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Abstract 

Background  Kernel dehydration is an important factor for the mechanized harvest in maize. Kernel moisture content 
(KMC) and kernel dehydration rate (KDR) are important indicators for kernel dehydration. Although quantitative trait 
loci and genes related to KMC have been identified, where most of them only focus on the KMC at harvest, these are 
still far from sufficient to explain all genetic variations, and the relevant regulatory mechanisms are still unclear. In this 
study, we tried to reveal the key proteins and metabolites related to kernel dehydration in proteome and metabo-
lome levels. Moreover, we preliminarily explored the relevant metabolic pathways that affect kernel dehydration 
combined proteome and metabolome. These results could accelerate the development of further mechanized maize 
technologies.

Results  In this study, three maize inbred lines (KB182, KB207, and KB020) with different KMC and KDR were subjected 
to proteomic analysis 35, 42, and 49 days after pollination (DAP). In total, 8,358 proteins were quantified, and 2,779 
of them were differentially expressed proteins in different inbred lines or at different stages. By comparative analysis, 
K-means cluster, and weighted gene co-expression network analysis based on the proteome data, some important 
proteins were identified, which are involved in carbohydrate metabolism, stress and defense response, lipid metabo-
lism, and seed development. Through metabolomics analysis of KB182 and KB020 kernels at 42 DAP, 18 significantly 
different metabolites, including glucose, fructose, proline, and glycerol, were identified.

Conclusions  In sum, we inferred that kernel dehydration could be regulated through carbohydrate metabolism, 
antioxidant systems, and late embryogenesis abundant protein and heat shock protein expression, all of which were 
considered as important regulatory factors during kernel dehydration process. These results shed light on kernel 
dehydration and provide new insights into developing cultivars with low moisture content.
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Background
Maize (Zea mays L.) is one of the main crops cultivated 
globally, and whole-process mechanization is becom-
ing more common in maize production. However, most 
commercial varieties in China are not well suited for 
mechanical harvest with the kernel, which is the major 
bottleneck for maize production [1]. One important lim-
iting factor is the high kernel moisture content (KMC) 
at harvest, which results in higher kernel breakage and 
an increased impurity rate. These limitations greatly 
increase the cost of harvest, reduce the economic ben-
efit, and affect seed quality [2, 3]. According to previous 
research, 15%-25% KMC is the optimal level for mecha-
nized harvest; however, in the main production area of 
China, the Huang-Huai-Hai region, the KMC ranged 
from 21.5%-33.1% with an average of 27.8% for summer 
maize [4]. Furthermore, decreased KMC in medium-
maturing maize hybrids is considered to balance the 
KMC and yield for mechanized grain harvest, as the 
lower grain moisture mainly resulted from the > 30% 
dry matter in stover translocated to grain [5]. Therefore, 
adjusting the germplasm to produce low-KMC maize for 
improved mechanized harvest has become a research 
hotpot for breeders.

In recent decades, considerable scientific advances have 
been aided by understanding the regulatory mechanisms 
of kernel development related to kernel size, metabolism, 
and nutrient content including protein, starch, oil, and 
flavonoids [6–8]. Physiological analysis of kernel develop-
ment has revealed that the process of kernel dehydration 
is divided into two stages: developmental water loss and 
physical dehydration [9]. The first stage is a grain filling 
stage, which is considered as physiological maturation 
due to the accumulation of dry matter. The second stage 
is the post-physiological maturity stage, during which 
the kernel undergoes rapid dehydration and gradually 
transitions into dormancy [10]. It was found that KMC 
and kernel dehydration rate (KDR) are related to growth 
period, and maize with shorter growth periods always 
have a faster dehydration rate [11]. Additionally, KMC 
and KDR have been shown to be affected by extraneous 
factors, including bract length, bract layer number, cob 
size, grain number per ear, and climate [2, 12].

In recent years, research investigating the genetic 
mechanisms influencing KMC and KDR has increased. 
KMC and KDR can be affected by the characterization of 
germplasm, cultivation method, and environment [13]. 
Nonetheless, it shows high broad-sense heritability (0.66–
0.85), and multiple quantitative trait loci (QTL) that con-
trol KMC were identified using genome-wide linkage and 
association analysis [14–19]. For instance, 31 KMC QTL 
and 17 KDR QTL were identified in three environments 
using recombinant inbred lines constructed from the 

inbred lines 844 and 807 [20]. Meanwhile, seven single-
nucleotide polymorphisms (SNPs) associated with KDR 
have been identified using a genome-wide association 
study (GWAS) of 309 inbred maize lines. Of these, one 
candidate gene (Zm00001d047468, Zmapt1) has been 
found to be expressed differently in maize inbred lines 
with different KDR [21]. Recently, 71 QTL that influence 
KMC were identified through a GWAS using 513 diverse 
inbred maize lines. GRMZM5G805627 (ZmGAR2) and 
GRMZM2G137211 (ZmCRY1-9) were confirmed as can-
didate genes for controlling KMC through a combination 
of genetic population analysis, transcription profiling, 
and gene editing [22]. Owing to the complex characteri-
zation of KMC and KDR, extensive research is required 
to understand the whole genetic basis.

