
biosynthesis”, and “anthocyanins biosynthesis”. Based on 
the selected DEGs enriched by KEGG pathway combined 
with enriched GO functional annotations, we screeded 
the DEGs related to anthocyanins biosynthesis, includ-
ing the PAL, CHS, CHI, F3H, F3′H, F3′5′H, DFR, ANS, 
and UFGT, which were annotated as members of the 
flavonoid biosynthesis and anthocyanin biosynthesis 
pathways.

The key DEGs related to anthocyanin biosynthesis pathway
A total of 32 structural DEGs related to phenylpropa-
noid biosynthesis, flavonoid biosynthesis, and antho-
cyanin biosynthesis pathways were screened, including 
CoPAL, Co4CL, CoCHS, CoCHI, CoF3H, CoFLS, CoF3’H, 
CoF3′5’H, CoDFR, CoLAR, CoANS, CoUFGT, and 
CoUGT75C1, and the expression levels of each gene 
could be viewed in Table S7. The structural genes CoPAL, 
Co4CL, CoCHS, and CoCHI were involved in the ini-
tial stage of anthocyanin biosynthesis process. It was 
clearly found that two CoPAL genes (snap_masked-
HiC_scaffold_10-processed-216.61 and novel.28964) 
exhibited a high expression in W petals and a low 

Fig. 3 Differential expressed genes (DEGs) in four C. oleifera petals. A Volcano plots displaying the up‑regulated (red color), down‑regulated (green 
color) and no‑regulated genes (blue color) in the comparsion of W_vs_P, P_vs_CP, and CP_vs_R, B Top KEGG terms contributed by the DEGs 
in the comparsion of W_vs_P, P_vs_CP, and CP_vs_R. W: “C. yuhsienensis” petals, P: “C. reticulate” petals, CP: “C. semiserrata” petals, R: “C. chekiangoleosa” 
petals
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expression in P, CP, and R petals, while those two CoPAL 
genes were upregulated from P teals to CP petals. Two 
CoCHS genes (maker-HiC_scaffold_2-snap-502.56 and 
maker-HiC_scaffold_5-snap-408.33), and one CoCHI 
gene (maker-HiC_scaffold_10-snap-504.1) were down-
regulated from CP petals to R petals, and one CoCHS 
genes (maker-HiC_scaffold_2-snap-502.56) and the 
CoCHI gene were upregulated in P and CP petals. Dihy-
drokaempferol was generated under the catalysis of the 
CoF3H gene. Two CoF3H genes were highly expressed 
in CP petals (maker-HiC_scaffold_10-snap-1632.38 and 
genemark-HiC_scaffold_5-processed-1754.17), one that 
was differentially expressed only in P petals (maker-HiC_
scaffold_10-snap-1632.38), one that was differentially 
expressed only in CP petals (genemark-HiC_scaffold_5-
processed-1754.17), and two that were differentially 
expressed only in R petals. The CoF3′H and CoF3′5′H 
genes were engaged in the key branch pathways in 
anthocyanin synthesis pathway, which determined what 
type of anthocyanin was produced. One CoF3′H gene 
(maker-HiC_scaffold_9-snap-939.4) was downregulated 
frow W petals to P petals, and was upregulated from P 
to CP, and was downregulated from CP petals to R pet-
als. One CoF3′5′H genes (genemark-HiC_scaffold_8-
processed-1189.62) was presented with high expression 
levels in P petals, and One CoF3′5′H genes (maker-HiC_
scaffold_6-snap-335.23) was upregulated from CP petals 
to P petals, and was downregulated from CP petals to R 
petals (Fig. 4A).

