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Abstract 

The ability of a data fusion system composed of a computer vision system (CVS) and an electronic nose (e‑nose) 
was evaluated to predict key physiochemical attributes and distinguish red‑fleshed kiwifruit produced in three dis‑
tinct regions in northern Iran. Color and morphological features from whole and middle‑cut kiwifruits, along with the 
maximum responses of the 13 metal oxide semiconductor (MOS) sensors of an e‑nose system, were used as inputs 
to the data fusion system. Principal component analysis (PCA) revealed that the first two principal components (PCs) 
extracted from the e‑nose features could effectively differentiate kiwifruit samples from different regions. The PCA‑
SVM algorithm achieved a 93.33% classification rate for kiwifruits from three regions based on data from individual 
e‑nose and CVS. Data fusion increased the classification rate of the SVM model to 100% and improved the perfor‑
mance of Support Vector Regression (SVR) for predicting physiochemical indices of kiwifruits compared to individual 
systems. The data fusion‑based PCA‑SVR models achieved validation  R2 values ranging from 90.17% for the Brix‑
Acid Ratio (BAR) to 98.57% for pH prediction. These results demonstrate the high potential of fusing artificial visual 
and olfactory systems for quality monitoring and identifying the geographical growing regions of kiwifruits.
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Introduction
Kiwifruit (Actinidia chinensis) is a significant fruit crop, 
both economically and nutritionally. It originated in 
China but is now cultivated worldwide [1]. In recent 

years, the demand for red kiwifruit has increased among 
consumers due to its unique flavor and brightly colored 
pericarp [2].

The nutritional value of fruits and vegetables is influ-
enced by several factors, including the location of the 
orchard, environmental conditions, cultivation tech-
niques, and pedoclimatic aspects. Climatic conditions 
in different regions affect the composition of agricul-
tural products, resulting in variations in protein, vita-
min, sugar, acid, mineral, and aroma compound content, 
which in turn lead to differences in quality [3–6]. Guilan 
was the first province in Iran to produce kiwifruit, due to 
its mild and subtropical climate, which is suitable for cul-
tivating various kiwifruit cultivars. The main red-fleshed 
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variety grown in Iran is called ’ʿKhoni’, characterized by 
its deep red core and a transverse section that reveals a 
striking combination of red and yellow-green colors.

Machine learning advancements allow for objective and 
accurate identification through quick and convenient pro-
cesses. Electronic nose (E-nose) and computer vision sys-
tems (CVS) mimic the human olfactory and vision systems, 
respectively, to measure sample appearance and aroma 
[7]. CVS is a cross-disciplinary field focused on develop-
ing algorithms and methodologies to extract meaningful 
features from images of objects. This technique enables 
computers to perceive and understand crucial details about 
tangible objects from images [8]. The essence of CVS is 
comprised of image analysis and processing [9]. Image pro-
cessing improves image quality by removing noise, while 
image analysis extracts numerical information by distin-
guishing objects from their surrounding [10]. In the food 
sector, CVS is used for examination and evaluation because 
it offers rapid, objective, consistent, and cost-effective 
assessment without damaging the product [11]. The suc-
cessful application of CVS has been reported in various 
recent studies on fruits and vegetables [12–17].

The fragrance of kiwifruit is a crucial characteristic 
of its quality and a significant sensory property [18]. As 
living organisms, fruits, including kiwifruit, release vol-
atile organic compounds (VOCs) that are influenced by 
environmental factors [19]. The composition of emitted 
VOCs provides valuable information about the fruit’s 
health and freshness [20]. E-nose is a type of artificial 
odor-sensing equipment that includes a set of semi-
selective gas sensors designed to mimic the human 
sense of smell [21, 22]. E-nose is a device that consists 
of a sensor group and data processing tools that detect 
different volatile compounds present in a sample’s head-
space, creating a unique "fingerprint" of the sample’s 
compounds [23, 24]. There are several types of e-noses, 
including those that use metal oxide semiconductor 
sensors, thermal sensors, piezoelectric sensors, or mass 
spectrometers [18].

Volatile compounds, which are significant indicators 
of food quality, are found to be related to the origin of 
cultivation [25]. The application of e-nose technology has 
been successfully applied to identify the origin of vari-
ous products, such as camellia seed oils [26], coffee [27], 
orange [28], and grape [29].

Data fusion is a technique that combines data from 
several resources to generate an integrated data vec-
tor, producing more accurate, consistent, and concise 
information than any individual data source. Generally, 
the integration of fusion has different benefits, includ-
ing enhanced data authenticity (improved detection, 
confidence, and reliability, reduced data ambiguity) 
and data availability (extended spatial and temporal 

coverage) [30]. By combining a suitable algorithm to 
analyze the image obtained from CVS and the distinc-
tive "fingerprint" gathered from the e-nose, valuable 
information about the samples can be extracted for 
identification purposes. The detection process using 
e-nose and CVS techniques does not require complex 
sample pre-treatments. Additionally, CVS detection 
for a single sample takes only a few seconds, while 
e-nose detection time can be reduced to a short time. 
This demonstrates that these two detection methods 
are both time-efficient.

Xu et al. [31] employed a data fusion approach based 
on e-nose and CVS to discriminate the geographical 
origin of Longjing teas with 100% accuracy. The data 
fusion strategy was also implemented using a combi-
nation of e-nose data and other emerging methods, 
such as electronic tongue [32] and hyperspectral imag-
ing [33] for geographical origin assessment of agricul-
tural products.