Multiple omics analyses, including genomics, tran-
scriptions, proteomics, and metabolomics, have been 
used to explore the regulatory mechanisms of kernel 
dehydration in crops. For instance, 11 proteins related to 
dehydration tolerance have been detected at seed matu-
rity in maize using two-dimensional electrophoresis and 
mass spectrometry [23]. Yu et al. identified four oleosins 
and 76 stress/defense proteins in maize during the matu-
ration stage (40–50  days after pollination, DAP), which 
may protect seeds from damage [24]. Chen et  al. eluci-
dated that the expression of late embryogenesis abundant 
(LEA) protein, heat shock protein (HSP), and serpins was 
increased during the dehydration stage using iTRAQ-
based proteomics [25]. Although previous research has 
demonstrated significant progress regarding dehydra-
tion mechanisms, further work is required to clarify the 
regulatory mechanisms at the proteome and metabolome 
levels.

According to a recent study using time-resolved mul-
tiomics analysis to reveal the genetics of KMC and KDR 
in maize, 42 DAP was considered as a key time point for 
KMC transformation in late kernel development [26]. 
Data from production practice suggested that 35–49 
DAP is when the dynamic processes from physiologi-
cal maturity to dehydration occur [27]. Although asso-
ciation and linkage analyses are used to identify QTL and 
genes related to kernel dehydration, they only focus on 
the kernel moisture at harvest. Moreover, there are more 
ways to understand the related regulation mechanism, 
especially the dehydration rate. In the present study, we 
detected the proteome differences in three maize inbred 
lines (KB182(A), KB207(K), and KB020(B)) with differ-
ing KMC and KDR at 35, 42, and 49 DAP. Our objective 
was to identify protein datasets influencing KMC and 
KDR during the key dehydration period. Additionally, 
by integrating metabolome analysis, the aims were to 1) 
establish the relationship between metabolism and KMC 
and KDR, and 2) construct a preliminary regulation 
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network for KMC and KDR to provide a resource for fur-
ther understanding the molecular mechanisms to reduce 
maize KMC at harvest.

Results
Variation of kernel moisture content and kernel 
dehydration rate
To reduce the effect of the environment on KMC and 
KDR, the sowing time was adjusted to ensure that the 
three inbred lines were pollinated on the same day. Then, 
the ears of the three maize inbred lines pollinated on the 
same day were used for KMC determination. All three 
inbred lines showed a trend for fast dehydration from 7 
to 49 DAP, shifted to relative stability through 49 to 63 
DAP, and then had a small fast decline in hydration from 
63 to 70 DAP (Fig. 1A and Table S1). At the earlier stages, 
KMC was lowest in KB182 and highest in KB020. The 
variation trends of KB182 and KB020 were similar from 
35 to 49 DAP, but both differed compared to the trend 
of KB207. The KMC of KB207 dropped sharply from 35 
to 42 DAP; thereafter, it did not change markedly and 
ranged between 42 and 49 DAP. In addition, we evaluated 
KDR using area under the dry down curve (AUDDC) 
value as previously described [28]. KB182 had the fast-
est KDR, whereas KB020 had the slowest KDR among 
the three inbred lines in the whole-kernel development 
process. For KB207, the KDR is fast at 35 to 42 DAP and 
slow at 42 to 49 DAP, which resulted in its KMC being 
closer to that of KB020 at 35 and 49 DAP but differed sig-
nificantly at 42 DAP when it was more similar to that of 
KB182 (Fig. 1B and Table S1). Therefore, the three inbred 

lines with different phenotype were suitable to study the 
mechanisms behind KMC and KDR.

Proteome dynamics during the dehydration process
To explore the critical proteins in the key dehydration 
processes of maize seeds, we detected and quantified 
proteins in the kernels from KB182, KB020, and KB207 
at 35, 42, and 49 DAP. Proteins were quantified based on 
data-independent acquisition (DIA) proteomics. In total, 
28,372 peptides were detected, and most identified pep-
tides were 9–19 amino acids in length (Fig. 2A). Of the 
9,241 proteins identified, 8,358 of them were qualified, 
and among them, 96 proteins were sourced from Swiss-
Prot and 8,262 from TrEMBL (Table S2). The number of 
identified proteins in each sample ranged from 6,984 to 
7,704, and the number of identified proteins decreased 
along with the dehydration process (Fig.  2B). Accord-
ing to the principal component analysis (PCA), the three 
biological replicates of each sample were strongly cor-
related (Fig. S1). The protein abundances were validated 
based on parallel reaction monitoring (PRM) by selecting 
seven random proteins: catalase isozyme 3 (P18123), late 
embryogenesis abundant protein Lea14-A (B6UH99), 
granule-bound starch synthase 1b (A0A1D6HXP5), 
pathogenesis-related protein 10 (A0A1D6JZU3), HSP 26 
(Q41815), L-ascorbate peroxidase (B4FWL1), and per-
oxidase (C0PKS1). The results of PRM were consistent 
with DIA data (Fig. S2). These results show that protein 
abundance qualification by DIA was highly effective and 
feasible.