CoDFR is mainly responsible for catalyzing the conver-
sion of dihydroflavonol to leucocyanidin, leucodelphi-
nidin, and leucopelargonidin. Here, two CoDFR genes 
were identified (maker-HiC_scaffold_3-snap-109.10 
and maker-HiC_scaffold_3-snap-110.35), in which one 
CoDFR gene (maker-HiC_scaffold_3-snap-109.10) was 
highly expressed in W petals and was downregulated in 
P, CP and R petals, and one CoDFR gene (maker-HiC_
scaffold_3-snap-110.35) was upregulated in P and CP 
petals. And, one CoANS gene (maker-HiC_scaffold_14-
snap-740.10) was upregulated in P, CP, and R petals 
compared to W petals, while was downregulated from 
CP petals to R petals. CoUFGT and CoUGT75C1 are 
the last enzyme encoded by structural genes, which 

could catalyze unstable anthocyanins into anthocya-
nins. Four CoUFGT genes were (novel.3431, novel.2284, 
novel.31356, and novel.19862) identified, and one gene 
(novel.2284) was upregulated from W petals to P pet-
als, two genes (novel.3431 and novel.31356) were 
upregulated from P petals to CP petals. One UFGT 
gene (novel.19862) was upregulated from CP petals to 
R petals, and two genes (novel.3431 and novel.2284) 
were downregulated. Three CoUGT75C1 genes (augus-
tus_masked-HiC_scaffold_5-processed-574.44, augus-
tus_masked-HiC_scaffold_5-processed-548.0, and 
augustus_masked-HiC_scaffold_5-processed-573.0) were 
upregulated from W petals to P petals, and two genes 
(augustus_masked-HiC_scaffold_5-processed-548.5 and 
augustus_masked-HiC_scaffold_5-processed-573.2) 
were downregulated. Four CoUGT75C1 genes (augus-
tus_masked-HiC_scaffold_5-processed-548.5, augus-
tu s_ma ske d-HiC_s c a f fo ld_5- pro ce ss e d-573 .2 , 
augustus_masked- HiC_scaffold_5-processed-548.0, 
and augustus_masked-HiC_scaffold_5-processed-573.0) 
were upregulated in CP petals. Three CoUGT75C1 genes 
(augustus_masked-HiC_scaffold_5-processed-574.44, 
augustus_masked-HiC_scaffold_5-processed-548.5, and 
augustus_masked-HiC_scaffold_5-processed-573.2) were 
downregulated from CP petals to R petals (Fig. 4B).

Identification of transcription factors (TFs) involved 
in anthocyanin biosynthesis by WGCNA
Transcription factors (TFs) are the important regulators 
of anthocyanins biosynthesis and accumulation via con-
trolling the structural genes expression. In our study, a 
total of 1025 TFs were identified in four C. oleifera petals 
based on the transcriptome annotation results. The TFs 
classified results displayed that the TFs belonged to MYB, 
bHLH, WRKY, AP2/ERF, bZIP, and NAC family, and the 
MYB, bHLH, and WRKY were the top three TFs involved 
in anthocyanins biosynthesis, The differential expression 
levels of MYB, AP2/ERF, and NAC TFs were described 
in Fig. 5A, and the differential expression levels of bHLH, 
WRKY, and bZIP TFs were described in Fig.  5B. These 
TFs might directly regulate the anthocyanins biosynthe-
sis or indirectly affect the anthocyanins biosynthesis by 
regulating structural genes.

Fig. 4 Expression levels of structural genes involved in anthocyanin biosynthesis pathway in C. oleifera petals. A The identification of all candidate 
structural genes involved in phenylpropanoid biosynthesis, flavonoid biosynthesis. The color from blue to red in the heatmap indicated 
the expression levels of structural genes ranging from low to high. B The identification of all candidate structural genes involved in anthocyanins 
biosynthesis. Note: W: “C. yuhsienensis” petals, P: “C. reticulate” petals, CP: “C. semiserrata” petals, R: “C. chekiangoleosa” petals. CoPAL, phenylalanine 
ammonia lyase; Co4CL, 4‑coumarate: CoA ligase; CoCHS, chalcone synthase; CoCHI, chalcone isomerase; CoF3H, flavanone 3‑hydroxylase; CoF3′H, 
flavonoid 3′‑hydroxylase; CoF3′5′H, flavonoid 3′,5′‑hydroxylase; CoDFR, dihydroflavonol 4‑reductase; CoANS, anthocyanidin synthase; CoUFGT, 
anthocyanidin 3‑O‑glucosyltransferase; CoUGT75C1, anthocyanidin 3‑O‑glucoside 5‑O‑glucosyltransferase