To the best of our knowledge, no research has 
been reported on the geographical origin and qual-
ity assessment of kiwifruit using both CVS and e-nose 
approaches. This study aimed to differentiate the quality 
of the ʻKhoniʼ kiwifruit cultivar according to geographi-
cal origin using e-nose and CVS systems combined 
with a synergetic data fusion strategy. To understand 
the capability of visual and aroma-extracted data, and 
machine learning algorithms to inspect the geographi-
cal growing region of kiwifruits, this paper proposes a 
rapid, simple, and objective identification method for 
identifying the quality and origin of red-fleshed kiwi-
fruits. To achieve this objective, the research details are 
as follows: (1) To determine the effect of the growing 
region on the physiochemical attributes of red-fleshed 
kiwifruit. A comprehensive physiochemical analysis was 
conducted for this purpose. (2) To obtain the aroma 
and appearance-related data from CVS and e-nose 
methods for kiwifruit samples from various geographi-
cal regions.  In addition to data extract from e-nose 
signals, image processing algorithms are also devel-
oped to extract distinctive features from the images of 
whole kiwifruits and their half-cut view. (3) To develop 
machine learning algorithms utilizing e-nose and CVS 
data for identifying the quality and growing region of 
red-fleshed kiwifruit samples. (4) To employ a feature-
level data fusion strategy by combining CVS and e-nose 
data to obtain more accurate cognitive and predictive 
models.

Materials and methods
The trial site and kiwifruit samples
This study investigated red-fleshed kiwifruit (Actinidia 
chinensis var. Khoni) from three different production 
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regions in northern Iran, namely Talesh (west of Gui-
lan), Langarud (east of Guilan), and Rasht (center of 
Guilan) (Table  1). The average monthly temperature 
and rainfall values for these three sites during the 2021 
season are available in Fig.  1. Rasht had higher mean 
monthly temperatures than Talesh and Langarud. Lan-
garud has colder weather in September and October, 
coinciding with the kiwifruit harvest season. Rasht 
also had the highest mean monthly rainfall.

The date of 90% female flower bud opening was 
recorded as April 21st for Rasht, April 24th for Talesh, 
and April 29th for Langarud. According to Choi et al. 
[35], all kiwifruits were harvested from uniform vines 
with the same irrigation, pruning, and fertilization 
practices, precisely 170  days after full bloom (DAFB). 
Immediately after harvest, the fruits were taken to the 
postharvest laboratory at the University of Guilan. The 
kiwifruit samples were selected based on their rela-
tively uniform size and weight. The fruits were free of 
physical injuries, sunburn, blemishes, bruises, and pest 
and pathogen infestations. Upon arrival at the labo-
ratory, the fruits were stored under controlled condi-
tions at 20 °C with a relative humidity of 70% for seven 
days to facilitate natural ripening [35].

Physicochemical determination
Firmness, Soluble Solids Content (SSC), pH, Titratable Acidity 
(TA), and Brix‑Acid Ratio (BAR)
The firmness of fruits (kg/cm2) was measured using an 
Effegi penetrometer (model FT 011, USA) having a probe 
with an 8  mm diameter.  The probe was placed at two 
locations on opposing sides of the equatorial plane of the 
fruit after peeling off a 2  mm layer from the outer sur-
face of the fruit [36]. Kiwifruit juice was used to measure 
acidity and soluble solids content (SSC). The SSC value of 
the samples was determined as a percentage of sugars (%) 
using a digital pocket refractometer (Euromex RD 635, 
Netherlands).

Measurement of TA represented as the concentra-
tion of citric acid (%), involved titrating the fruit juice 
against 0.1 N NaOH while using phenolphthalein as the 
pH indicator [37].  To calculate the BAR, the SSC value 
was divided by the TA value. The pH of kiwifruit juice 
was measured by a digital pH meter (Hanna instrument, 
model HI 8519, Italy) [38].

Vitamin C, Total Phenolic (TP), Total Anthocyanin Content 
(TAC) and Antioxidant capacity
The vitamin C content was measured by the 2,6-dichlo-
roindophenol titration method, following the CNS GB/T 
6195–1986 protocol [39]. To prepare the extracts, 50 g 
of kiwifruit ground with liquid nitrogen was extracted 
with 200 mL of ethanol/acetone (7:3, v/v) for 1  h at 
37  °C, according to the method described by Du et  al. 
[39]. The extract was then filtered through Whatman 
No. 41 paper and rinsed with 50 mL of ethanol/acetone 
(7:3, v/v). The residue was extracted again using the 
same parameters. The combined filtrates were stored at 

Table 1 Location (region and coordinates) of three red kiwifruit 
groups selected for study

Orchard Region Coordinates Altitude (m)

Talesh 37.787231, 48.944723 6

Langarud 37.149168, 50.064294 121

Rasht 37.195375, 49.643989 27

Fig. 1 Climatic data of the three studied regions: a Temperature, b Rainfall [34]
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40 °C for subsequent TAC, TP, and antioxidant capacity 
measurements.

The amount of TP was determined using  the Folin-
Ciocalteu colorimetric method [39].  The output was 
presented as mg Gallic acid equivalents (GAE) per 100 g 
fresh weight (FW) (mg GAE/100  g FW). TAC  was cal-
culated using the pH differential technique [40]. The 
result was presented as mg cyanidin-3-glucoside (CGE) 
per 100  g FW (mg CGE/100  g FW). In this study, two 
different approaches were used to measure antioxidant 
capacity with slight modifications. The 2-diphenyl-
1-picrylhydrazyl (DPPH) scavenging activity  was meas-
ured with minor changes to the previously published 
method  [41]. The fluorescence recovery after the pho-
tobleaching (FRAP) assay was conducted as reported by 
Du et  al. [39] with some  adjustments. The results were 
expressed as μM of ascorbic acid per 100 g FW.

