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Abstract 

Background The genus Triplostegia contains two recognized species, T. glandulifera and T. grandiflora, but its phy‑
logenetic position and species delimitation remain controversial. In this study, we assembled plastid genomes 
and nuclear ribosomal DNA (nrDNA) cistrons sampled from 22 wild Triplostegia individuals, each from a separate 
population, and examined these with 11 recently published Triplostegia plastomes. Morphological traits were meas‑
ured from herbarium specimens and wild material, and ecological niche models were constructed.

Results Triplostegia is a monophyletic genus within the subfamily Dipsacoideae comprising three monophyletic spe‑
cies, T. glandulifera, T. grandiflora, and an unrecognized species Triplostegia sp. A, which occupies much higher altitude 
than the other two. The new species had previously been misidentified as T. glandulifera, but differs in taproot, leaf, 
and other characters. Triplotegia is an old genus, with stem age 39.96 Ma, and within it T. glandulifera diverged 7.94 Ma. 
Triplostegia grandiflora and sp. A diverged 1.05 Ma, perhaps in response to Quaternary climate fluctuations. Niche 
overlap between Triplostegia species was positively correlated with their phylogenetic relatedness.

Conclusions Our results provide new insights into the species delimitation of Triplostegia, and indicate that a taxo‑
nomic revision of Triplostegia is needed. We also identified that either rpoB-trnC or ycf1 could serve as a DNA barcode 
for Triplostegia.
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Introduction
Accurate species delimitation plays a crucial role in 
assessing, monitoring, and conserving biodiversity [1–3]. 
This is made more difficult by cryptic species, defined as 
two or more distinct species that are erroneously clas-
sified under one species [4]. These may be morphologi-
cally barely distinguishable, yet on different evolutionary 
trajectories [4, 5]. These hidden or unrecognized spe-
cies represent a substantial fraction of biodiversity, pos-
ing challenges to taxonomy, biodiversity estimation and 
conservation efforts [6–9]. Cryptic diversity can arise 
through various mechanisms [5, 10], such as recent 
divergence [11–13], convergent evolution driven by simi-
lar environmental pressures [14, 15], hybridization [6, 16, 
17], and polyploidization [18, 19]. Over the past two dec-
ades, DNA barcodes (standard DNA regions across taxa) 
have been widely used in discriminating species [20–23] 
and discovering cryptic species [24, 25]. However, the 
standard plant DNA barcodes are not always effective, 
especially for recently radiated taxa or those possess 
complex evolutionary histories [26, 27].

The plastid genome in almost all land plants exhibits 
a highly conserved quadripartite structure [28], gener-
ally ranging from 120 to 160 kb in size and containing 
110–130 distinct genes including ~ 80 protein-coding 
genes, 30 transfer RNA (tRNA) genes, and four riboso-
mal RNA (rRNA) genes [29, 30]. Plastid genomes are 
predominantly maternally inherited in plants [31]. Due 
to their high copy number within cells, plastid genomes 
can be sequenced, assembled, and annotated more easily 
and cost-effectively than nuclear genomes [32, 33], aiding 

their widespread use in elucidating the evolutionary his-
tory of green plants [34–36]. Moreover, plastid genomes 
have emerged as super DNA barcodes or ultra-barcodes 
[37, 38], containing a higher number of informative sites 
and exhibiting greater discriminatory power than stand-
ard plant DNA barcodes [39, 40]. Plastid genomes have 
recently been used in discovering cryptic species and 
screening taxon-specific DNA barcodes for particular 
plant lineages [19, 41, 42].

The Hengduan Mountains Region (HDM), also known 
as the Mountains of Southwest China, is recognized 
as one of the world’s biodiversity hotspots [43, 44]. It is 
known for harboring the richest temperate alpine flora in 
the world [45], and as a center of diversity for numerous 
plant lineages [46–49]. Its topography is characterized by 
a series of north-south oriented alpine mountain ranges 
separated by deep river gorges [47], which act as genetic 
barriers for some plant taxa [50, 51] and therefore have 
contributed to the high species diversity in this region.

The genus Triplostegia Wall. ex DC. comprises two 
traditionally recognized species: T. grandiflora Gagnep. 
(1901) is confined to the HDM in north Yunnan and West 
Sichuan, whereas T. glandulifera Wall. ex DC. (1830) is 
widely distributed in the mountains of southwestern and 
central China, extending to Taiwan, Bhutan and Nepal 
[52] (Fig. 1). Recent evidence placed Triplostegia within 
subfamily Dipsacoideae of Caprifoliaceae [53–55], but 
its affinities have long been controversial [56–58]. Mor-
phologically, Triplostegia grandiflora differs from T. glan-
dulifera in its sessile (not petiolate) leaves, longer corolla 
and more elongated inflorescence branch [52], but recent 
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Fig. 1 Occurrences of Triplostegia glandulifera (yellow dot), Triplostegia sp. A (red triangles), and T. grandiflora (green squares). The areas circled 
with yellow, red, and green lines are the geographical distribution areas of T. glandulifera, Triplostegia sp., and T. grandiflora, respectively. (The map 
is created by authors using ArcGIS software)
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studies based on molecular and morphological evidence 
have proposed merging T. grandiflora into T. glandulifera 
[59, 60]. However, our own investigations in the south-
ern region of the HDM have revealed a third taxonomic 
entity, here termed Triplostegia sp. A, which often occurs 
sympatrically with T. grandiflora, but differs from both 
recognized species in glabrous and slender lateral tap-
root, petiolate and marginal serrated leaves, and corol-
las usually 1–2 mm in length. Furthermore, whereas T. 
grandiflora exists in Pinus yunnanensis and P. armandii 
forests up to 2066–3128 m, Triplostegia sp. A has a larger 
elevation range, 2651–3954 m according to our fieldwork, 
occurring in Pinus, Quercus, Abies, and Picea forests plus 
roadsides, riversides, and alpine meadows.