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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We next sought to more comprehensively identify the 
specific transcription factors that regulated anthocya-
nin structural genes in C. oleifera petals. WGCNA was 
applied to conduct using the FPKM values of 24,334 
DEGs and 13 anthocyanins as source data. 11 mod-
ules were identified in the cluster dendrogram, named 
as brown, green, purple, red, turquoise, black, yellow, 
magenta, blue, pink, and grey modules (Fig.  6A). The 
relationships result between the gene modules and 

anthocyanins revealed that the blue, pink, yellow, red, and 
turquoise pink modules had high correlation with antho-
cyanins (Fig.  6B). To describe the relationship between 
genes in these five modules and 13 anthocyanins, a heat 
map was performed using the correlation coefficient 
values of genes and anthocyanins in these modules. In 
the pink module, the co-expressed genes were highly 
expressed in P, CP and R petals (Fig. S2A). The heatmap 
of brown module (Fig. S2B), the turquoise module (Fig. 

Fig. 5 Analysis of TFs linked to anthocyanins biosynthesis. A The heatmap of the expression of MYB, AP2/ERF, and NAC, and (B) The heatmap 
of expression of bHLH, WRKY, and bZIP. W: “C. yuhsienensis” petals, P: “C. reticulate” petals, CP: “C. semiserrata” petals, R: “C. chekiangoleosa” petals
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S2C) and the yellow module (Fig. S2D) suggested that the 
co-expressed genes were only highly expressed in W pet-
als, in P petals and in R petals, respectively.

Moreover, a directed interaction network was built 
based on the correlation coefficient between the candi-
date genes in the blue, pink, yellow, red, and turquoise 
pink modules and 13 anthocyanins content, with the 
|correlation coefficient|> 0.8 and p < 0.05. These five 
modules contained a total of 14 MYBs, 9 bHLHs, 10 
WRKYs, 2 AP2/ERFs, 3 bZIPs, and 1 NAC. As described 
in Fig.  6C, 25 TFs (|correlation coefficient|> 0.8, 
p < 0.05) were screened out to establish a regulatory 
network with 12 anthocyanins. The expression levels of 
CoMYB1, CoMYB4, CoMYB44-3, CobHLH30, CobHLH 
77, CobHLH 79–1, CoWRKY7, and CoWRKY22 exhib-
ited a significant positive correlation with one or more 
anthocyanins (p < 0.05), while CoMYB20, CoMYB44-1, 
CoMYB44-2, CobHLH75, CoNAC25, and CobZIP16-2 
displayed a significant negative correlation with one or 

more anthocyanins. The network diagram also revealed 
that 12 anthocyanins were positively regulated by the 
structural genes (CoPAL, Co4CL, CoCHS, CoCHI, 
CoF3H, CoFLS, CoDFR, CoANS, CoUFGT, CoUGT75C1). 
Among them, five structural genes (Co4CL1, CoF3H1, 
CoANS, CoUGT75C1-4, and CoUGT75C1-5) were sig-
nificantly positively correlated with the associated antho-
cyanin metabolites.

Based on the functional domains present in MYBs and 
bHLHs and their suspected roles inanthocyanin biosyn-
thesis, we next examined anthocyanin structural genes 
for evidence of regulation by MYBs or bHLHs. Indeed, 
the promoter analysis of these candidate genes revealed 
that CoF3’H (Table S8) and CoANS (Table S9) contained 
MYB and bHLH binding sites. We therefore hypoth-
esized that the candidate transcription factors bHLHs 
(CobHLH30, CobHLH77, and CobHLH79) and MYBs 
(CoMYB1, CoMYB4, CoMYB20, and CoMYB44-3) might 
specifically bind to CoF3’H and CoANS through these 