Measurement of free sugar content (fructose, 
glucose, and sucrose) using high‑performance liquid 
chromatography‑evaporative light scattering detector 
(HPLC‑ELSD)
The HPLC method described by Shanmugavelan et  al. 
[42] was used to analyze the sugar content. A Eurospher 
100–5 NH2 column (5 μm, 250 mm × 4.6 mm, Knauer, 
Germany) was used on a Waters Alliance 2695 liquid 
chromatography system (Waters Corporation Milford, 
MA, USA) with an evaporative light scattering detector 
(Alltech ELSD 800). The mobile phase consisted of 5% 
water (A) and 95% acetonitrile (B), as used by Agblevor 
et  al. [43].  The analysis was performed at a flow rate of 
1.5 mL/min and a temperature of 20°C. One gram of fro-
zen kiwifruit sample was blended with 10 mL of distilled 
water and centrifuged  at 2000  rpm for 10  min using a 
freezing centrifuge  (SIGMA 3-30  K, Heraeus Co., Ger-
many).  The resulting composition was filtered through 
a filter with 0.45  μm pore size. Free sugars, including 
fructose, glucose, and sucrose, were determined using an 
accurate and sensitive HPLC-ELSD method.

Image acquisition
To capture images of the kiwifruit samples, we used 
an apparatus developed by the Department of Biosys-
tems Engineering of the University of Guilan (Fig.  2a). 
The main components of the image-capturing system 
were an illumination chamber with a lighting system 
and a 10-megapixel digital camera (Basler acA3800-
10gc, Basler AG, Germany) with a user interface (Basler 
Pylon viewer application, Version 6.3.0.23157, Basler 
AG, Germany). The samples were placed on matte white 
cardboard in the illumination chamber, and the cam-
era was positioned 20  cm above the samples. The cam-
era was manually set to the same parameters for all 

image captures, and RGB images with a resolution of 
3840 × 2748 pixels were captured and saved.

Image processing and feature extraction
In this study, visual features were extracted from both 
whole and middle-cut images of kiwifruit samples.

To prepare the required images, a CVS was used, com-
prised of a wooden case with a matte black color, a light-
ing system, and a CCD camera. The details of this system 

Fig. 2 Actual views of the used computer vision (a) and e‑nose (b) 
systems
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were presented in a previous article [44]. The camera 
was mounted 20 cm above the samples, and color images 
with a resolution of 2736 × 3648 pixels were captured. To 
prepare images of the middle-cut surface of the samples, 
the kiwifruit samples were cut in the middle along the 
equatorial plane and placed inside the chamber on a ring 
with the cut surface facing the camera lens.

Table 2 summarizes the features extracted from whole 
kiwifruit and their middle cuts. To extract visual features, 
the RGB images of whole and middle-cut kiwifruit were 
transferred to the computer and analyzed in the image 
processing toolbox of MATLAB software (R2021a, the 
MathWorks, USA). Figures  3 and 4 show flowcharts of 
the image processing and feature extraction steps for 

Table 2 The extracted visual features from different parts of kiwifruit samples

Color features Morphological features

Whole fruit Averages of R, G, B, H, S, V, L, a*, and b* color components Area, Roundness, aspect ratio

Middle cut surface ‑ Area, Roundness, aspect ratio

Outer Averages of R, G, B, H, S, V, L, a*, and b* color components ‑

Locule Averages of R, G, B, H, S, V, L, a*, and b* color components Locule area rate

Core Averages of R, G, B, H, S, V, L, a*, and b* color components Area, Roundness, aspect ratio

Fig. 3 Flowchart of image processing and feature extraction from images of whole kiwifruits
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whole and middle-cut images of kiwifruit, respectively. 
Because the samples were located in almost the center 
of the images, in order to reduce the computational 
operations, at the beginning of the analysis, a block of 
1600 × 1600 pixels was cut around the image center 
(Fig.  5a, and  6a) and used in the next steps. The whole 
fruit images were converted to grayscale (Fig.  5b) and 
by applying an optimal threshold using Otsu method, 
were converted to binary images. The unwanted noises 
and gaps were removed using morphological opening 

operation (dilation followed by erosion) and the resulting 
binary image of the kiwifruit (Fig. 5c) was used to extract 
morphological features. The extracted morphological 
features were area, roundness, and aspect ratio. These 
features are commonly used and have been described in 
previous literature [45–47].

Additionally, by applying a logical AND between the 
RGB image and binary image of the whole kiwifruit, a 
RGB image was obtained in which the background pix-
els were zero (Fig.  5d). This image was subsequently 

Fig. 4 Flowchart of image processing and feature extraction from images of middle‑cut section of kiwifruits
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converted to HSV (Fig.  5e) and L*a*b* (Fig.  5f ) color 
spaces and the corresponding average values of nine 
color components in these three spaces were calculated. 
These color spaces and color components are described 
by Sangwine and Horne [48].

In order to extract features from the kiwifruit mid-
dle-cut section (Fig.  6a), the following steps were per-
formed: 1) Based on preliminary evaluations, the fruit 
section pixels were segmented by applying an optimal 
threshold to the hue color component (Fig. 6b). 2) The 
noises were removed using morphological opening 
operation and the binary image of the kiwifruit section 
was obtained (Fig. 6c). 3) To segment the outer and core 
parts, the excessive green value was calculated using 
ExG = 2*green–red-blue formula (Fig. 6d), which is also 
called excessive green [49]. 4) By optimal thresholding 
on the ExG image, the outer (Fig. 6e) and core (Fig. 6g) 
regions were segmented. 5) The locule region was 
obtained by subtracting the core and outer regions from 
the middle-cut binary image (Fig. 6i). 6) Morphological 
data were extracted from the binary images of the mid-
dle-cut section and core segment. Additionally, the ratio 
of the locule area to the middle cut surface area was cal-
culated. 7) These binary images were overlaid with the 
original RGB image to obtain the RGB images of the 
outer, core, and locule regions (Fig. 6f, h, and j, respec-
tively). 8) The color images of the outer, core, and locule 

regions were converted from RGB to HSV and L*a*b* 
spaces, and the color components in these three color 
spaces were calculated. Figure 6k shows a colored image 
of the image segmentation results for better visualiza-
tion. In total, 46 image-based features were extracted 
and used to discriminate the kiwifruit growing region 
and predict its quality attributes.