In this study, we performed genome skimming on 22 
individuals collected from 14 populations of Triplostegia 
sp. A and eight populations of T. grandiflora, all from the 
southern HDM within the northwest region of the Yun-
nan Province. To these were added 11 recently published 
Triplostegia plastomes covering the entire distribution 
range of Triplostegia [59]. Furthermore, we recorded 
morphological and functional traits of Triplostegia spe-
cies from herbarium specimens and wild plants. Our 
main objectives were to address the following questions. 
(1) What is the phylogenetic position of Triplostegia? 
(2) How many distinct species exist within Triplostegia? 
(3) When did diversification occur among Triplostegia 
species? (4) Are there any highly variable regions in the 
plastid genome that could be used as taxon-specific DNA 
barcodes for discriminating Triplostegia species? (5) Did 
any geographical features play a role promoting diversifi-
cation within Triplostegia?

Materials and methods
Taxon sampling
One individual was randomly selected from each of 
8 and 14 populations of T. grandiflora and Triploste-
gia sp. A in northwest Yunnan Province, respectively 
(Table S1; Fig. 6). Healthy and fresh leaves were collected 
and immediately dried using silica gel. Vouchers were 
deposited in the Herbarium of Nanchang University. In 
addition, 11 sequences of Triplostegia were downloaded 
from the NCBI Sequence Read Archive (SRA) for analy-
sis, comprising seven samples of T. glandulifera, one of 
T. grandiflora, and three of the unrecognized species 
Triplostegia sp. A (Table S1).

DNA isolation and sequencing
Total genomic DNA was extracted from silica-gel-dried 
leaves using a modified CTAB method [61]. The DNA 
samples were then sheared into fragments and used 
to construct 500 bp libraries by the Molecular Biology 
Experiment Center, Germplasm Bank of Wild Species in 

Southwest China, following the manufacturer’s manual 
(Illumina, San Diego, CA, USA). Paired-end sequenc-
ing of 150 bp was performed on an Illumina HiSeq 2500 
platform.

Plastid genome and nrDNA assembly and annotation
The raw sequence reads were quality-checked with 
FastQC [62] and filtered using Trimmomatic v0.3.2 
[63]. The plastid genomes and nrDNA sequences were 
assembled from high-quality paired reads using GetOr-
ganelle v1.6.0 [64] with default settings. The connections 
between contigs were evaluated and visualized using 
Bandage v0.7.1 [65]. The assembled plastid genomes 
were annotated using Geseq (MPI-MP CHLOROBOX - 
GeSeq(mpg.de)) [66], followed by manual adjustments 
in Geneious v9.05 (http:// www. genei ous. com/) using 
the published plastid genome of T. glandulifera (Gen-
Bank accession: NC_045051) as a reference. The assem-
bled nrDNA sequences were annotated in Geneious 
using the nrDNA of Scabiosa canescens Waldst. & Kit. 
(MT735330) as a reference. Finally, the graphical maps 
of the Triplostegia plastid genomes were generated using 
Organellar Genome DRAW v. 1.3.1 [67].

Genome comparison and structural analysis
The plastid genomes were aligned and visualized using 
mVISTA in Shuffle-LAGAN mode [68]. To investigate 
potential rearrangements in the plastid genomes, mul-
tiple sequence alignment was performed using MAUVE 
[69]. Comparisons of boundaries between the single-
copy regions and the inverted repeat (IR) regions among 
the plastid genomes were performed using IRscope [70].

Nucleotide diversity and genetic differentiation analysis
We used nucleotide diversity (π) to assess the levels of 
plastid genomic divergence within Triplostegia, and iden-
tify highly variable plastid DNA regions, using DNAsp 
v6.0 [71], employing a window length of 600 bp and a step 
size of 200 bp.

Genetic differentiation (FST) and gene flow (Nm) among 
species, as well as within-species genetic diversity, were 
also estimated using DNAsp v6.0 [71], with all samples 
belonging to each taxon being considered a population.

Phylogenetic analysis
Phylogenetic relationships among the 33 Triplostegia 
samples (Table S1) were examined using Maximum-like-
lihood analysis (ML) and Bayesian inference (BI), based 
on three datasets: the complete plastid genomes, plastid 
protein-coding sequences (CDS), and nrDNA sequences. 
As outgroups we used Pterocephalus hookeri (C.B.Clarke) 
Airy Shaw & M.L.Green, Dipsacus asper Wall. ex DC., 
Scabiosa tschiliensis Grüning, Kolkwitzia amabilis 

http://www.geneious.com/
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Graebn., and Patrinia heterophylla Bunge, representing 
genera closely related to Triplostogia [59]. Three samples 
were randomly selected from each of the three clades 
formed by the 33 samples of Triplostegia, and used to 
determine the position of the genus in the phylogeny of 
Dipsacales via ML and BI analyses. For this, 57 complete 
plastid genomes were obtained, including the above out-
groups and covering of the recognized families within the 
order (Table  S2). Sesamum indicum L., Mentha spicata 
L., Pittosporum kerrii Craib, and Apium graveolens L. 
were chosen as outgroups to Dipsacales based on previ-
ous studies [53–55].

Multiple sequence alignments were performed using 
MAFFT v7.409 [72]. The best-fit nucleotide substitu-
tion model was selected using ModelTest v.3.7 [73] with 
the Akaike information criterion (AIC). ML analysis was 
performed using RAxML v 8.2.12 [74] under the GTR-
GAMMA model with 1000 bootstrap replicates. BI anal-
ysis was performed using MrBayes v3.2.6 [75] with the 
Markov Chain Monte Carlo (MCMC) algorithm, running 
for 2,000,000 generations with the first 25% of trees dis-
carded as burn-in, and thereafter sampling trees every 
1000 generations, and using these to construct majority-
rule consensus trees. Furthermore, phylogenetic net-
works of plastid genomes and nrDNA sequences were 
visualized using SplitsTree v4.14.6 [76].

