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Abstract 

Background Long noncoding RNAs (lncRNAs) have been shown to play important roles in the response of plants 
to various abiotic stresses, including drought, heat and salt stress. However, the identification and characterization 
of genome-wide salt-responsive lncRNAs in tobacco (Nicotiana tabacum L.) have been limited. Therefore, this study 
aimed to identify tobacco lncRNAs in roots and leaves in response to different durations of salt stress treatment.

Results A total of 5,831 lncRNAs were discovered, with 2,428 classified as differentially expressed lncRNAs (DElncR-
NAs) in response to salt stress. Among these, only 214 DElncRNAs were shared between the 2,147 DElncRNAs in roots 
and the 495 DElncRNAs in leaves. KEGG pathway enrichment analysis revealed that these DElncRNAs were primarily 
associated with pathways involved in starch and sucrose metabolism in roots and cysteine and methionine metabo-
lism pathway in leaves. Furthermore, weighted gene co-expression network analysis (WGCNA) identified 15 co-
expression modules, with four modules strongly linked to salt stress across different treatment durations (MEsalmon, 
MElightgreen, MEgreenyellow and MEdarkred). Additionally, an lncRNA-miRNA-mRNA network was constructed, 
incorporating several known salt-associated miRNAs such as miR156, miR169 and miR396.

Conclusions This study enhances our understanding of the role of lncRNAs in the response of tobacco to salt stress. 
It provides valuable information on co-expression networks of lncRNA and mRNAs, as well as networks of lncRNAs-
miRNAs-mRNAs. These findings identify important candidate lncRNAs that warrant further investigation in the study 
of plant-environment interactions.

Keywords Tobacco, RNA-seq, lncRNA, Salt stress, Co-expression

Introduction
Soil salinity is a severe problem worldwide. Approxi-
mately 6% of the global soil area is affected by salt stress 
[1]. For crop plants, salinity is one of the major abiotic 
stresses that often leads to yield reduction [2]. Salinity 
causes both osmotic and toxicity stress, affecting plant 
growth, development and metabolism. Halophytes have 
evolved a series of defense mechanisms in response to 
salt stress, such as salt exclusion, salt excretion and salt 
dilution [3, 4]. Most crop species (glycophytes) are salt 
sensitive and need to rebuild the homeostasis of cell ions, 
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osmosis and redox balance to adapt to salt stress [5]. Salt 
tolerance in plants is a complex trait regulated by genetic, 
physiological and environmental factors. Uncovering and 
optimizing the salt tolerance of different plant species 
plays a crucial role in crop breeding to improve resist-
ance on salinized agricultural land. With the advance-
ment of whole-genome and transcriptome sequencing 
technologies, it has been discovered that over 75% of 
transcripts found in higher eukaryotic genomes do not 
have the ability to code for proteins and are known as 
noncoding sequences [6]. Among these sequences, there 
is a specific class called long noncoding RNAs (lncRNAs) 
that are longer than 200 nucleotides and without ability 
to code proteins [7].

In general, lncRNAs can be classified into three cat-
egories based on their genomic location and orienta-
tions relative to adjacent coding genes: intronic lncRNAs, 
intergenic lncRNAs (lincRNAs), and antisense lncRNAs 
[8]. In recent years, an increasing number of studies 
have shed light on the diverse roles of lncRNAs in plant 
growth and development [9]. LncRNAs have been found 
to play crucial roles in the regulation of seed germina-
tion and seedling growth. For example, when BoNR8 (a 
cabbage homolog of AtR8) was expressed in Arabidop-
sis thaliana, it strongly affected germination efficiency 
under ABA and salt stress conditions [10]. Moreover, 
lncRNAs have been implicated in flowering regulation 
and reproductive development. During vernalization, 
cold temperatures can induce the removal and addition 
of H3K27me3 modification on FLC, thereby inhibiting its 
expression and impacting flowering [11]. To date, three 
lncRNAs, namely COOLAIR [12], COLDAIR [13], and 
COLDWRAP [14], have been identified for their signifi-
cant involvement in the silencing of the FLC gene [15]. 
Furthermore, lncRNAs have also been found to respond 
to various biotic and abiotic stresses [16]. For instance, 
the lncRNA ELENA1 is implicated in pattern-triggered 
immunity, while the lncRNA DRIR exhibits responsive-
ness to salt stress. Another lncRNA, SVK (SVALKA), 
has been identified as being responsive to cold stress in 
Arabidopsis.