Data acquisition by E‑nose
To capture the volatile organic compound (VOC) 
data of the samples, a laboratory e-nose device (EN-
L16Ca, Hamedan Azmoon Kavoshgar, Iran) was used 
(Fig.  2b). The system consisted of airflow shut-off 
valves, a sample container, a sensor-containing cham-
ber, an electronic board for managing data acquisition, 
and a graphical monitoring and control interface. The 
e-nose system contained 13 metal oxide semiconduc-
tor (MOS) gas sensors, including 8 MQ sensors (Han-
wei Electronics Co., Ltd.) and 5 TGS sensors (Figaro 
Electronic Co., Ltd.). The specifications of the sen-
sors are provided in articles by Haghbin et al. [50] and 
Mirhoseini-Moghaddam et al. [51].

Every single sample was enclosed in a bottle of 250 ml 
capacity and kept for 15 min before olfactory evaluation 
to saturate the bottle with fruit volatiles. The e-nose sys-
tem operated in three steps: 120  s for baseline correc-
tion, 40  s for headspace injection, and 60  s for sensor 

Fig. 5 Gallery of whole fruit images at different steps of image processing; a RGB image of whole kiwifruit, b gray‑scale image, c binary image 
of whole kiwifruit, d The whole kiwifruit RGB image resulted by applying logical AND between RGB image and binary image, e converted to HSV 
color space, and f) converted to L*a*b* color space
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recovery. During the initial step, clean ambient air was 
supplied to the sensor chamber until the sensors sta-
bilized. Subsequently, the kiwifruit sample headspace 
aroma was introduced into the sensor array, causing 
changes in the output voltage of each sensor during the 
injection phase. The final phase involved circulating 
fresh ambient air into the sensor cavity to eliminate any 
remaining sample scent left in the sensor chamber. The 
sensor responses during the entire 220  s process were 
recorded and transmitted to the computer for further 
analysis. MATLAB programming software was used to 
preprocess and extract features from the acquired e-nose 
signals. Equation  1 was used for signal normalization 
[52] where the raw response baseline is represented 
by Xs(0), and the normalized and raw responses of the 
sensor at time t are denoted as Ys(t) and Xs(t), respec-
tively. The preprocessed data from the headspace phase 
between 121–140 s were chosen for feature extraction in 
this study.

(1)Ys(t) =
Xs(t)− Xs(0)

Xs(0)

After normalization, the maximum sensor response 
(MSR), which is the most common e-nose-based feature 
[53–55], was extracted and used for classification and 
prediction purposes. In total, 13 e-nose features (derived 
from the 13 sensors) were extracted and utilized.

Machine learning algorithms
Machine learning algorithms were developed in 
Unscrambler X software (version 10.4, CAMO ASA, 
Oslo, Norway). To extract patterns of the most influential 
image-extracted and e-nose features for the geographical 
discrimination of kiwifruits, Principal component analy-
sis (PCA) was performed. PCA is a dimensionality reduc-
tion method that produces a set of new feature vectors 
without intercorrelations, named principal components 
(PCs), which are linear combinations of the primary fea-
tures [56].

Because of the large number of input variables, the 
PCA-generated vectors were used for classification and 
prediction models instead of the primary calculated 
e-nose and CVS features. The first four PCs generated 
by PCA were fed into a support vector machine (SVM) 

Fig. 6 Gallery of middle‑cut images at different steps of image processing; a RGB image of kiwifruit middle cut, b H component, c binary image 
of fruit middle‑cut, d ExG image, e binary image of outer region, f RGB image of outer region, g binary image of core region, h RGB image of core 
region, i binary image of locule region, j RGB image of locule region, and k) colored image of segmented image
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classifier to discriminate kiwifruits based on their geo-
graphical growing region. These PC vectors were also 
used to predict the physicochemical attributes using sup-
port vector regression (SVR).

The SVM algorithm is a supervised machine learning 
method for either classification or regression problems. 
By creating an optimal hyperplane, the SVM algorithm 
separates the data into opposite groups with the maxi-
mum possible margin [57]. SVR is a modification to solve 
regression problems [58]. SVM and SVR models with 
different 2D polynomial kernels, cost values (0.01, 0.1, 1, 
10, and 100), and gamma values (0.01, 0.1, 1, 10, and 100) 
were evaluated. The optimal parameters were selected 
using the grid sampling method and the smallest root 
mean squared error (RMSE) value of tenfold cross-vali-
dation. Data was randomly divided into calibration (two-
thirds of data) and testing (one-third of data) datasets, 
and tenfold cross-validation was used in the calibration 
stage.

Model evaluation
The best models for the prediction of physicochemical 
indices were selected based on the value of RMSE and 
coefficient of determination  (R2) in the cross-validation 
stage. The models with the greatest  R2 and the lowermost 
RMSE values were the desired ones. RMSE is a highly 
recommended performance criterion when the model 
outputs are numeric [59]. Another performance metric 
that was calculated for SVM classifiers was classifica-
tion accuracy. The classification accuracy is calculated by 
dividing the number of correctly classified cases by the 
total number of instances. The descriptions and calcula-
tion formulas for these statistical indices are provided in 
previous literature [60, 61].