Species discrimination analysis
We assessed the effectiveness of standard plant DNA 
barcodes, including rbcL, matK, and ITS, and the bar-
code ycf1 suggested by Dong et  al. (2015) [77], plus the 
highly variable plastid DNA regions of Triplostegia and 
their combinations, in discriminating Triplostegia spe-
cies using tree-based methods. ML trees for each marker 
were constructed using RAxML with the same settings 
as previously described. A species was considered as 
being correctly resolved when all the individuals of the 
same species formed a monophyletic group with >70% 
bootstrap support [78]. The standard DNA barcode 
trnH-psbA was not included in the analysis due to its 
insufficient number of informative sites for species dis-
crimination. In addition, we generated Neighbour-Join-
ing (NJ) trees using MEGA v10 [79] based on the highly 
variable plastid DNA regions and the ITS region, using 
the P-distance model with 1000 bootstrap replicates.

In addition to the tree-based analyses, we also con-
ducted distance-based analyses following Hollingsworth 
et  al. (2009) [22]. Pairwise interspecific and intraspe-
cific genetic distances were calculated using the Kimura 
2-parameter (k2p) mode using MEGA v10 [79]. A spe-
cies was considered to be successfully discriminated if 
its minimum interspecific k2p distance involving this 

species was greater than its maximum intraspecific k2p 
distance.

Divergence time estimation
We obtained plastome sequences from GenBank 
(Table S3) for a total of 27 species of Dipsacales, two spe-
cies of Apiales (Apium graveolens L. and Pittosporum 
kerrii Craib), and two species of Lamiales (Sesamum 
indicum L. and Mentha spicata L.) for the purpose of 
estimating divergence times. ModelTest analysis indi-
cated that the GTR + I + G nucleotide substitution model 
performed the best (Table  S4). We used BEAST v2.6.6 
[80] to estimate divergence times under a relaxed log-
normal clock and GTR + I + G nucleotide substitution 
model. Markov Chain Monte Carlo (MCMC) searches 
were performed for 500,000,000 generations, sampling 
every 25,000 generations. The tree prior was specified as 
a Yule process. Tracer v.1.5 [81] was used to assess chain 
convergence and to ensure that the effective sample sizes 
(ESS) were greater than 200. The maximum clade cred-
ibility (MCC) tree with median heights was computed 
using TreeAnnotator v2.6.6. Four calibration points were 
used: (1) the crown age of Dipsacales was set to 103 mil-
lion years ago (Ma), with a normal prior (mean = 103 Ma, 
SD = 1.0), based on previous studies [82, 83]; (2) the ear-
liest fossil record of Viburnum from the late Paleocene 
to early Eocene [84, 85] was used to calibrate the crown 
group of Adoxaceae, with lognormal prior (mean = 0, 
SD = 1.0, offset = 56 Ma), following Moore and Donoghue 
(2007) [86]; (3) the setting of divergence time between 
Weigela and its sister group Diervilla, with lognormal 
prior (mean = 0, SD = 1.0, offset = 23 Ma), following 
Wang et al., (2015) [83]; and (4) the fossil fruits of Dip-
lodipelta (36 Ma) [87] were used to calibrate the stem age 
of Dipelta, with lognormal prior (lognormal mean = 0, 
SD = 1.0, offset = 36 Ma), following Wang et  al., (2015) 
[83].

Morphological and functional traits analyses
We collected morphological trait data of Triplostegia 
species by measuring specimens across their distribu-
tion range. For 63, 27, and 55 specimens of T. glandulif-
era, T. grandiflora, and Triplostegia sp. A respectively, 
we measured 10 morphological traits, including plant 
height, taproot length and width, leaf length and width, 
petiole length, leaf fission depth, corolla length, fruit 
length and width. These traits were chosen because most 
of them showed disparities among the Triplostegia spe-
cies according to our observations. In addition, respec-
tively 121 and 149 individuals from 8 and 14 populations 
of T. grandiflora, and Triplostegia sp. A (identified by S-L 
Tan) where they co-occur in northwest Yunnan (Fig. 6), 
were examined for eight morphological and functional 
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traits: plant height, leaf chlorophyll content, leaf area, 
leaf thickness, leaf dry mass, specific leaf area (SLA), 
corolla length, and corolla width, following previously 
applied protocols [88–90]. We conducted Principal com-
ponent analysis (PCA) based on these morphological 
traits. Kruskal-Wallis tests and pairwise Wilcoxon rank 
sum tests were used to assess the differences in each trait 
among the three Triplostegia taxa. All statistical analyses 
were conducted using R version 4.1.3 [91].

Species distribution modelling
We used MaxEnt v.3.4.1 [92] to assess the suitable climate 
envelopes of T. glandulifera, T. grandiflora, and Triploste-
gia sp. A across the past, present, and future periods. Spe-
cies occurrence records were obtained from the Chinese 
Virtual Herbarium (http:// www. cvh. ac. cn/), the Global 
Biodiversity Information Facility (https:// www. gbif. org/), 
plus our own field collections. To ensure data quality, 
we refined the occurrence records following the criteria 
described by Qiu, et al. (2023) [93] by removing: 1) dupli-
cate records, 2) records lacking spatial coordinates or spe-
cific locations, 3) specimens with identification errors, 
and 4) unreliable records that were located in the city or 
bodies of water. To reduce the effect of spatial autocorre-
lation and the consequent overfitting, occurrence records 
within five kilometers of another were filtered out. Ulti-
mately, our final dataset for species distribution modelling 
consisted of 64, 30, and 67 occurrence records for T. glan-
dulifera, T. grandiflora, and Triplostegia sp. A, respec-
tively (Fig. 1).