The advent of high-throughput sequencing technol-
ogy has facilitated the identification and screening of 
numerous potential lncRNAs in various plant spe-
cies, including Arabidopsis [17], pear [18], pepper [19], 
tomato [20], wheat [21], peach [22] and many others. 
These studies have encompassed a wide range of biotic 
and abiotic stress conditions. Numerous studies have 
been conducted to investigate the response of lncR-
NAs to salt stress, resulting in the identification of sev-
eral salt -responsive lncRNAs [20, 23–25]. For instance, 
in the case of duckweed (Spirodela polyrhiza), a total of 
2,815 novel lncRNAs were discovered, with 6.6% of them 

showing differential expression under saline conditions 
[26]. Similarly, in birch (Betula platyphylla Suk.), 539 
lncRNAs were recently identified, with one particular 
lncRNA called LncY1 being characterized for its ability 
to enhance salt tolerance by regulating BpMYB96 and 
BpCDF3 [27].

Tobacco (Nicotiana tabacum L.) is a commercially 
important species and serves as a crucial model plant for 
scientific research. In recent years, there has been great 
interest in understanding the molecular mechanisms 
underlying salt response in tobacco. Various factors, such 
as transcription factors (TFs) [28], ion transporters [29, 
30], and miRNAs [31], have been demonstrated to be 
involved in response to salt stress. However, to date, no 
salt tolerance or sensitivity-related lncRNAs have been 
identified in tobacco. The mechanisms by which lncRNAs 
respond to salt stress and affect the uptake and transpor-
tation of  Na+ or  Cl- in tobacco have not been thoroughly 
investigated. Therefore, it is vital to investigate the regu-
latory mechanisms of lncRNAs under salt stress.

In this study, we performed a comprehensive genome-
wide identification and characterization of lncRNAs 
in roots and leaves of tobacco at different time points. 
The potential functions of the differentially expressed 
lncRNAs (DElncRNAs) and some key DElncRNAs were 
analyzed and obtained based on weighted gene co-
expression network analysis (WGCNA) and lncRNA-
miRNA-mRNA networks construction. These results 
would provide valuable information for understanding 
the function of lncRNAs in tobacco salt tolerance.

Materials and methods
Plant material and salt stress treatment
The tobacco cultivar ‘K326’ (Nicotiana tabacum L.) was 
chosen for this study, which was preserved in China 
Tobacco Gene Research Center. All plants were grown 
in the greenhouse in our lab. The salt stress experiment 
was conducted following the previously described pro-
cedure [30]. Briefly, seedlings were grown in plastic pots 
under a 16-hour photoperiod with temperatures of 28 ℃ 
during the day and 23 ℃ at night. To initiate salt treat-
ment, plants at the six-leaf stage were transferred to a 
nutrient solution, as specified in the previous study [30], 
for a period of one week. Afterwards, a final concentra-
tion of 300 mM NaCl was added to the nutrient solution. 
Sampling was carried out at specific time points after the 
addition of NaCl: 3 hours, 6 hours, 12 hours, 24 hours, 
3 days and 7days. Control samples were collected before 
the initiation of salt stress. The leaves and roots were 
separated from the plants, with the roots being rinsed 
thoroughly to remove any remaining nutrient solution 
and then dried gently. For each time point of salt treat-
ment, triplicate samples were collected. All samples were 
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immediately frozen in liquid nitrogen and stored at -80 
°C until further analysis.

Determination of MDA and proline content
The total malondialdehyde (MDA) content was deter-
mined using a modified thiobarbituric acid (TBA) 
method [32]. Approximately 0.5 g of leaf or root tissue 
was ground in 10 ml of pre-cooled PBS buffer (pH 7.8). 
The resulting homogenates were kept at 4 °C for 2 hours 
with intermittent shaking every 15 minutes. Afterward, 
the samples were centrifuged at 10,000 rpm for 20 min-
utes under low-temperature conditions. One milliliter of 
the supernatant was mixed with 1 ml of 10% TCA and 2 
ml of 0.67% TBA, and the mixture was boiled for 25 min-
utes, rapidly cooled on ice, and then centrifuged again at 
10,000 rpm for 5 minutes. The absorbance at 450 nm, 532 
nm, and 600 nm was measured using a TECAN-Spark 
multimode microplate reader. Three biological replicates 
were performed.

Theproline contents were determined using a modi-
fied ninhydrin reaction method [32]. Leaf or root tissue 
(0.6 g) was homogenized in 6 ml pre-cooled 3% sulfos-
alicylic acid. The extracts were boiled for 20 minutes with 
intermittent shaking during the extraction process. The 
mixture was rapidly cooled on ice and then centrifuged 
at 4 ℃ and 10,000 rpm for 20 minutes. One milliliter of 
the supernatant was mixed with 1 ml of glacial acetic 
acid and 1ml of ninhydrin reagent, boiled for 30 min-
utes, rapidly cooled on ice, and then centrifuged again at 
10,000 rpm for 5 minutes. The absorbance at 520 nm was 
measured using a TECAN-Spark multimode microplate 
reader. Three biological replicates were performed.