Fig. 1  Variant of moisture content of different inbred lines in different periods. A Changes in moisture content of three inbred lines at 7–70 days 
after pollination. B Changes in AUDDC of three inbred lines at AUDDC1-AUDDC9
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Identification and annotation of DEPs in different stage 
or different samples
To explore the important proteins for dehydration dur-
ing different growth periods and in different inbred lines, 
we compared different inbred lines at the same time 
and the same inbred line at different periods using the 
standard with log2(fold change) > 1 or <  − 1 in expression 
and P value < 0.05. Finally, we obtained 2,779 different 
expressed proteins (DEPs) after deleting the repetitive 
DEPs (including all those shown in Tables S3 and S6). 
First, we compared the samples from the same inbred 
lines at different stages, which included nine compari-
son pairs: A35 vs A42, A42 vs A49, A35 vs A49, B35 vs 
B42, B42 vs B49, B35 vs B49, K35 vs K42, K42 vs K49, 
and K35 vs K49, where we defined KB182 as A, KB182 
as B, and KB207 as K (Fig. 3A-C and Table S3). Then, 131 
common DEPs were detected between the three inbred 
lines (Fig. 3D), which may play an identical role in regu-
lating dehydration, and they were annotated in response 
to stress (including that from water, external stimulus, 
chemicals, desiccation, and oxidative stress) and growth 
(Table S4). Furthermore, 12 common proteins were 
detected in all comparative pairs whose functions include 
response to stress, carbohydrate metabolism, gene 
expression regulation, and material transport (Table S5).

Second, another nine pairs were obtained by compar-
ing the samples from different inbred lines at the same 
stage of development: A35 vs B35, A35 vs K35, B35 vs 
K35, A42 vs B42, A42 vs K42, B42 vs K42, A49 vs B49, 
A49 vs K49, and B49 vs K49 (Fig. 4A-D and Table S6). The 

number of DEPs identified between KB182 and KB020 at 
all three stages was consistently higher than that iden-
tified between KB182 vs KB207 and KB207 vs KB020, 
which is consistent with the trends of KMC and KDR 
(Fig.  1). Therefore, we focused on KB182 and KB020 to 
further explore the key proteins and pathways related 
to dehydration. Comparative analysis showed that there 
were 620, 746, and 690 DEPs between KB182 and KB020 
at 35 DAP, 42 DAP, and 49 DAP, respectively. There are 
235 common DEPs, which may be closely related to dehy-
dration at all time points (Table S7). At the same time, we 
performed Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses on the DEPs 
at the three time points, and they were enriched at all 
time points, including response to inorganic substance, 
response to oxygen-containing compound, catalytic 
activity, metabolic pathways, biosynthesis of secondary 
metabolites, and carbohydrate metabolism (fructose and 
mannose metabolism, amino sugar and nucleotide sugar 
metabolism, and glycolysis/gluconeogenesis) (Table S8).

According to our previous division of dehydration for 
three inbred lines, to better understand the regulation of 
KMC, 246 common DEPs between the comparisons A35 
vs B35 and A35 vs K35 were used for deeper analysis due 
to the KMC of KB020 and KB207 being closer but differ-
ing significantly from the KMC of KB182. Similarly, 256 
common DEPs between the comparisons A42 vs B42 and 
B42 vs K42 and 183 common DEPs between the compari-
sons A49 vs B49 and A49 vs K49 are also considered key 
proteins. These DEPs were mainly enriched in response 

Fig. 2  Basic information of all peptides and the number of identified proteins in all samples. A Distribution of peptide length in samples. B 
Distribution of proteins in samples
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Fig. 3  Comparison of differentially expressed proteins (DEPs) in each inbred line at different periods. A Number of DEPs of KB182 in three periods. B 
Number of DEPs of KB020 in three periods. C Number of DEPs of KB207 in three periods. D Distribution of DEPs in three inbred lines

Fig. 4  Comparison of differentially expressed proteins (DEPs) in different inbred lines in the same period. A Number of DEPs of three inbred lines 
at 35 days after pollination (DAP). B Number of DEPs of three inbred lines at 42 DAP. C Number of DEPs of three inbred lines at 49 DAP. D Distribution 
of DEPs in the three periods. E Gene Ontology enrichment results of key proteins after comparison. F Kyoto Encyclopedia of Genes and Genomes 
enrichment results of key proteins after comparison
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to water, oxidoreductase activity, fructose and mannose 
metabolism, pentose and glucuronate interconversions, 
biosynthesis of secondary metabolites, and glycine, ser-
ine, and threonine metabolism (Fig. 4E, F and Table S9).