Nineteen bioclimatic variables were downloaded from 
WorldClim v1.4 for the Last Interglacial (LIG; 120,000–
140,000 years ago), the Last Glacial Maximum (LGM; 
22,000 years ago), and the Mid-Holocene (MH; 6000 years 
ago) periods, and from WorldClim v2.1 (https:// www. 
world clim. org/) for the present (1970–2000) and future 
(2090: average of 2081–2100) (Table  S5), with a resolu-
tion of 2.5 arc-minute (approximately 5  km2). To provide 
a conservative and a comparatively larger estimate of spe-
cies distribution change under future climate conditions, 
we used two Shared Socioeconomic Pathways (SSPs) for 
future climatic conditions: SSP2–4.5 (moderate climate 
change) and SSP5–8.5 (pessimistic climate change) from 
the CMIP6 (BCC-CSM2-MR) climate model [94]. To 

avoid multicollinearity of variables, we performed a Pear-
son’s correlation test for the 19 bioclimatic variables for 
each species, and for any pair of variables with Pearson’s 
r > 0.8, the variable with the higher percentage contribu-
tion was retained. The Area Under Receiver-Operating 
Characteristic (ROC) Curve (AUC) values were used to 
evaluate the accuracy of the species distribution models 
[95]. The AUC values range from 0.5 to 1, which are cat-
egorized as failing (0.5–0.6), poor (0.6–0.7), fair (0.7–0.8), 
good (0.8–0.9), and excellent (0.9–1) [96]. The Jackknife 
analysis was used to determine the relative significance of 
each bioclimatic variable [97]. To determine the poten-
tial distribution of each species, we reclassified the Max-
Ent output file using the 10-percentile training presence 
logistic threshold value (10TPL) [98, 99]. We used the 
SDM toolbox v2.4 in ArcGIS 10.2 to calculate the suitable 
area changes between different periods.

To quantify niche similarity between species, we used 
the software ENMTools v1.3 [100] to estimate the niche 
overlap among Triplostegia species using two metrics: 
Schoener’s D [101] and Warren’s I [102]. Both metrics 
range from 0 to 1, with values closer to 1 indicating a 
higher degree of niche overlap between the species.

Results
General features of the Triplostegia plastid genomes
The 33 plastid genomes of Triplostegia examined 
(Table  S1) were highly conserved in gene content, gene 
order, and GC content (Table  1; Fig.  S1), all exhibiting 
a typical quadripartite structure composed of a large 
single-copy (LSC) region, a small single-copy region 
(SSC), and two inverted repeat regions (IR) (Fig.  S1). 
The plastid genome lengths varied as follows: 154,230–
155,445 bp for T. glandulifera, 155,041–155,410 bp for 
Triplostegia sp. A, and 155,638–155,706 bp for T. gran-
diflora (Table  1). The complete plastid genome consists 
of 113 unique genes, including 79 protein coding genes, 
30 tRNA genes, and four rRNA genes. Among these, the 
following17 genes were found to be duplicated in the IR 
regions: rrn16, rrn23, rrn4.5, rrn5, trnI-CAU , trnL-CAA , 
trnV-GAC , trnI-GAU , trnA-UGC , trnR-ACG , trnN-GUU 
, rps12, rps7, rpl23, ndhB, ycf2, and ycf1. Additionally, 16 
genes contained one intron (trnK-UUU , trnL-UAA , trnV-
UAC , trnI-GAU , trnA-UGC , rps16, rps12, rpl16, rpl2, 

Table 1 General characteristics of chloroplast genome of Triplostegia species

IR Inverted repeat, LSC Long single-copy, SSC Short single-copy

Species Size
(bp)

LSC
(bp)

SSC
(bp)

IR
(bp)

Total
CG (%)

Total
Genes

Protein
Genes

tRNA
Genes

rRNA
Genes

T. glandulifera 154,230–155,445 88,183–89,072 17,927–17,962 23,909–24,224 38.5–38.6 113 79 30 4

Triplostegia sp. A 155,041–155,410 88,795–88,963 17,831–17,840 24,200–24,329 38.5 113 79 30 4

T. grandiflora 155,638–155,706 89,005–89,073 17,599 24,517 38.5 113 79 30 4

http://www.cvh.ac.cn/
https://www.gbif.org/
https://www.worldclim.org/
https://www.worldclim.org/
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rpoC1, petB, petD, atpF, ndhB, ndhA, ycf2), whereas two 
genes (clpP and ycf3) contained two introns (Table S6).

Comparative analysis of plastid genome structures
According to mVISTA (Fig.  S2) and MAUVE (Fig.  S3) 
analysis, the plastid genome structures were highly con-
served in Triplostegia, with no inversion or rearrange-
ment detected. The LSC and SSC regions were more 
variable than the IR regions, and the non-coding regions 
were more variable than the coding regions. The IR/SSC 
and IR/LSC junction regions of Triplostegia contained 
seven genes: rpl2, rpl23, trnN, ndhF, ycf1, trnI, and trnH 
(Fig. S4).

Phylogenetic analyses and divergence time estimation
Our phylogenetic analyses of Dipsacales based on plas-
tid genomes revealed that Triplostegia is a strongly sup-
ported  (BSML = 100%,  PPBI = 1.00) monophyletic genus 
within the subfamily Dipsacoideae (Caprifoliaceae), 
forming a sister clade to a group consisting of Dipsacus, 
Scabiosa, and Pterocephalus (Fig. 2). Within Triplostegia, 
ML and BI analysis of both complete plastid genomes 
(Fig. 3) and plastid CDS (Fig. S5) all resolved three well-
supported clades, corresponding to T. glandulifera, T. 
grandiflora, and Triplostegia sp. A. The phylogeny based 
on nrDNA sequences (Fig.  S6) was similar except that 
of T. glandulifera did not form a monophyletic clade 
(Fig.  S6). The three taxa also formed distinct clusters 
according to Neighbor-net analysis of concatenated com-
plete plastid genomes and nrDNA sequences, with T. 
glandulifera displaying high levels of intraspecific genetic 
variation (Fig. 4).

Molecular dating analysis (Fig.  5) estimated the stem 
and crown ages of Triplostegia to be 39.96 Ma (95% high-
est potential density, HPD: 13.91–55.05), and 7.94 Ma 
(95% HPD: 1.59–22.68) respectively, with the first diverg-
ing taxon being T. glandulifera, with T. grandiflora 
diverging from Triplostegia sp. around 1.05 Ma (95% 
HPD: 0.028–6.58).