Statistical analysis of quality attributes
Statistical analysis of the quality data was carried out 
using one-way ANOVA with SAS software (version 9.4, 
SAS Institute Inc., Cary, NC, USA) through Tukey’s HSD 
test at p-value < 0.05 significance level.

Results and discussion
Results of physicochemical indices
The results of the analysis of variance (ANOVA) in 
Table 3 show that the growing location had a highly sig-
nificant effect on firmness, SSC, BAR, pH, vitamin C, TP, 
DPPH, FRAP, and TAC (all p < 0.01). Meanwhile, the TA 
was not significantly influenced by the growing location 
(p < 0.05). The fruits from Langarud (east of Guilan) had 
the highest SSC (20.96°Brix), SSC/TA (38.12), vitamin 
C (94.19  mg/100  g), TP (104.91  mg GAE/100  g), DPPH 
(67.12%), FRAP (10.68  μmol ascorbic acid/g) and TAC 
(3.49 mg CGE/100 g). The fruits grown in Rasht (center 

of Guilan) were firmer (1.20  kg/cm2) than those from 
Talesh and Langarud. The kiwifruits grown in Talesh 
(west of Guilan) had the highest pH (3.83), while the 
fruits from Rasht had the lowest. The significance of 
orchard and region was evident, given previous reports 
on variation between orchards [62, 63]. Previous lit-
erature found that the variation between orchards was 
related to differences in altitude and temperature. Envi-
ronmental factors, such as light, temperature, and soil 
conditions, regulate anthocyanin pigmentation. Color 
intensity varies with altitude. The low temperature and 
high precipitation in Langarud may have caused the 
increase of TAC in kiwifruit in this region. Man et al. [62] 
reported that the decrease in anthocyanin biosynthetic 
gene expression in higher temperatures decreases antho-
cyanin concentration in red-fleshed kiwifruit.

The polyphenolic profile of kiwifruit is greatly influ-
enced by the environment, including the amount of 
sunlight, temperature, rainfall, and nutritional factors 
[64]. Our results show that lower temperatures (17.32 °C 
and 13.24  °C, respectively) and higher precipitation 
(104.91  mm and 239.7  mm, respectively) in Septem-
ber and October resulted in higher TP in kiwifruit from 
Langarud (east of Guilan). These findings support those 
revealed by Mditshwa et al. [64] who reported that cool 
weather increases TP in pomegranate juice. Our results 
showed that the growing region was the main factor 
influencing the antioxidant compounds and nutritional 
quality of red-fleshed kiwifruit. The high TP, vitamin C, 
and anthocyanin contents of kiwifruit from Langarud 
may be responsible for its high antioxidant activity. Fruits 
produced in Langarud, which has a higher altitude and 
cooler summer temperatures, showed higher vitamin C, 
TP, and antioxidant activity than fruits from the other 
two regions at both ripening stages.

Results of free sugars content (fructose, glucose, 
and sucrose)
The HPLC-ELSD method was used to analyze fructose, 
glucose, and sucrose in red kiwifruit. All three sugars 
were successfully identified in 25 min. Table 3 shows the 
sugar content of the kiwifruit samples examined in this 
study. Glucose and fructose were the predominant sug-
ars in all samples, with sucrose content being lower. The 
fruits from Langarud (east of Guilan) had the highest 
fructose (0.98%), glucose (1.32%), and sucrose (0.79%), 
while the fruits from Rasht had the lowest contents. By 
the ripening of kiwifruit, the starch content decreases 
from 6% to near 0%, and the concentrations of total 
sugars and soluble solids increase up to 15% and 16%, 
respectively. Like other cellular components, sugar accu-
mulation varies depending on cultivar, maturity, and 
environmental conditions. Increased variations between 
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day and night temperature and increased UV radiations 
in higher altitudes, presents a complex of environmental 
parameters that leads to the increase in SSC and sugar 
content [65].

Results of E‑nose
Figure 7 shows the radar plots of the average e-nose MSR 
feature of different MQ sensors for three different grow-
ing geographical regions of ʻKhoniʼ kiwifruit. The graphs 
show that the maximum response of most sensors to the 
kiwifruit samples from the Langarud region is higher 
than the other two regions. This can be attributed to the 
higher concentration of volatile organic compounds in 
kiwifruit samples from Langarud region. Additionally, 
the differences between the average MSR values in most 
E-nose sensors are such distinct that it can be hoped to 
discriminate the samples of different origins based on 
e-nose data with a high accuracy.

The score plot of PCA analysis is presented in Fig. 8a. 
The first two principal components (PCs) extracted 
from the e-nose data accounted for 99% of the vari-
ance in the original e-nose data (PC1 = 91%, PC2 = 8%). 
Additionally, using these two PCs, samples from the 
three regions were completely discriminated. This 
demonstrates the high capability of the e-nose system 

to detect the growing location of red-fleshed kiwifruit 
based on the aroma-extracted features. The loading 
plot of the PCA is shown in Fig. 8b. The inner and outer 
circles represent 70% and 100% of the variance covered, 
respectively. The features closer to the boundary of the 
larger circle are more important for the detection and 
discrimination of the samples [66]. Figure  8b shows 
that most of the e-nose sensors have a significant role in 
the classification of fruits of different growing regions. 
Moreover, the MQ2, MQ4, MQ8, MQ9, MQ135, 
TGS822, and TGS2610 had the highest contributions.