Relationship of protein abundance with KMC and KDR
To determine the relationship between protein abun-
dance and KMC phenotype, we compared the curves 
of observed dehydration and protein abundance using 
K-means clustering with the quantified protein (Fig. 5A-
C). Proteins were then divided into 10 clusters for 
each of the three inbred lines. For KB182 and KB020, 
the parallel dehydration curves showed fast dehydra-
tion from 35 to 49 DAP; therefore, we focused on the 
clusters 1, 4, and 9 of KB182 and clusters 2, 4, and 8 of 

KB020 because they showed a high expression abun-
dance at these three time points (Fig.  5A, B). In total, 
1,787 DEPs were found between KB182 and KB020 that 
were enriched in response to stress (including oxidative 
stress, and response to stimulus and water), small mol-
ecule metabolic processes, antioxidant activity, fatty acid 
metabolism, carbohydrate metabolism (glycolysis/gluco-
neogenesis, fructose and mannose metabolism, pentose 
phosphate pathway, and starch and sucrose metabo-
lism), carbon metabolism, and glutathione metabolism 
(Fig.  5D-F and Table S10). For KB207, whose dehydra-
tion was fast from 35 to 42 DAP but slow from 42 to 49 
DAP, a similar trend was observed in cluster 4 with 69 
DEPs, which were associated with oxidation reduction 
(P = 1.10E-08 and FDR = 4.90E-07) in the GO analysis.

Fig. 5  Expression patterns of three inbred lines at three time points. A Protein expression pattern of KB182. B Protein expression pattern of KB020. C 
Protein expression pattern of KB207. D Venn diagram of high-expression proteins in KB182 and KB020. E Gene Ontology enrichment results of 1,787 
high-expression proteins. F Kyoto Encyclopedia of Genes and Genomes enrichment results of 1,787 high-expression proteins
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We systematically investigated the relationship 
between protein abundance and dynamic KMC using 
the correlation weighted values between different pro-
tein expressions with weighted gene co-expression 
network analysis (WGCNA) (Fig.  6A). All expressed 
proteins were divided into 42 modules (Table S2), in 

which six modules were significantly correlated with 
KMC and KDR using the thresholds of R > 0.6 and 
P < 0.05, including light cyan (65), cyan (259), orange 
(115), dark olive green (88), green (2469), and gray 
(133) (Fig.  6B). These proteins were found to par-
ticipate in response to abiotic stimuli, small molecule 

Fig. 6  Weighted gene co-expression network analysis identified a dehydration-related module. A Protein expression module. B Relationships 
between the modules and dehydration. C Gene Ontology enrichment results of important modules. D Kyoto Encyclopedia of Genes and Genomes 
enrichment results of important modules
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metabolic processes, amide biosynthesis, carbohydrate 
metabolism (the pentose phosphate pathway, glyco-
lysis/gluconeogenesis, citrate cycle, and fructose and 
mannose metabolism), glutathione metabolism, and 
biosynthesis of secondary metabolites, among others 
(Fig. 6C, D and Table S11). An interaction network was 

constructed using proteins of the top 5% connectivity 
as hub proteins in important modules (Fig. 7 and Table 
S12). This network showed that the unique interaction 
between the cyan and green modules was linked by 
C4J8S0 and C0PL14. These hub proteins were involved 
in antioxidant systems and carbohydrate, energy, and 

Fig. 7  Protein–protein interaction network of hub proteins (Top 5%)
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lipid metabolism. In addition, these hub proteins were 
mainly enriched in response to water, organonitrogen 
compound metabolic processes, cellular amide meta-
bolic processes, and ribosomes (Table S13).

Variation in metabolic components in KB182 and KB020
Based on phenotypic results, we found a significant 
difference in KMC between KB182 and KB020 when 
it reached its maximum at 42DAP during our prot-
eomic testing of the three stages (Fig. 1). Moreover, the 
number of DEPs in A42 vs B42 was the highest among 
different inbred lines compared in the three stages. 
Therefore, we chose KB182 and KB020 with 42DAP for 
metabolomic analysis.A total of 151 metabolites were 
detected, and the metabolic components in these two 
inbred lines showed considerable sample separation 
(Fig. 8A). Of these, 18 metabolites had significantly dif-
ferent abundance and were mainly associated with car-
bohydrate, amino acid, and energy metabolism (Table 
S14).