Nucleotide diversity and genetic differentiation
Among the three Triplostegia species, T. glandulif-
era displayed the highest plastomes genetic diver-
sity (π = 1.17 ×  10−3), with that of Triplostegia sp. A 
around eight times lower (π = 1.4 ×  10−4), and T. grandi-
flora ~ seven time lower again (π = 2 ×  10−5).

A total of 814 polymorphic loci were identified in 
the plastomes of Triplostegia, with average π values of 
0.00146, 0.00246, and 0.00059 for the LSC, SSC, and 
IR regions, respectively (Fig.  S7). Three highly variable 
regions were detected: ndhF (π = 0.03212) in the SSC 
region, trnN-ndhF (π = 0.02944) in the IRb region, and 
rpoB-trnC (π = 0.00682) in the LSC region.

For both the plastid and nrDNA data, the degree of 
genetic differentiation (FST), was relatively high among 
the three Triplostegia species (Table  2). FST was high-
est between T. grandiflora and the Triplostegia sp. A 
(0.89533 for plastids, 0.93251 for nrDNA), followed by 
T. grandiflora vs. T. glandulifera (0.80408 for plastids, 
0.78292 for nrDNA), and Triplostegia sp. vs. T. glandulif-
era (0.77473 for plastids, 0.65421 for nrDNA). However, 
our phylogenetic analyses, based on plastid genomes, 
detected no correlation between the phylogenetic relat-
edness of samples and their geographical distribution on 
either the same or opposite sides of the Jinsha River, for 
both T. grandiflora and Triplostegia sp. (Fig. 6).

Species discrimination based on standard DNA barcodes 
and highly variable cpDNA regions
In tree-based analyses, none of the standard plant DNA 
barcodes (rbcL, matK, trnH-psbA, and ITS), whether 
used singly or in combinations, could successfully dis-
criminate all three Triplostegia taxa (Table 3). However, 
the highly variable cpDNA region rpoB-trnC region alone 
successfully discriminated all three species with rela-
tively high node support values (100% for T. glandulifera, 
87% for T. grandiflora, and 98% for Triplostegia sp.), and 
the ycf1 gene did the same. The highly variable cpDNA 
regions ndhF and ndhF-trnN could not distinguish all 
three Triplostegia species alone or in combination. All 
other combinations including two to four regions of 
ndhF, ndhF-trnN, rpoB-trnC and ITS, could success-
fully discriminate all three Triplostegia taxa except for 
ndhF + ndhF-trnN and ndhF-trnN + ITS. Particularly, the 
combination of rpoB-trnC and ITS was able to success-
fully discriminate all three Triplostegia species with max-
imum supporting values. Furthermore, all T. grandiflora 
samples contained an identical 66 bp insertion sequence 
in their ycf1 gene, while all T. glandulifera samples con-
tained an identical 18 bp insertion sequence in ycf1. Dis-
tance-based analyses revealed that any of the three highly 
variable plastid regions or the ycf1 gene alone successfully 
distinguished all three Triplostegia species (Table S7).

Morphological and functional traits
Except for fruit length, all of the measured morphological 
traits exhibited significant differences among the three 
Triplostegia species (Table 4). Triplostegia sp. A was the 
shortest plant (28.61 ± 16.28 cm), while T. grandiflora was 
the tallest (44.01 ± 12.56 cm). The taproot of T. grandi-
flora was significantly shorter but thicker compared to 
that of its two congeners. Triplostegia sp. A had serrated 
leaves, whereas T. glandulifera and T. grandiflora had 
pinnatifid and pinnatilobate leaves, respectively. The peti-
ole was 26.55 ± 9.88 mm in T. glandulifera, 14.77 ± 5.2 mm 
in Triplostegia sp. A, and absent in T. grandiflora. In 
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addition, the corolla of T. grandiflora (6.61 ± 1.11 mm) 
was approximately three times longer than that of T. 
glandulifera (2.31 ± 0.52 mm) and Triplostegia sp. A 
(2.24 ± 0.77 mm) (Table  4). The PCA analysis showed 
that the 10 morphological traits clearly distinguished T. 

grandiflora from its two congeners, but the other two 
taxa formed overlapping clusters (Fig. 7; Table S8). Eco-
logically, Triplostegia sp. A typically occurred at higher 
elevations (3229 ± 382 m) compared to T. glandulifera 
(2284 ± 555 m) and T. grandiflora (2450 ± 548 m) (Table 4).

Fig. 2 Phylogenetic relationships of Dipsacales constructed using RAxML based on complete chloroplast genome sequences. The maximum 
likelihood (ML) tree is presented, with maximum likelihood bootstrap support values (BS) and Bayesian inference posterior probability (PP) values 
given for each node. Nodes with a ‘*’ symbol represent nodes that received maximum support from ML or BI analysis (‘*’: 100% or 1.0). Nodes 
without values represent maximal support in both ML and BI methods  (BSML = 100%,  PPBI = 1.00)
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Seven of the eight morphological and functional 
traits measured in the field showed significant differ-
ences between T. grandiflora and Triplostegia sp. A, 
the exception being leaf dry mass (Fig.  S8-9; Table  S9-
10). The plants of T. grandiflora usually inhabited 
lower elevations (mean elevation ± SD: 2787 ± 312 m) 
with a narrower elevation range (2066–3128 m) com-
pared to Triplostegia sp. A (3073 ± 306 m; elevation 
range: 2651–3954 m). The plant height of T. grandiflora 
(height: 36 ± 12 cm) was significantly greater than that of 
Triplostegia sp. (32 ± 13 cm), although Triplostegia sp. A 
exhibiting significant variation in plant height in north-
western Yunnan Province. Furthermore, the leaves of T. 
grandiflora were significantly smaller (mean leaf area of 
4.78 ± 2.31  cm2) but thicker compared to Triplostegia 
sp. A (8.74 ± 5.47  cm2). Triplostegia grandiflora had a 
higher leaf chlorophyll content (47.70 ± 5.93) compared 
to Triplostegia sp. (29.83 ± 5.67). The SLA of T. grandi-
flora (169.72 ± 34.85  cm2 / g) was significantly smaller 
than that of Triplostegia sp. A (281.96 ± 72.49  cm2 / g). 
Furthermore, the mean corolla length of T. grandiflora 
(6.19 ± 1.52 mm) was about 3.9 times longer than that of 
Triplostegia sp. A (1.57 ± 0.25 mm) (Fig. S9; Table S9).