Fig. 6 A The cluster dendrogram results of 11 genes expression modules, present with different colors. B The relationship analysis between genes 
module and 13 anthocyanins. C The correlation network diagram between candidates and anthocyanin. Red solid lines represented the promotion 
of synthesis, while green dotted lines represented inhibition of accumulation. Red circles represented anthocyanins and blue triangles represented 
hub genes. pmb0542, Cyanidin‑3‑O‑(6’’‑O‑malonyl) glucoside; Zbjp001957, Cyanidin‑3,5‑O‑diglucoside; Zbsp002256, Pelargonidin‑3‑O‑rutinoside; 
Zblp002068, Cyanidin‑3‑O‑glucoside; Zblp102242, Cyanidin‑3‑O‑galactoside; Zbsp002083, Pelargonidin‑3,5‑O‑diglucoside; Lmpp003789, 
Cyanidin‑3‑O‑(6’’‑O‑p‑Coumaroyl) glucoside; Zblp002396, Peonidin‑3‑O‑glucoside; Zblp002328, Cyanidin‑3‑O‑arabinoside; Zbsp002199, 
Pelargonidin‑3‑O‑glucoside; pme1398, Delphinidin‑3‑O‑glucoside; Zbcp002823, Cyanidin‑3‑O‑rutinoside; Lmtp003079, Peonidin‑3‑O‑rutinoside
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binding sites, thereby accurately regulated the structural 
genes in the transcriptional regulation of anthocyanin 
biosynthesis in C. oleifera petals. The above results indi-
cated that the significant difference in the content of 12 
anthocyanins might be caused by the above five struc-
tural genes in C. oleifera petals, and those five structural 
genes might be regulated by those MYBs and bHLHs 
transcription factors.

Verification of the Results in RNA‑seq by qRT‑PCR
To validate the RNA-seq results, several genes were 
quantified with qRT-PCR: five structural genes linked 

to anthocyanin biosynthesis (Co4CL1, CoF3H1, 
CoANS, CoUGT75C1-4, and CoUGT75C1-5), three 
MYBs (CoMYB1, CoMYB4, and CoMYB44-3), three 
bHLHs (CobHLH77 and CobHLH79-1), and two 
WRKYs (CoWRKY7 and CoWRKY22). The relative 
expression levels of these 12 genes were normalized 
based on the β-actin expression (Fig. 7). Further analy-
sis revealed that qRT-PCR results were fully consistent 
with and validated the reliability of the RNA-seq data. 
Therefore, it could be speculated that the above 12 
candidate genes might be involved in the formation of 
flower color diversity in C. oleifera petals.

Fig. 7 Validation of selected candidate gene expression levels with quantitative reverse transcription PCR. W: “C. yuhsienensis” petals, P: “C. reticulate” 
petals, CP: “C. semiserrata” petals, R: “C. chekiangoleosa” petals
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Discussion
Anthocyanin identification in the four C. oleifera petals
The presence of anthocyanins in petals and fruits is a 
fundamental factor in the formation of flower color, and 
its contents and types in petals will definitely change 
the color of flowers [26, 27]. As secondary metabolites, 
anthocyanins might directly affect the color of flowers 
and fruits [27, 28]. For example, red jujube peels were rich 
in malvidin 3-O-glucoside and delphinidin 3-O-glucoside 
[12]. Cyanidin-3-O-(6″-Omalonyl) glucoside, cyanidin-
3-O-(6″-O-p-coumaroyl-2″-Oxylosyl) glucoside, cya-
nidin-3-O-arabinoside, cyanidin-3-Ogalactoside, and 
cyanidin-3-O-glucoside were contributed to the red and 
pink petal flower of Camellia reticulata [6]. Considering 
that anthocyanins determine the color of flowers, flow-
ers with bright colors have excellent ornamental value, 
how to breed flowers with specific colors has become a 
new research issue. Similar to others flowers, the pet-
als of C. oleifera have long flowering period and bright 
color and can be used as ornamental flowers [29]. Thus, 
the C. oleifera petals might be selected as new resource 
in ornamental flowers. However, no researches or reports 
had focused on the anthocyanins in C. oleifera petals. To 
reveal the differences of anthocyanins in C. oleifera petals 
with different flower color, the metabolomic analysis of 
anthocyanins by UPLC‒MS/MS was conducted.