By integrating the metabolome and proteome analy-
ses using two-way orthogonal partial least square with 
discriminant analysis (O2PLS), the joint parts (R2 pro-
teomicCORR and R2 metabolomeCORR) indicated 
that more than 80% of the metabolomic and proteomic 
variation was explained. The most closely associated 
metabolites and proteins included ubiquitin carrier 
protein, aldolase-type TIM barrel family protein, non-
specific lipid-transfer protein, and germin-like pro-
tein. Metabolites with strong correlation with proteins 

included sucrose, isocitric acid, phosphate, and malic 
acid (Fig. 8B).

Discussion
With the increasing population and decreasing labor, 
agricultural production has become more intensive and 
mechanized, thus requiring maize varieties suitable for 
kernel-mechanized harvesting, which can save both time 
and labor. KMC and KDR are important factors affecting 
mechanized maize harvesting [29, 30]. According to pre-
cious study, KB182, KB207 and KB020 showed significant 
differences in KMC and KDR, which were bred from the 
Shaan B group. The KDR of KB182 is fast throughout the 
whole dehydration process, and the KMC is always low. 
In contrast the KDR of KB020 is slow throughout the 
dehydration process, and the KMC is always high. How-
ever, KB207 has a rapid decrease in KDR at 35–42 DAP 
and then tends to stop. The differences between KMC and 
KDR make them very suitable for studying kernel dehy-
dration. Additionally, the previous study only analyzes 
KMC at the harvest stage and focuses on gene variation 
[15, 16]. Proteins and metabolites have not been explored 
yet, and the related metabolic pathways are still unclear. 
Therefore, we coordinated pollination on the same day to 
minimize environmental noise and compared the differ-
ences in protein and metabolism abundance to explore 
key proteins and metabolites and understand the regula-
tory mechanisms of KMC and KDR.

In this study, 2,779 DEPs were identified that may be 
involved in regulating kernel dehydration, and 12 of 
them were identified at all stages of different inbred lines, 

Fig. 8  Metabolome analysis between KB182 and KB020. A Partial least-square discriminant analysis (PLS-DA) score plot of samples in different lines. 
B Top 15 most closely associated metabolites and proteins



Page 10 of 16Zhang et al. BMC Plant Biology           (2024) 24:15 

which may play a role throughout all stages of dehydra-
tion. At the same time, we identified the metabolomics 
of KB182 and KB020 at 42DAP to understand the rel-
evant mechanisms affecting kernel dehydration from 
the perspective of metabolites. We detected a total of 18 
differential metabolites, of which 7 were carbohydrates, 
and 6 were amino acids, indicating that carbohydrates 
and amino acids may be the main reasons for the dif-
ferences in KMC and KDR between KB182 and KB020.
Futhermore, we compared DEPs with the QTL and SNP 
mapped by previous research [31–36]. Finally, 441 DEPs 
were identified as candidate proteins. (Table S15). These 
results provide the possibility for subsequent under-
standing regulation mechanism of kernel dehydration.

As products of plant life activities, reactive oxygen spe-
cies (ROS) can participate in signal transduction, growth, 
and development but are accumulated excessively in 
seeds during the rapid dehydration stage, which causes 
irreversible cell damage [37]. Therefore, the effective 
operation of antioxidant systems is crucial for the seed to 
resist damage during dehydration [38, 39]. We observed 
the enrichment of eight main antioxidant system 
enzymes, including five peroxidases (B4F7T9, C0PKS1, 
B4FBH0, C0HEE6, and C0P813), two catalases (P18123 
and P12365), and one superoxide dismutase (B1PEY4), 
in our inbred maize lines. The same phenomenon was 
observed in a recent study in which peroxidase and 
superoxide dismutase were phosphorylated, and their 
activity was decreased after severe dehydration stress; 
however, this did not seem to be sufficient to eliminate 
ROS and lead to increased H2O2 levels [40]. The ascor-
bate–glutathione cycle is another important regulator of 
H2O2 scavenging. We found three key proteins located 
in the green and cyan modules, including dehydroascor-
bate reductase (C0P9V2), which degrades docosahex-
aenoic acid to ascorbic acid, and glutathione reductase 
(B4FWU6 and A0A1D6JPH3), a catalyst for the regen-
eration of glutathione [41]. These proteins might affect 
kernel dehydration via ascorbate–glutathione cycle regu-
lation, which has not been reported to date.