Species distribution modeling
The AUC values for all models in this study were > 0.99, 
indicating high model performance (Table  S11). Pre-
cipitation of the warmest quarter (Bio18) was the most 
important bioclimatic variable in determining the geo-
graphical distribution of all three Triplostegia species, 
with a particularly strong influence on T. glandulifera. 
The mean temperature of the coldest quarter (Bio11) 
was the second most important bioclimatic variable for 
T. glandulifera, while both the mean temperature of the 
coldest quarter (Bio11) and isothermality (Bio3) were the 
next most important variables for both T. grandiflora and 
Triplostegia sp. A (Fig. S10; Table S12–14).

The potential suitable habitats for Triplostegia sp. A 
exhibited similarities with those of T. grandiflora dur-
ing each time period, with the current predicted range 
largely confined to the HDM and the Himalaya. How-
ever, the potential suitable habitat for T. glandulifera was 
larger, extending to East Asia (Fig.  S11). The projected 
past suitable habitats for each Triplostegia species were 
much smaller than their current suitable habitats, espe-
cially for T. glandulifera during LIG and LGM. Moreover, 
all three Triplostegia species are projected to experience 
pronounced habitat shrinkage by 2090. Under the mod-
erate (SSP2–4.5) and pessimistic (SSP5–8.5) climate 

Fig. 3 Phylogenetic relationships of 33 samples of Triplostegia species based on complete chloroplast genome sequences. The phylogenetic 
tree was constructed using both maximum likelihood (ML) and Bayesian inference (BI) methods. The maximum likelihood (ML) tree is presented. 
Numbers along the branch indicate bootstrap support values from ML analysis (based on 1000 replicates) and Bayesian posterior probabilities 
from BI analysis
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Fig. 4 a Unrooted neighbour‑joining (NJ) tree of Triplostegia based on the P‑distance calculated from three highly variable plastid DNA regions 
(ndhf, ndhf-trnN, rpoB-trnC) and nuclear ITS sequences. b Neighbor‑net analysis of Triplostegia based on complete chloroplast genome and nrNDA 
sequences. Bootstrap values (based on 1000 replicates) are indicated along the branches for each clusters

Fig. 5 BEAST analysis of divergence times based on protein coding region sequences of the chloroplast genome. Calibration points are indicated 
by yellow circle. The blue bars indicate the 95% highest posterior density (HPD) credibility intervals for node ages
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Table 2 Genetic differentiation (FST) and gene flow (Nm) among the three Triplostegia species based on complete plastid genomes 
and nrDNA sequences. All the samples of each species are regarded as one population

Nm = (1 - FST) / 4 FST

Population 1 Population 2 FST Nm

plastid genome nrDNA Plastid genome nrDNA

T. grandiflora Triplostegia sp. A 0.89533 0.93251 0.029 0.018

T. grandiflora T. glandulifera 0.80408 0.78292 0.061 0.069

Triplostegia sp. A T. glandulifera 0.77473 0.65421 0.073 0.132

Fig. 6 Correlations between phylogenetic relatedness and geographical distributions of samples from T. grandiflora (a) and Triplostegia sp. (b) 
in the alpine‑gorge region of the Great Two Bends of Jinsha River. The phylogenetic relationships were inferred using the maximum likelihood (ML) 
method based on complete chloroplast genome sequences. (The maps are created by authors using ArcGIS software)
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Table 3 Tree‑based species discrimination rates of Triplostegia by using highly variable plastid DNA regions, ndhF, ndhF-trnN, rpoB-
trnC, and standard plant DNA barcodes, rbcL, matK, and ITS singly or in combinations

n.d., species failed to form a monophyletic clade with bootstrap value ≥70% and thus assigned “not discriminated, n.d.”. The standard plant DNA barcode trnH-psbA 
was not included in our tree-based analyses due to an insufficient number of informative sites for species discrimination

DNA regions or their combinations Bootstrap values of monophyletic clades Percent species 
discrimination

T. glandulifera T. grandiflora Triplostegia sp. A

ndhF 83 n.d. n.d. 33.3

ndhF-trnN n.d. 100 n.d. 33.3

rpoB-trnC 100 87 98 100

ycf1 100 80 90 100

rbcL 87 n.d. n.d. 33.3

matK n.d. n.d. n.d. 0

ITS n.d. 100 80 66.7

ndhF + ndhF-trnN 71 100 n.d. 66.7

ndhF + rpoB-trnC 100 95 98 100

ndhF + ITS 72 100 94 100

ndhF-trnN + rpoB-trnC 100 95 98 100

ndhF-trnN + ITS n.d. 100 85 66.7

rpoB-trnC + ITS 100 100 100 100

rbcL + matK n.d. n.d. n.d. 0

rbcL + ITS n.d. 100 84 66.7

matK + ITS n.d. 100 93 66.7

ndhF + ndhF-trnN + rpoB-trnC 100 100 92 100

ndhF + ndhF-trnN + ITS 75 100 89 100

ndhF + rpoB-trnC + ITS 100 100 100 100

ndhF-trnN + rpoB-trnC + ITS 100 100 99 100

ndhF + ndhF-trnN + rpoB-trnC+ ITS 100 100 99 100

rbcL + matK + ITS n.d. 100 93 66.7

plastid genome 100 100 100 100

Table 4 Differences in elevation and morphological traits difference among the three Triplostegia species