RNA extraction, library establishment and sequencing
Total RNA extraction was carried out using the RNAprep 
pure Plant Kit (Tiangen, Beijing, China), following the 
manufacturer’s instructions. The quality of the extracted 
RNA was assessed by running it on a 1% agarose gel, and 
the purity was measured using a Nano Drop 2000 spe-
trophotometer. For library construction, 1 μl of the high-
quality RNA was used. After the ribosomal RNA was 
eliminated, the remaining RNA were then fragmented 
and used for library preparation. Paired-end sequencing 
was performed using the Illumina NovaSeq 6000 Sys-
tem, generating the 150 bp length of paired-end reads. 
The raw sequence data have been deposited in the NCBI 
database under project ID PRJNA827645.

Read preprocessing and mapping
To ensure the quality of the sequenced libraries, a series 
of quality control steps were performed using an in-
house software ng_qc (Novogene). Raw data in fastq for-
mat (raw reads) was processed by an internal perl script. 

First, reads containing adaptors were removed from the 
dataset. Next, reads with N ratios exceeding 0.002 were 
discarded. Then, pair-end reads with more than 50% 
low-quality bases in either read were eliminated. Finally, 
the remaining high-quality, clean read sequences were 
aligned to the reference genome [33] of the tobacco cul-
tivar ‘K326’ using HISAT2 (v2.1.0) [34]. The contents of 
Q20%, Q30%, GC%, ambiguous bases rate (Ns and per-
cent per million), clean ratio ((clean data bases/raw data 
bases)*100%) were also calculated. This alignment step 
allowed for the mapping of the clean reads to the refer-
ence genome, enabling downstream analysis.

Prediction of lncRNA
The transcripts from each sample were assembled 
individually using StringTie (v2.1.7) [35]. The String-
Tie-merge program was then utilized to generate a 
non-redundant set of transcripts. Cuffcompare [36] 
was employed to annotate the transcripts based on the 
obtained non-redundant set. For expression quantifi-
cation, StringTie was used. To identify lncRNA, several 
criteria were applied for transcript screening: (1) the 
transcripts with annotation codes “i”, “x”, “u”, “o” or “e”; (2) 
transcripts length ≥200 bp; (3) number of exons≥2; and 
(4) expression level with FPKM ≥ 0.5. Additionally, the 
potential coding ability of the transcripts was assessed 
using four different software programs: CNCI (v2.0) [37], 
CPC2 (v0.1) [38], CPAT (v3.0.2) [39] and PfamScan (v1.3) 
[40]. To differentiate known and novel lncRNAs, lncRNA 
annotations from another tobacco genome (TN90) were 
collected from the NCBI database (https:// www. ncbi. 
nlm. nih. gov/ datas ets/ genome/ GCF_ 00071 5135.1/). 
These TN90 lncRNAs were mapped to the reference 
genome using the GMAP program (version 2017-11-15) 
with the parameters --min-identity=0.95 and --min-
trimmed-coverage=0.9. Cuffcompare was then used to 
compare the predicted lncRNAs against the TN90 lncR-
NAs. LncRNAs with class codes “=” or “c” were consid-
ered known, and others were classified as novel.

Identification and analysis of differentially expressed 
lncRNAs and mRNAs
The control samples, prior to salt stress, were used 
as reference points for comparison. DESeq2 [41] was 
employed to identify the differentially expressed lncR-
NAs (DElncRNAs) and mRNAs (DEmRNAs) in response 
to salt stress. The DElncRNAs and DEmRNAs had an 
adjusted p value < 0.05 and | log2FC| ≥1. Clustering anal-
ysis of the expression profiles was conducted using Clust 
(v1.12.0) [42]. Gene ontology (GO) and Kyoto encyclo-
pedia of genes and genomes (KEGG) pathway enrich-
ment analyses were performed using clusterProfiler 
[43]. A significance cutoff of adjusted p value < 0.05 was 

https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000715135.1/
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used for identifying significantly enriched GO terms and 
pathways.

Prediction of DElncRNA target genes
To perform functional annotation of the DElncRNAs, co-
localization and co-expression analyses were conducted. 
In order to identify the target genes of DElncRNAs, Pear-
son’s correlation coefficient (r) was calculated to meas-
ure the expression level correlation between DElncRNAs 
and DEmRNAs. DEmRNAs with a correlation coefficient 
|r|>=0.9 and a p-value< 0.05 were selected as potential 
targets of DElncRNAs. To determine the cis-targets, a 
custom Python script was used to compare the genomic 
positions of DElncRNAs and DEmRNAs. DEmRNAs 
located within a distance of 100kb from the DElncRNAs 
were identified as cis-targets. For trans-target prediction, 
pRIblast software (v0.03) [44], a parallel version of RIblast 
[45], was utilized. The criteria for predicting trans-targets 
were an interaction energy of less than 14 kcal/mol and 
an interaction length ≥15 bp.