Previous studies considered that carbohydrates partici-
pate in the protection of seeds in two ways: water substi-
tution and vitrification of water phase [42, 43]. Trehalose 
was first found to play an important role in plant dehy-
dration, but subsequent studies found that sucrose plays 
a similar role [44]. Raffinose-family oligosaccharides 
accumulate during seed maturation and play important 
roles in seed vigor [45]. In addition, the raffinose:sucrose 
ratio can influence membrane stability and protect 
high-moisture seeds from dehydration in maize [46]. 
The present study indicated that sucrose synthase 
(A0A1D6P836, C0P6F8) and sucrose phosphate synthase 
(A0A1D6N358) were more abundant in high-moisture 

inbred lines and during the early stages of growth. Pre-
vious studies have shown that the expression of glucose 
and fructose first increased, then decreased, and finally 
disappeared during seed development [47]. This indicates 
that glucose and fructose do not play the same role as 
sucrose in the process of dehydration, and they may be 
used as raw materials to synthesize sucrose [48]. Simi-
larly, we observed an accumulation of fructose, glucose, 
and related proteins, and a series of enzymes related to 
starch metabolism (B4FYM6, Q5NKP6, A0A1D6K8T3, 
Q9SYS1, and B5AMJ8) in the inbred lines. These results 
indicated that carbohydrates, especially raffinose and 
sucrose, can regulate kernel dehydration (Table S16).

Previous studies have divided the protective proteins 
related to dehydration into two categories: LEA pro-
teins and HSPs. These proteins are activated by abscisic 
acid (ABA), accumulate at the later stage of seed embryo 
development, are abundant in dry seeds, and play defen-
sive and protective roles in seed dehydration [49–51]. 
In the present study, five LEA proteins, encoded by 
Zm00001d009382, Zm00001d034002, Zm00001d038870, 
Zm00001d043709, and Zm00001d017021, showed 
higher expression later in kernel development, which 
is consistent with the results of others [25, 52]. In addi-
tion, their abundance was highest in KB182 and lowest 
in KB020 of the same stage, indicating that a higher LEA 
protein abundance might cause faster dehydration. One 
HSP (Zm00001d015777) was identified as a DEP in this 
study, which was related to the kernel dehydration trend 
and LEA protein expression. These results indicate that 
LEA protein and HSPs play a crucial role in maize ker-
nel dehydration and may regulate kernel dehydration 
through a similar mechanism in maize; however, further 
research is required to validate this.

According to our integrative analysis of the proteome 
and metabolome, we propose a model of how LEA pro-
teins, HSPs, antioxidant systems, and carbohydrate 
metabolism (raffinose and sucrose) are involved in regu-
lating kernel dehydration (Fig. 9). In particular, when the 
kernel enters the stage of rapid dehydration, ABA synthe-
sis is activated after the dehydration pressure is felt inside 
the kernel. ABA induces the expression of LEA proteins 
and HSPs in response to kernel dehydration [53]. At 
the same time, the dynamic balance of ROS production 
and scavenging is disrupted, and the antioxidant system 
begins to work effectively to remove ROS. However, in 
the rapid dehydration stage, this defense method is grad-
ually weakened, and sucrose metabolism replaces water 
molecules to compensate for the deficiency of the antiox-
idant system and maintain cell membrane stability [54]. 
A limitation of our study was that we were unable to ver-
ify the function of the nominated protein at the molecu-
lar level. However, the results we obtained by minimizing 



Page 11 of 16Zhang et al. BMC Plant Biology           (2024) 24:15 	

the environmental noise are helpful to understand the 
molecular mechanism of kernel dehydration and provide 
a theoretical basis for mechanized-harvest breeding. In 
future, more detailed work is necessary to understand the 
genetic basis through traditional map-based cloning and 
validate some core genes through gene editing for breed-
ing improved maize.

Methods
Field experiment and phenotyping
Inbred lines KB182, KB020, and KB207 were bred from 
the Shaan A and Shaan B groups by the maize biology 
and genetic breeding group at Northwest A&F Univer-
sity, Shaanxi, China. To ensure that all ears were pol-
linated on the same day and minimize environmental 
noise, the three inbred lines KB182, KB207, and KB020 
were sown on May 11th, 19th, and 17th in 2019, respec-
tively. All field experiments were conducted with three 
replications in the Yangling maize base of Northwest 
A&F University. After unified pollination on July 25th, 

100 kernels were collected from each ear at 10 succes-
sive stages (7, 14, 21, 28, 35, 42, 49, 56, 63, and 70 DAP). 
After sampling, kernel fresh weight (W1) was meas-
ured with a 0.001 g digital scale. Then, the samples were 
heated in an oven at 105℃ for 30 min and finally dried 
at 70℃ to constant weight (W2). The formulae for KMC 
and area under the dry down curve used were as previ-
ously described [26, 28] and are as follows:

Where W1 is the kernel fresh weight, and W2 is the final 
weight after drying. According to KMC, KDR was cal-
culated using the AUDDC method using the following 
formula:

Where KMC is the moisture content of the kernel,i is 
the ith measured time, and ti is the corresponding day 
after pollination (7, 14, 21, 28, 35, 42, 49, 56, or 70).