Elevation and Traits T. glandulifera T. grandiflora Triplostegia sp. A P value
Mean ± SD Mean ± SD Mean ± SD

Elevation 2284 ± 555 b 2450 ± 548 b 3229 ± 382 a <  0.001
Plant height (cm) 32.85 ± 11.2 b 44.01 ± 12.56 a 28.61 ± 16.28 c <  0.001
Taproot length (mm) 75.28 ± 32.1 a 41.74 ± 7.78 b 81.29 ± 28.22 a <  0.001
Taproot width (mm) 2.1 ± 0.7 b 6.91 ± 1.74 a 2.49 ± 0.78 b <  0.001
Leaf length (mm) 63.74 ± 24.26 a 49.04 ± 19.89 b 55.84 ± 15.61 a 0.004
Leaf width (mm) 23.84 ± 5.87 a 21.58 ± 5.97 ab 19.69 ± 4.83 ab <  0.001
Petiole length (mm) 26.55 ± 9.88 a 0 c 14.77 ± 5.2 b <  0.001
Leaf fission depth (mm) 9.35 ± 3.09 a 5.57 ± 2.02 b 3.81 ± 1.68 c <  0.001
Corolla length (mm) 2.31 ± 0.52 b 6.61 ± 1.11 a 2.24 ± 0.77 b <  0.001
Fruit length (mm) 2.84 ± 0.4 2.91 ± 0.69 3 ± 0.71 0.426

Fruit width (mm) 1.15 ± 0.18 b 1.61 ± 0.26 a 1.28 ± 0.41 b <  0.001
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change scenarios, the suitable areas for T. glandulifera 
are estimated to decrease by 19.4 ×  104  km2 (19.2%) and 
17.54 ×  104  km2 (17.36%), respectively; T. grandiflora will 
decrease by 9.13×  104km2 (19.7%) and 20.79 ×  104  km2 
(44.89%); and Triplostegia sp. will decrease by 6.49× 
 104km2 (13.94%) and 9.37 ×  104  km2 (20.13%), respectively 
(Fig. S12; Table S15).

The niche overlap between T. grandiflora and Triploste-
gia sp. was the largest, followed by that between T. glan-
dulifera and Triplostegia sp., while T. grandiflora and 

glandulifera showed the smallest niche overlap (Fig.  8; 
Table S16).

Discussion
Confirmation of a third species in Triplostegia
Our phylogenetic analyses based on datasets of complete 
plastid genomes (Fig. 3), plastid CDS (Fig. S5), and highly 
variable plastid DNA regions, consistently indicate that 
Triplostegia contains three well-supported monophy-
letic species: T. glandulifera  (BSML = 100%,  PPBI = 1.00 

Fig. 7 Principal component analysis (PCA) of 10 morphological traits of the three Triplostegia species. Morphological trait data were collected 
by measuring specimens of Triplostegia 

Fig. 8 Niche overlap between Triplostegia species measured using Warren’s I (a) and Schoener’s D (b) indices in different time periods and future 
climate change scenarios, including Last Interglacial (LIG), Last Glacial Maximum (LGM), mid Holocene (MH), current, and 2090 under SSP2–4.5 
and SSP5–8.5 scenarios
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from complete plastid genome data), T. grandiflora 
 (BSML = 100%,  PPBI = 1.00), and an undescribed species 
Triplostegia sp. A  (BSML = 100%,  PPBI = 1.00). Of these, 
T. glandulifera branched off first, making the other two 
sister species (Fig. 3). This topology is actually consistent 
with a previous study [59], which examined fewer acces-
sions and did not distinguish Triplostegia sp. A (their 
accession numbers of SRS3196660, SRS3196661, and 
SRS3196663) from T. grandiflora. Hence, molecular phy-
logenetic analyses may produce accurate topologies but 
alone cannot with certainly detect cryptic species. Our 
Neighbor-net analysis of combined plastid and nuclear 
data likewise indicated the division of Triplostegia into 
three distinct clusters (Fig. 4). Nuclear data alone did not 
conflict the plastome-based topology, but samples of T. 
glandulifera did not form a well-supported monophyletic 
clade (Fig. S6), most likely due to limited resolution from 
the small part of the genome sampled.

Triplostegia sp. A is clearly defined by morphology, 
as well as plastid data. It differs from its closer relative 
T. grandiflora in seven morphological traits (Table  4), 
whereas three traits (plant height, petiole length and 
degree of leaf division) provide consistent differences 
between all species (Table 4). Ecologically, there is a clear 
separation by altitude, with sp. A occurring from 1800 
to 4342 m, compared to 1800–3200 m for T. grandiflora 
and 1250–3400 m for T. glandulifera. The wider altitude 
range of the high altitude sp. A supports the Rapoport’s 
Rule [103], which postulates that species at higher eleva-
tions tend to have larger elevation ranges. The differing 
altitude ranges might also contribute to the differing geo-
graphical ranges of the three species (Fig. 1). Although T. 
grandiflora and T. glandulifera are the most similar pair 
for altitude range, our ecological niche modeling results 
indicated that the greatest interspecific niche overlap 
was between T. grandiflora and sp. A (Fig. 8), indicating 
a correlation between niche overlap and relatedness, and 
hence phylogenetic conservatism [104]. Hence niche dif-
ferentiation likely played a significant role in the species 
diversification of Triplostegia.

Functional trait differences between sp. A and T. gran-
diflora appear to be consistent with their ecological sep-
aration: a higher chlorophyll content in T. grandiflora 
indicates greater photosynthetic capacity [105], whereas 
its lower SLA (Fig.  S9; Table  S9) would normally indi-
cate a resource-stressed environment [88]. Its leaves are 
also sessile and smaller but thicker, and it has a thicker 
taproot for water and nutrient storage (Table 4, Fig. S8-
9; Table S9), consistent with it occupying a warmer and 
drier habitat.