Assessment of various PCA-SVM models for the clas-
sification of kiwifruits using e-nose data is presented 
in Table  4. It was found that the E-nose-based PCA-
SVM classifier could successfully classify ’Khoni’ kiwi-
fruit samples based on their growing locations with an 
accuracy of 96.67% and an RMSE of 0.0201. This model 
discriminated between different origin classes with an 
accuracy of 93.33%, with only one case misclassified 
out of 15 test samples. These results demonstrate the 
high capability of the e-nose and PCA-SVM to iden-
tify the growing location of kiwifruit based on aroma 
characteristics.

Table  5 presents the performance statistics of the 
most accurate PCA-SVR models for predicting the 

Fig. 7 Radar plot of the MSR averages of e‑nose sensors for red‑fleshed kiwifruits of different growing region
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physicochemical attributes of kiwifruit based on 
e-nose features. This table shows that the e-nose-
based models accurately predicted the kiwifruit quality 
characteristics.

The  R2 coefficients obtained by the E-nose-PCA-SVR 
model in the cross-validation stage ranged from 86.46% 
for predicting kiwifruit BAR to 97.46% for predicting pH. 
This demonstrates the high capability of e-nose data in 

Fig. 8 PCA score (a) and loading (b) plots for growing region discrimination of kiwifruit using e‑nose data

Table 4 Performance criteria of the PCA‑SVM model for classifying the kiwifruit growing region using e‑nose, image‑extracted, and 
fused data

Data Optimal parameters Calibration Test

RMSE Accuracy (%) RMSE Accuracy (%)

E‑nose features c = 1, γ=1 0.0201 96.67 0.0250 93.33

Image features c = 100, γ=10 0.0233 93.33 0.0253 93.33

Fused data c = 10, γ=1 0.0141 100 0.0166 100

Table 5 Performance criteria of the PCA‑SVR models for predicting the kiwifruit physicochemical indices using e‑nose data

Quality index Optimal parameters Calibration Validation Test

RMSE R2 (%) RMSE R2 (%) RMSE R2 (%)

Firmness (kg/cm2) c = 10, γ=10 0.0247 99.06 0.0532 95.21 0.0687 93.09

SSC (°Brix) c = 10, γ=0.1 0.2467 98.66 0.4549 95.98 0.6750 93.15

TA (%) c = 100, γ=1 0.0072 98.76 0.0187 87.85 0.0157 90.86

BAR c = 10, γ=1 0.5918 98.57 1.3052 86.46 1.3855 85.10

pH c = 10, γ=10 0.0088 99.34 0.0139 96.85 0.0161 95.66

Vitamin C (mg/100 g) c = 10, γ=10 1.2344 99.08 1.8094 97.04 2.0064 96.34

TP (mg GAE/100 g) c = 0.01, γ=10 0.8569 99.34 1.2964 97.46 1.5189 96.51

TAC (mg CGE/100 g) c = 10, γ=10 0.0448 99.34 0.0669 97.41 0.0713 97.06

DPPH (%) c = 10, γ=10 0.7743 99.08 1.1722 96.48 1.5315 94.13

FRAP (μmol/g) c = 10, γ=10 0.1083 99.29 0.1875 96.28 0.2479 93.97
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predicting the quality characteristics of kiwifruits from 
different orchard regions. In a previous study, the highest 
correlation coefficient (R) values between the reference 
and e-nose-based predicted SSC, firmness, and pH of 
pears were 0.93, 9.3, and 0.54, respectively [67]. Du et al. 
[68] reported the successful prediction of firmness, SSC, 
TA, and BAR measures of red kiwifruits using e-nose 
features and the PCA-SVR model. Accurate prediction 
 (R2 > 92%) of firmness, pH, and SSC measures of cucum-
ber was also obtained by Feng et al. [69] using the PCA-
SVR model and e-nose-extracted variables.

Results of CVS
Regarding the data extracted from the CVS, the PCA 
analysis was performed on the visual features of 
whole kiwifruits and those data obtained from fruit 

middle-cut images. Figure  9a shows the score plot of 
the first two principal components (PCs) constructed 
from the whole fruit image-extracted data. Although 
the first two PCs accounted for 94% of the variance of 
the image-extracted data (PC1 = 63% and PC2 = 31%), 
there is no appropriate discrimination between dif-
ferent locational classes of fruit. Considering the high 
coverage of the data variance by the first two PCs and 
the lack of proper separation of the samples (Fig. 9a), 
it can be concluded that the data extracted from the 
appearance of whole fruits does not have a suitable 
ability to identify the kiwifruit growing region. Addi-
tionally, Fig.  9b shows that the color components 
extracted from the surface of whole kiwifruits of dif-
ferent locations are more different than their shape 
characteristics.

Fig. 9 PCA score (a, c) and loading (b, d) plots for growing region discrimination of kiwifruit using image‑extracted features from whole fruits (a, b) 
and middle‑cult fruits (c, d)
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Figure 9c shows the PCA score plot of the kiwifruit 
middle-cut image features. Although the first two 
PCs in this case covered only 78% of the data variance 
(PC1 = 43% and PC2 = 35%), the separation of differ-
ent kiwifruit categories is better than that achieved 
by whole fruit image features. Additionally, by inves-
tigating other components, it was observed that incor-
porating the third (PC3 = 10%) and fourth (PC4 = 5%) 
components increases this variance coverage up to 
93%. Figure  9d shows that the color features have a 
greater contribution than the shape features, and in 
particular, the color values of the locule segment were 
more significant. Therefore, it can be concluded that 
the difference in the place of kiwifruit growth has the 
greatest effect on the color characteristics of the fruit 
locule.