KMC(%) = [(W1−W2)/W1] × 100%,

AUDDC =
1

i
[(KMCi + KMCi+1)/2](ti+1 − ti),

Fig. 9  Role of different types of protein during maize kernel dehydration. AA (ascorbic acid); ROS (reactive oxygen species); APX (ascorbate 
peroxidase); CAT (catalase); DHA (dehydroascorbate); DHAR (dehydroascorbate reductase); GR (glutathione reductase); GSH (glutathione); GSSG 
(glutathione); H2O2 (hydrogen peroxide); MDA (monodehydroascorbate); MDAR (monodehydroascorbate reductase); NADPH (nicotinamide 
dinucleotide phosphate); SOD (superoxide dismutase); AMY (α-amylase); α-GLU (glucosidase); HK (hexokinase); SPS (sucrose-phosphate 
synthase); SP (sucrose phosphorylase); SPP (sucrose-6-phosphatase); PYG (glucan phosphorylase); PGM (phosphoglucomutase); UGP2 (UTP–
glucose-1-phosphate uridylyltransferase); sHSP (small HSP); LEA (late embryogenesis abundant) protein
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Nine AUDDC traits were established based on the 
phenotype at 10 time points: AUDDC1 (7–14 DAP), 
AUDDC2 (14–21 DAP), AUDDC3 (21–28 DAP), 
AUDDC4 (28–35 DAP), AUDDC5 (35–42 DAP), 
AUDDC6 (42–49 DAP), AUDDC7 (49–56 DAP), 
AUDDC8 (56–63 DAP), and AUDDC9 (63–70 DAP). 
The lower the AUDDC, the faster the KDR.

Protein extraction and digestion
According to the variation in KMC, samples taken on 35, 
42, and 49 DAP from KB182, KB020, and KB207 were 
used for protein extraction and analysis; these samples 
were named accordingly (A35, A42, A49, B35, B42, B49, 
K35, K42, and K49), where A is KB182, B is KB020 and 
K is KB207. Three biological replicates of the samples 
at each time point were mixed as a pooled sample. Pro-
tein extraction, peptide preparation, and quantification 
of each sample were conducted in triplicate using mass 
spectrum (MS) analysis by PTM Biolab LLC based on 
DIA technology as previously described [55]. The sam-
ple was first ground with liquid nitrogen, and then the 
powder was transferred to a 5-mL centrifuge tube and 
sonicated for 3  min on ice using a high-intensity ultra-
sonic processor (Scientz) in lysis buffer. An equal volume 
of Tris-saturated phenol (pH 8.0) was added. Then, the 
mixture was further vortexed for 5 min. After centrifuga-
tion (4 °C, 10 min, 5500 g), the upper phenol phase was 
transferred to a new centrifuge tube. Proteins were pre-
cipitated by adding at least four volumes of ammonium 
sulfate-saturated methanol and incubated at − 20  °C for 
at least 6 h. After centrifugation at 4  °C for 10 min, the 
supernatant was discarded. The remaining precipitate 
was washed thrice with ice-cold methanol, followed by 
ice-cold acetone. The protein was redissolved in 8  M 
urea.

The sample was slowly added to the final concentra-
tion of 20% (m/v) trifluoroacetic acid to precipitate pro-
tein, then vortexed to mix and incubated for 2 h at 4 °C. 
The precipitate was collected by centrifugation at 4500 g 
for 5 min at 4 °C. The precipitated protein was dissolved 
in 200  mM triethyl-ammonium bicarbonate buffer and 
ultrasonically dispersed. Trypsin was added at 1:50 
trypsin-to-protein mass ratio for the first digestion over-
night. The sample was reduced with 5 mM dithiothreitol 
for 60 min at 37 °C and alkylated with 11 mM iodoaceta-
mide for 45 min at room temperature in darkness. Finally, 
the peptides were desalted by the Strata X SPE column.

Spectral library building—LC–MS/MS analysis
The tryptic peptides were dissolved in solvent A (0.1% 
formic acid, 2% acetonitrile), and directly loaded onto a 
homemade reversed-phase analytical column. Peptides 
were separated with a gradient from 4 to 32% solvent B 

(0.1% formic acid in 90% acetonitrile) over 114 min, 32% 
to 80% in 3 min, and holding at 80% for the last 3 min. 
The separated peptides were analyzed in data-depend-
ent acquisition (DDA) mode by Q ExactiveTM HF-X 
(Thermo Fisher Scientific) with a nano-electrospray ion 
source.

Data‑independent acquisition
The iRT kit was added to all the samples according to 
the manufacturer’s instructions. The LC gradient was 
kept consistent with those in the spectral library build-
ing method. The separated peptides were analyzed in 
Q ExactiveTM HF-X (Thermo Fisher Scientific) with a 
nano-electrospray ion source. The data acquisition was 
performed in DIA mode. Each cycle contains one full 
scan followed by 70 DIA MS/MS scans with a predefined 
precursor m/z range. The HCD fragmentation was per-
formed at a normalized collision energy of 27%.