Although sp. A. occasionally coexists with T. gran-
diflora in Yunnan where their altitude ranges overlap, 
we found no morphological intermediates nor other 

evidence of hybridization. Therefore, they are able to 
maintain distinct populations even where sympatric. 
Therefore, based on an integrative examination of molec-
ular, morphological and ecological data, it is clear that 
sp. A represents an undescribed third species within the 
genus.

The phylogenetic position of Triplostegia has long been 
controversial [106, 107], but our phylogenetic analysis of 
Dipsacales based on plastid genomes provides compel-
ling evidence that Triplostegia is a monophyletic genus, 
sister to a clade comprising Dipsacus, Scabiosa, and Pter-
ocephalus (Fig.  2). This is consistent with previous phy-
logenetic reconstructions of Dipsacales based on plastid 
genomes, which sampled fewer Triplostegia individuals 
[53, 55].

Geography, climate and causes of speciation
Recent rapid speciation is a feature of the Hengduan 
Mountains Region (HDM) [48, 49], thought to be driven 
by the uplift of the Hengduan Mountains and the late 
Miocene to Pliocene intensification of the Asian mon-
soon [46–48, 108, 109]. Such rapid uplifts create new 
niches at high altitude which newly formed species may 
inhabit, e.g. the homoploid hybrid species Pinus densata 
[110, 111]. Triplostegia sp. A and T. grandiflora repre-
sent a high/low altitude species pair in the HDM region, 
similar to Roscoea humeana and R. cautleoides [112]. 
The altitude ranges of T. glandulifera and T. grandiflora 
are fairly similar (Table 4), which indicates that the most 
recent common ancestor (MRCA) of the genus, and also 
the sp. A-T. grandiflora species pair, probably occupied 
lower altitudes. If so, the speciation event that produced 
sp. A might have involved an incursion into colder and/
or higher altitude conditions. The timing of this split, 
around 1 million years ago, indicates that it might have 
come about due to Quaternary climate fluctuations, with 
one lineage adapting to cooling conditions coming out of 
an interglacial while the other moved to lower altitudes 
or latitudes, tracking the climate.

Large rivers may act as barriers to gene flow [113–116], 
with examples within China for animals [117, 118], fungi 
[119], and plants [120, 121]. However, both T. grandi-
flora and Triplostegia sp. A occur on both sides of the 
steep-sided Jinsha River gorge (Fig.  6), indicating that 
this river gorge is easily traversed, as found for Roscoea 
[112]. We observed that the glandular pubescent fruit 
of Triplostegia [52] can easily attach to animal fur and 
human clothing, potentially facilitating dispersal across 
the river barrier. River gorges serve as strong barriers 
for Vitex negundo [120] and Parrotia subaequalis [121], 
both of which have seeds apparently dispersed by gravity, 
whereas certain species in the Amazon region of South 
America are not affected by river barriers to dispersal 
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[116]. These results suggest that the barrier effect of river 
gorges largely depends on the specific dispersal traits of 
plants [115]. A more comprehensive analysis of dispersal 
and gene flow in Triplostegia will require the sampling of 
more than one individual per population, however.

Plastid genome features and nucleotide diversity
Newly originated species typically have a narrow geo-
graphical range and lower levels of genetic diversity 
compared to more ancient and widespread congeners 
[122]. Consistent with this, T. glandulifera diverged 
~ 7.94 Ma, has the widest distribution range (Fig.  1), 
and according to Neighbour-Net analysis (Fig.  4) and 
nucleotide diversity (π) exhibits much higher levels of 
intraspecific genetic variation than that the other two 
species, which diverged from each other ~ 1.05 Ma. 
Likewise plastid genome size varied by 1215 bp within 
T. glandulifera (Table 1, Fig. S1), due to expansion and 
contraction of the IR/SC boundary regions (Fig.  S4), 
which is a major mechanism underlying plastid genome 
size variation in plants [28, 39, 123]. Length variation 
within T. grandiflora was 68 bp, and it had the least 
genetic variation (π) in general consistent with this spe-
cies having the smallest geographical range of the three 
(Fig. 1), whereas Triplostegia sp. A was intermediate for 
both range and genetic variation. Otherwise, Triploste-
gia had a high level of conservation in plastid genome 
structure, gene order, gene content, and genome size, 
consistent with previous work on the genus [59] and 
family (Caprifoliaceae) [54, 55, 124–126].

DNA barcodes for species discrimination
The standard plant DNA barcodes, including rbcL, matK, 
trnH-psbA, and ITS [23], have been widely used in fields 
such as community ecology [78, 127], invasive species 
management [128], and forensic identification [129, 130]. 
But they are not always effective, especially for taxa that 
have recently diverged or possess complex evolutionary 
history [26, 27], and none these, either singly or in com-
binations, were able to discriminate all three Triplostegia 
species. However, the complete plastid genomes and the 
highly variable cpDNA region rpoB-trnC alone success-
fully discriminated all three Triplostegia species, respec-
tively with high bootstrap values (Table 3; Table S7). The 
rpoB-trnC locus is highly variable in the plastid genomes 
of other plant lineages, such as Papaver [131], Dioscorea 
[132], and Debregeasia [133]. In addition, the ycf1 gene, 
which is highly variable in flowering plants [77], con-
tained species-specific insertions of 66 bp for T. grandi-
flora and 18 bp for T. glandulifera, making it a powerful 
DNA barcode that could discriminate all three Triploste-
gia species (Table  3; Table  S7). The specific function of 
the ycf1 gene remains to be explored [134, 135], but it or 

other plastome variation could be linked to the differ-
ences in leaf chlorophyll content between T. grandiflora 
and Triplostegia sp. A, and other divergences in photo-
synthesis-related functions. Therefore, either rpoB-trnC 
or ycf1 can be used as a taxon-specific DNA barcode for 
discriminating Triplostegia species. Our results high-
light the potential of developing taxon-specific barcodes 
for recently diverged taxa based on plastid genome data, 
which has been successfully applied in many other plant 
taxa [42, 136].
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