In our study, the UPLC‒MS/MS results displayed that 
the main anthocyanins in C. oleifera petals were pelargo-
nidin-, cyanidin-, delphinidin-, and peonidin- derivatives, 
but the malvidin- and petunidin- derivatives were not 
detected, indicating that pelargonidin-, cyanidin-, del-
phinidin-, and peonidin- derivatives were related to the 
coloration of C. oleifera petals. Our findings were con-
sistent with the results of Fu et al. (2021), who found that 
pelargonidin, cyanidin, delphinidin, and peonidin were 
the main anthocyanins components in C. japonica petals. 
And, 27 anthocyanins components were identified in the 
four C. oleifera petals with significant variation in petals 
color. 13 anthocyanins differentially accumulated among 
four C. oleifera petals based on the anthocyanins content 
in each sample, indicating that those 13 anthocyanins 
were contributed to the different petal colors in C. oleif-
era. Among those anthocyanins, peonidin-3-O-glucoside 
with highest content was responsible for the coloration of 
red petals. The anthocyanins accumulated in candy pink 
petals were cyanidin-3-O-glucoside, cyanidin-3-O-galac-
toside, and cyanidin-3-O-rutinoside, and cyanidin-3-O-
(6’’-O-malonyl) glucoside, which might lead to candy 
pink phenotypes. Cyanidin-3-O-(6’’-O-p-Coumaroyl) 
glucoside was the main color substance for the pink pet-
als of C. oleifera. Our findings supported the results of 
C. japonica petals, which proposed that cyanidin-3-O-
(6’’-O-malonyl) glucoside was the primary anthocyanins 

in the pink flowers. Reports on the Camellia document 
that cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, 
cyanidin-3-O-rutinoside, peonidin-3-O-glucoside, cya-
nidin-3-O-(6’’-O-malonyl) glucoside, and cyanidin-3-O-
(6’’-O-p-Coumaroyl) glucoside accumulated in pink 
and red petals but not in white flower, which indicated 
that these compounds played important role in the col-
oration. The accumulation of cyanidin-3-O-glucoside, 
cyanidin-3-O-galactoside, cyanidin-3-O-rutinoside, 
peonidin-3-O-glucoside, cyanidin-3-O-(6’’-O-malonyl) 
glucoside, and cyanidin-3-O-(6’’-O-p-Coumaroyl) glu-
coside could be the main coloring substances for the 
color difference in four C. oleifera petals. All these results 
indicated that the type and content of anthocyanin com-
pounds, particularly cyanidin-based and peonidin-based 
anthocyanins, were the main factors for the formation of 
white, pink, candy pink and red petals of C. oleifera.

Key structural genes responsible for anthocyanin 
biosynthesis in C. oleifera petals
Previous researches have approved that the struc-
tural genes such as PAL, C4H, 4CL, CHS and CHI were 
involved in the early enzymatic reaction in the process 
of anthocyanin biosynthesis, and F3′H, F3′5′H, DFR, 
ANS, UFGT and UGT75C1 are the downstream genes of 
anthocyanin synthesis [30, 31]. 37 candidate structural 
genes (especially CjANS and Cj4CL) regulating antho-
cyanin accumulation were identified in C. japonica pet-
als [6]. The structural genes F3H, F3′H, UFGT, and GST 
involved in the anthocyanins biosynthesis pathway were 
significantly upregulated in red pericarp of Dimocarpus 
longan [32]. Three UFGT genes linked to the anthocya-
nin accumulation were significantly increased and could 
contribute to the jujube fruit (Ziziphus jujuba Mill.) red-
dening [12]. UGT75C1 gene has an important function in 
anthocyanin accumulation and coloration in flowers and 
fruits [33, 34]. In Lonicera japonica flowers, the expres-
sion levels of ANS and UGT75C1 were upregulated in 
white and yellow petals compared to green petals, which 
contributed to the increased accumulation of pelargoni-
din and cyanidin [35].