The first four PCA vectors were generated from the 
data extracted from the images of whole and middle-
cut kiwifruits. These PC vectors were used to distin-
guish the growing location of kiwifruit samples. The 
statistics of the most accurate PCA-SVM model are 
reported in Table  4. As shown in Table  4, the image-
based PCA-SVM model was less accurate in the 
calibration stage than the classifier developed using 
e-nose data. However, the developed model classified 
the kiwifruits from different regions with an accu-
racy similar to that of the e-nose-based PCA-SVM 
(93.33%). This demonstrates that the combination of 
appearance characteristics extracted from kiwifruits’ 
whole and middle-cut images provides useful informa-
tion for identifying the fruit growth location.

The results of predicting kiwifruit quality indicators 
using appearance characteristics are shown in Table  6. 
Vision-based models were less accurate than e-nose-
based models. However, according to model validation 
measures, although the performance of the vision-SVR 

model in predicting some important features such as 
BAR  (R2 = 68.36%) and pH  (R2 = 78.15%) was inadequate, 
it was able to predict parameters such as firmness, TAC, 
TP, vitamin C, and anthocyanin measures with high 
accuracy  (R2 > 93%).

It was reported by Li et al. [70] that the shelf life stor-
age time, SSC, firmness, and TP values of Hayward 
kiwifruit are highly correlated (absolute R > 0.92) to 
RGB color values. In a recent study, image processing 
was used by Fashi et al. [71] for the accurate classifica-
tion of pomegranate fruit based on pH value using arti-
ficial intelligence.

Results of data fusion strategy
The fusion of olfactory and visual sensors data was used 
to classify kiwifruit samples based on their growing 
region and to estimate the fruit’s quality characteristics. 
The results are as follows:

As shown in Table  4, the data fusion-based PCA-
SVM classifier with a penalty value of 100 and a gamma 
value (γ ) of 10 achieved the best classification perfor-
mance for kiwifruit geographical origin, with the small-
est RMSE (0.0141) and classification accuracy of 100%. 
Evaluation of this model on test data resulted in an 
RMSE of 0.0163. The classification accuracy of the PCA-
SVM model in test stage was also obtained to be 100%. 
This demonstrates the advantage of data fusion for 
improving classification model performance, as it was 
able to completely separate the red-fleshed kiwifruit 
samples from different regions.

Wu et al. [48] reported that fusing E-nose and e-tongue 
data can improve the accuracy of discriminating apple 
fruits based on geographical origin and variety, com-
pared to using either system individually. The accuracy of 
the PCA-SVM classifier for classifying apple fruits using 
combined data reached 100%.

Table 6 Performance criteria of the PCA‑SVR models for predicting the kiwifruit physicochemical indices using image‑extracted data

Quality index Optimal parameters Calibration Validation Test

RMSE R2 (%) RMSE R2 (%) RMSE R2 (%)

Firmness (kg/cm2) c = 10, γ=1 0.0392 97.38 0.0630 93.25 0.0671 92.61

SSC (°Brix) c = 100, γ=10 0.3531 97.30 0.7282 88.78 0.6133 91.40

TA (%) c = 100, γ=10 0.0132 95.16 0.0210 84.76 0.0206 85.63

BAR c = 10, γ=1 0.5952 97.50 1.9928 68.36 2.2889 62.18

pH c = 10, γ=0.1 0.0223 91.84 0.0364 78.15 0.0360 78.70

Vitamin C (mg/100 g) c = 100, γ=10 1.2718 98.99 1.8705 96.00 1.7641 96.53

TP (mg GAE/100 g) c = 100, γ=10 0.8659 99.05 1.8235 93.92 2.2468 91.65

TAC (mg CGE/100 g) c = 10, γ=10 0.0456 99.20 0.0671 97.36 0.0774 96.52

DPPH (%) c = 100, γ=10 0.7993 99.02 1.1814 96.45 1.4962 94.33

FRAP (μmol/g) c = 100, γ=10 0.1093 99.13 0.2180 94.69 0.2841 92.01
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Table 7 presents the results of data fusion-based PCA-
SVR models for predicting the physiochemical parameters 
of kiwifruit. A comparison of Table 7 with the performance 
data of Tables 5 and 6 reveals that the data fusion-based 
PCA-SVR models had the highest accuracy compared 
to the individual vision and olfactory datasets. The data 
fusion resulted in validation  R2 values ranging from 90.17% 

for BAR prediction to 98.57% for pH prediction. These 
models were subsequently evaluated using separate data 
and high performance values were obtained according 
to Table 7. These high performance values show the high 
capability of combined systems based on E-nose and CVS 
technologies in reliably predicting the physiochemical 
parameters of red-fleshed kiwifruit.

Table 7 Performance criteria of the PCA‑SVR models for predicting the kiwifruit physicochemical indices using the fusion of e‑nose 
and image‑extracted data

Quality index Optimal parameters Calibration Validation Test

RMSE R2 (%) RMSE R2 (%) RMSE R2 (%)

Firmness (kg/cm2) c = 10, γ=10 0.0212 99.55 0.0471 96.35 0.0621 94.54

SSC (°Brix) c = 10, γ=10 0.2031 99.14 0.4236 96.10 0.4168 96.19

TA (%) c = 100, γ=1 0.0050 99.14 0.0143 92.70 0.0115 94.76

BAR c = 10, γ=10 0.5864 98.90 1.1404 90.17 0.9751 92.78

pH c = 10, γ=1 0.0075 99.58 0.0103 98.57 0.0181 95.90

Vitamin C (mg/100 g) c = 1, γ=1 1.1618 99.53 1.7298 97.11 1.7317 97.10

TP (mg GAE/100 g) c = 100, γ=1 0.8566 99.36 1.2053 97.81 1.2460 97.63

TAC (mg CGE/100 g) c = 100, γ=10 0.0415 99.82 0.0662 97.51 0.0671 97.40

DPPH (%) c = 10, γ=1 0.7554 99.56 1.1438 96.95 1.1539 96.88

FRAP (μmol/g) c = 100, γ=0.1 0.0893 99.37 0.1469 98.03 0.1545 97.86

Fig. 10 Results of data fusion‑based PCA‑SVR models for prediction of kiwifruit firmness (a), SSC (b), TA (c), and BAR (d)
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The graphical results of the data fusion-based PCA-
SVR models are presented in Figs. 10 and 11. The prox-
imity of the points to the target line (black diagonal line) 
shows the high accuracy of the PCA-SVR prediction 
models.