All DIA data were analyzed in Skyline (v 20.1.0). The 
DDA search results were imported to Skyline to gener-
ate the spectral library, and the retention times were 
aligned to iRT reference values. Relative quantification 
of proteins was performed using the MSstats package. 
PCA was performed to evaluate the repeatability of all 
samples using quantified proteins. To confirm DIA and 
data-dependent analysis data, 24 proteins were randomly 
selected and quantified using PRM analysis performed 
by PTM Biolab LLC. DEPs were identified according to 
the standard with P value < 0.05 and log2(fold change) > 1 
or <  − 1.

Non‑targeted metabolic profiling using GC–MS
Based on the variation in KMC and proteomics analyses, 
KB182 and KB020 with different KMC and KDR values 
were used for metabolic analysis at 42 DAP. Metabolic 
analysis was determined using a gas chromatograph-
mass spectrometer (GC–MS; 7890A-5975C, Agilent 
Technologies, Palo Alto, CA, USA), and each sample was 
analyzed with two biological and three technical repli-
cates. The samples pre-cooled in liquid nitrogen were 
ground using a Mixer/mill (MM400; Retsch) with a steel 
ball for 30  s at 30 HZ. Fifty milligrams of Platycerium 
wallichii Hook. powder of each sample was extracted fol-
lowing the procedures described in a previous study [56–
58]. The extract was centrifuged at 23,128  g for 10  min 
at 4  °C. The fixed volume of 200 μL of the polar phase 
was transferred into a pre-labeled 1.5-mL microcentri-
fuge tube. Then, the samples were dried in a SpeedVac 
concentrator without heating. The dried 200 μL aliquots 
from the lower phase for primary metabolite profiling 
were derivatized with N-methyl-N-(trimethylsilyl) trif-
luoroacetamide as described previously [59] and further 
analyzed using GC–MS (7890A-5975C, Agilent, USA). 
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One µL was taken from each sample and injected into 
GC–MS at 270  °C in a split mode (50:1) with helium 
carrier gas (> 99.999% purity) flow set to 1 mL/min and 
separated by a DB-35MS UI (30 m × 0.25 mm, 0.25 µm) 
capillary column. The temperature was isothermal for 
4 min at 90 °C, followed by an 8 °C increase per minute 
ramp up to 205  °C, then held constant for 2  min, and 
finally ramped up at a rate of 15 °C per minute to 310 °C 
and held constant for 2 min. The transfer line tempera-
ture was set to 300  °C, and the ion source temperature 
was set to 230 °C. The mass range analyzed was from m/z 
85 to 700. The Agilent MassHunter Qualitative Analy-
sis software version B.06.00 (Agilent Technologies, Palo 
Alto, CA, USA) and Agilent MassHunter Quantitative 
Analysis software version B.07.01 (Agilent Technologies, 
Palo Alto, CA, USA) were both used for GC–MS data 
analyses. The NIST library and in-house database estab-
lished using authentic standards were used together for 
metabolite identification. Supervised partial least-square 
(PLS) discriminant analysis was performed to construct 
a high level of group separation. To obtain an overview of 
the model, data were fit to highlight discriminant metab-
olites. The variable importance in projection > 1 and P 
value < 0.05 were selected to determine significantly dif-
ferent metabolites between different comparison groups.

Bioinformatics analysis
In order to further describe the DEPs, the TBtools 
(v1.0692) software was used to generate Venn diagrams 
[60]. The qualified proteins were clustered using the 
K-means cluster function in R (http://​www.r-​proje​ct.​
org/). The WGCNA was performed using the “WGCNA” 
package (v3.6.2) in R to determine the core expression 
protein modules [61]. A co-expression network was con-
structed via Gephi (v0.9.2) using the identified proteins 
related to KMC and KDR with the thresholds of r > 0.6 
and P < 0.05 [62]. MetaboAnalyst (http://​www.​metab​
oanal​yst.​ca) was used to enrich important metabolite 
pathways [63]. The O2PLS model (https://​www.​omics​
hare.​com/​tools) was used to determine related metabo-
lites and proteins by integrating proteomic and metab-
olome data. Finally, the core proteins were enriched 
through GO analysis using the agriGO web server 
(http://​bioin​fo.​cau.​edu.​cn/​agriGO/​index.​php) and KEGG 
pathway enrichment analysis with the Kobas web server 
(http://​kobas.​cbi.​pku.​edu.​cn/) [64, 65]. FDR < 0.05 was 
used as the threshold to obtain significantly enriched GO 
terms and pathways.
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