Considering that the significant difference of 13 antho-
cyanin contents was found in four C. oleifera petals, 
we found that the cyanidins synthesis pathway was the 
most dominant branch in three anthocyanin biosyn-
thesis pathways of C. oleifera petals, and five structural 
genes (Co4CL1, CoF3H1, CoANS, CoUGT75C1-4, and 
CoUGT75C1-5) were screened from the differentially 
expressed genes, which were speculated that those five 
genes might display essential roles in anthocyanin accu-
mulation. In this study, the transcriptome and quan-
titative expression results revealed that Co4CL1 gene 
exhibited high expression levels in P, CP, and R petals, 
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and was positively regulated the anthocyanins biosyn-
thesis, which was consistent with the results that Cj4CL 
(CSS0016246) showed a significant positive correlation 
with the total anthocyanins content in the pink and red 
C. japonica petals [6], indicating that Co4CL1 was the 
key candidate gene responsible for the anthocyanins 
accumulation. CoF3H1 were highly expressed in pink, 
candy pink, and red petals, compared to that in white 
petals, which enhanced the transformation of naringenin 
to dihydrokaemperol, which was in agreement with the 
results that the MdF3H gene significantly led to the high 
accumulation of anthocyanin in ‘Granny Smith’ apple 
peel [36]. Moreover, the expression of CoF3’H from cya-
nidin was higher than that of CoF3′5’H from delphinidin 
branch, which was consistent with the metabolite profile 
analysis that the sum contents of cyanidin and peonidin 
was much greater than the sum content of delphinidin, 
which was confirmed again that cyanidin-derivatives 
were the main coloring substances in C. oleifera petals. 
Therefore, the high expression levels of CoF3’H were 
related to the accumulation of cyanidin-based anthocya-
nins in C. oleifera petals.

ANS is the key enzymes involved in anthocyanin bio-
synthesis, and the overexpression of SmANS resulted in 
the anthocyanins significantly accumulated in Salvia 
miltiorrhiza, and led to the purple-red phenotype [37]. 
Additionally, an increase in the transcript levels of the 
CoF3’H and CoANS genes led to the transformation of 
leucocyanidin to a colored cyanidin. Two UFGT genes 
encoding for anthocyanidin 3-O-glucosyltransferase 
were predicted to be responsible for red coloration in 
C. reticulata petals [3]. The cyanidin-3-O-glucoside 
and pelargonidin-3-O-glucoside contents in pink and 
candy pink petals were consistent with the expression 
levels of UFGT2. In addition, the high expression level 
of CoUGT75C1-4 and CoUGT75C1-5 genes were 
related to the anthocyanin biosynthesis in pink, candy 
pink, and red petals. Therefore, we speculate that the 
differential expression of Co4CL1, CoF3H1, CoANS, 
CoUGT75C1-4, and CoUGT75C1-5 were linked to the 
biosynthesis of cyanidin-3-O-glucoside, cyanidin-3-O-
galactoside, cyanidin-3-O-rutinoside, peonidin-3-O-
glucoside, cyanidin-3-O-(6’’-O-malonyl) glucoside, and 
cyanidin-3-O-(6’’-O-p-Coumaroyl) glucoside, which 
were the important contributors to the petal color diver-
sity in C. oleifera in the present study.