By referring to Tables  4, 5, 6 and 7, it can be seen 
that although for many attributes, the accuracies of 
the individual CVS and e-nose systems were accept-
able, for some features such as BAR and TA. Addition-
ally, the accuracies of both systems were low. For some 

other attributes (such as SSC and pH), the accuracy of 
the CVS system was not appropriate. Therefore, data 
fusion is important for increasing the prediction accu-
racy to an acceptable level. Furthermore, in the case 
of fruit origin classification, the use of combined data 
significantly increased the classification accuracy from 
93 to 100%.

Eventually, Fig.  12 represents the variable impor-
tance plots of SVR models for the prediction of quality 
attributes using the PC vectors derived from the fusion 

Fig. 11 Results of data fusion‑based PCA‑SVR models for prediction of kiwifruit pH (a), vitamin C (b), TP (c), TAC (d), DPPH (e), and FRAP (f)
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of CVS and e-nose data. It can be observed that the 
first and second PCs have the largest contribution in 
predicting the kiwifruit physiochemical attributes and 
are significantly more important than the other two 
PCs. The first PC, which covered the largest propor-
tion of data variance, was more important than the 

second one. Moreover, the sum of the relative impor-
tance values of the third and fourth PCs also has a 
large proportion. This shows that the third and fourth 
PCs cannot be ignored since they have a meaningful 
effect in increasing the prediction performance of SVR 
models.

(a) (b) (c)

(d) (e) (f)

(g)

(h)

(h) (i)

Fig. 12 PC importance plots of PCA‑SVR models for prediction of kiwifruit firmness (a), SSC (b), TA (c), BAR (d), pH (e), vitamin C (f), TP (g), TAC (h), 
DPPH (i), and FRAP (j)
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Although no studies have been found on the combi-
nation of electronic olfactory and vision systems for the 
detection of the geographical origin of crops, Huang et al. 
[53] reported that fusing CVS and e-nose information 
can result in more robust modeling of tomato ripeness 
classification and hardness prediction than using either 
appearance or aroma features alone. The combination of 
artificial nose and eye sensors also promoted the fresh-
ness classification performance of spinach rather than 
the separate systems [72].

The high accuracies achieved in this study demon-
strate the high potential of the combined e-nose-e-
vision system for detecting the growing region and 
predicting the quality attributes of kiwifruit. The elec-
tronic nose tests in this study were completely non-
destructive. However, a limitation of this system is that 
the fruit must remain inside a closed container for a 
certain time to allow the space inside the container to 
be filled with the fruit’s aroma. This increases the test 
time, which is a disadvantage for real-time analysis. In 
the case of CVS, although it is inherently capable of 
non-destructive and real-time evaluation, in this study, 
it was necessary to cut the fruit to obtain the differ-
entiating information in the middle-cut section image, 
which caused destructive analysis. Besides, the accu-
racy of the individual CVS was insufficient for some 
physiochemical attributes.

Therefore, if a single, non-destructive recognition and 
prediction system is desired, the e-nose system is a bet-
ter option. Additionally, we can explore ways to reduce 
the time the fruit must remain in the sample container. 
However, if destructiveness and time are not important, 
the proposed fused system is a good option for a more 
comprehensive and reliable system.

Conclusion
The geographical growing region of horticultural fruits 
has an essential role in the quality of the harvested prod-
uct. This study investigated the use of a combined e-nose 
and e-eye system to discriminate among red-fleshed 
kiwifruits from three different geographical regions in 
northern Iran. The following observations were made:

1) The fruit firmness, soluble solid content (SSC), Brix-
acid ratio (BAR), pH, vitamin C, total phenolic con-
tent (TP), total anthocyanin content (TAC), anti-
oxidant capacity, and free sugars of different regions 
were significantly (p < 0.01) different, but the titrat-
able acidity (TA) of different fruits did not show a 
significant difference (p < 0.05).

2) The fusion of image-extracted and aroma-extracted 
features improved the accuracy of classification and 
prediction models compared to individual systems.

3) The data fusion-based PCA-SVM model achieved a 
100% classification rate in detecting kiwifruits from 
different regions.

4) The data fusion-based PCA-SVR models achieved 
 R2 values of 96.35%, 96.10%, 92.70, 90.17%, 98.57%, 
97.11%, 97.81%, 97.51%, 96.95%, and 98.03% for pre-
dicting firmness, SSC, TA, BAR, pH, vitamin C, TP, 
TAC, DPPH, and FRAP, respectively.

5) The high accuracy measures obtained in this study 
demonstrate the high capability of the fusion of 
e-nose and e-eye systems for monitoring the qual-
ity attributes and discriminating among the growing 
regions of kiwifruit.

6) The results of this study provide valuable insights 
into the development of artificial sensing systems for 
the rapid and accurate regional, physical, and biologi-
cal evaluation of kiwifruit.
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