Transcription factors related to anthocyanin biosynthesis 
in C. oleifera petals
Transcription factors involved in regulating anthocya-
nin biosynthesis have been identified in plants [38, 39]. 
Anthocyanin biosynthesis was regulated by a complex 
network via the co-functioning of multiple structural 

genes and transcription factors [40, 41]. Anthocyanin 
biosynthesis was associated with up-regulation of tran-
scription factors in the MYB, bHLH, WRKY, and MADS-
box families [42, 43]. MYB TFs have been reported to 
regulate the anthocyanins biosynthesis and accumulation 
in Prunus peel [44], Zanthoxylum bungeanum Maxim. 
[45], sweet Osmanthus fruit [46], apple [47], peach [48], 
and longan [32]. In addition, the bHLH TFs could inter-
act with MYB and WD40 to form a protein complex, and 
then regulate anthocyanin biosynthesis [49, 50].

Three MYBs (CoMYB1, CoMYB4, and CoMYB44-
3), three bHLHs (CobHLH30, CobHLH77, and Cob-
HLH79-1), and two WRKYs (CoWRKY7 and CoWRKY22) 
with differential expression were identified in four C. 
oleifera petals based on WGCNA analysis, which were 
significantly positive with one or more anthocyanins 
(P < 0.05). The WGCNA analysis also suggested that 
CoNAC25, and CobZIP16-2 had expression levels and 
were significantly negative with one or more anthocya-
nins (P < 0.05). These transcription factors could directly 
act on the promoter of anthocyanin structural genes to 
promote transcription, or regulate the expression of 
structural genes by binding to other TFs, which finally act 
on the regulation of anthocyanin biosynthesis [19, 51].

Six structural genes (Co4CL1, CoF3H1, CoF3’H, 
CoANS, CoUGT75C1-4, and CoUGT75C1-5) had high 
expression levels and led to the anthocyanin accumula-
tion, and which might be regulated by those transcrip-
tion factors. Indeed, the promoter regions of CoF3′H 
(Table  S8) and CoANS (Table  S9) all contained MYB 
and bHLH binding elements. We therefore hypoth-
esized that the candidate transcription factors bHLHs 
(CobHLH30, CobHLH77, and CobHLH79) and MYBs 
(CoMYB1, CoMYB4, CoMYB20, and CoMYB44-3) might 
have regulated CoF3′H and CoANS expression through 
direct binding to the promoter regions. However, this 
is the first study to discover the possible regulatory net-
work for anthocyanin biosynthesis in the C. oleifera pet-
als. Whether these bHLHs (CobHLH30, CobHLH77, and 
CobHLH79) interacted with MYBs (CoMYB1, CoMYB4, 
CoMYB20, and CoMYB44-3) to act on the regulation of 
anthocyanin biosynthesis in C. oleifera petals also need 
to be explored and verified in the future experiments.

Conclusions
In summary, transcriptome and metabolome analy-
ses of C. oleifera petals with different color were 
performed. The pink, candy pink, and red color for-
mation of C. oleifera petals was primarily caused by 
cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, 
cyanidin-3-O-rutinoside, peonidin-3-O-glucoside, 
cyanidin-3-O-(6’’-O-malonyl) glucoside, and cyani-
din-3-O-(6’’-O-p-Coumaroyl) glucoside. Among the 
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differentially expressed structural genes related to the 
anthocyanin biosynthesis pathway, the high expression 
of Co4CL1, CoF3H1, CoF3’H, CoANS, CoUGT75C1-4, 
and CoUGT75C1-5 could be related to the accumula-
tion of cyanidin-based and peonidin-based antho-
cyanins in C. oleifera petals. Based on WGCNA 
analysis, three MYBs (CoMYB1, CoMYB4, and 
CoMYB44-3), three bHLHs (CobHLH30, CobHLH77, 
and CobHLH79-1), and two WRKYs (CoWRKY7 and 
CoWRKY22) could be identified as candidate TFS genes 
related to anthocyanins biosynthesis, and were con-
tributed to the pink candy pink, and red phenotypes. 
In conclusion, the results revealed the unique mecha-
nism of color formation in C. oleifera petals with dif-
ferent color, and provided valuable insights for further 
study on the complex molecular network of anthocya-
nin biosynthesis in C. oleifera petals for comprehensive 
utilization.
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