Weighted Gene Co‑Expression Network Analysis (WGCNA)
WGCNA [46] analysis was performed on both the DEl-
ncRNAs and DEmRNAs. An unsigned co-expression net-
work was constructed based on their expression profiles. 
The soft-thresholding power was set to 8, which ensures 
a scale-free network. The minimum module size was set 
to 30, meaning that modules with fewer than 30 genes 
were not considered. A cutheight of 0.2 was used for 
merging close modules. For visualization of the network, 
the node and edge files for each module were exported 
and imported into Cytoscape software [47].

LncRNA‑miRNA‑mRNA network construction
Published tobacco miRNAs from miRbase (Release 21, 
June 2014) were utilized to investigate the interactions 
in this study. The interactions between lncRNA-miRNA 
and mRNA-miRNA were predicted through the use of 
psRNATarget software [48], following the scoring schema 
V2 (2017 release). To identify potential lncRNA-mRNA 
pairs, the expression correlation between lncRNAs and 
mRNAs was examined. Pairs showing a correlation coef-
ficient (|r|)>= 0.9 and a p-value< 0.05 was considered 
as potentially interacting pairs. Moreover, to construct 
lncRNA-miRNA-mRNA interaction networks, a custom 
Python script was developed and employed. The net-
works were then visualized using Cytoscape software.

qRT‑PCR validation
In this study, total RNA was extracted using the RNAprep 
Pure Plant Kit (Tiangen, Beijing, China), following the 
instructions provided [29]. Subsequently, the RNA was 
reverse transcribed into cDNA using the Transcriptor 

First Strand cDNA Synthesis Kit (Roche). For qRT-PCR 
of lncRNAs, SYBR Green premix (2×) (Roche) was used, 
and the reactions were performed on a LightCycler ® 96 
Real-Time PCR System (Roche). To ensure data accu-
racy, the Nt26S gene was employed as the reference gene. 
The PCR cycling program consisted of an initial incuba-
tion step at 95 °C for 10 minutes, followed by 40 cycles 
of denaturation at 95 °C for 10 seconds, annealing at 58 
°C for 20 seconds, and extension at 72 °C for 20 seconds. 
All the primer sequences used for qRT-PCR are listed in 
Supplementary Table S1.

Results
Physiological characterization of tobacco in response 
to salt stress
To comprehensively investigate the impact of salt stress 
on tobacco, we conducted a study that included multiple 
time points to capture both early-stage and long-term 
responses. Specifically, we selected 1 hour, 3 hours, 6 
hours, and 12 hours as representative time points for the 
early stage responses to salt stress, while 24 hours, 3 days, 
and 7 days represented the long-term responses. In order 
to determine the key time points for salt stress responses, 
we examined the expression of two known stress-respon-
sive genes, P5CS and DREB2A [49]. As depicted in 
Fig. 1A and B, both genes were significantly induced at 12 
hours in the roots and at 3 days in the leaves. Addition-
ally, the expression of P5CS showed another increase at 
7 days in the roots. Hence, 12 hours, 3 days and 7 days 
were selected for the subsequent sequencing experi-
ment. Furthermore, we measured the contents of MDA 
and proline (Fig. 1C and D). The MDA content increased 
during the first 3 days of salt treatment but decreased at 
7 days in both roots and leaves. On the other hand, the 
proline contents continued to rise throughout the dura-
tion of the salt stress in both roots and leaves.

Whole transcriptome sequencing analysis of different 
samples
To investigate the response of lncRNAs in cultivated 
tobacco under salt stress, we collected roots and leaves 
from plants that had been subjected to salt stress for dif-
ferent durations (12 hours, 3 days, and 7 days). Whole 
transcriptome sequencing analysis was conducted 
with three replicates for each sample. In total, the Illu-
mina platform generated approximately 2,217 million 
raw reads. After removing low-quality sequences, we 
obtained 2,185 million clean reads (Supplementary Table 
S2). The clean rate of clean reads reached 98.52%, with an 
average of around 91 million reads per sample. Through 
mapping these clean reads to the reference genome, we 
achieved alignment rates ranging from 83% to 98% for 
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each sample, with unique mapped rates between 77% and 
88% (Table 1).

Identification of lncRNAs and mRNAs in tobacco
In our study, a total of 5,831 lncRNAs (Supplementary 
Table S3) and 52,704 mRNAs (Supplementary Table S4) 
were identified. Among the lncRNAs, 5,065 (86.86%) 
were categorized as intergenic lncRNAs, 374 (6.41%) 
were sense lncRNAs, 319 (5.47%) were antisense lncR-
NAs and 73 (1.25%) were intronic lncRNAs based on 
their locations within the N. tabacum genome (Fig.  2B, 
Supplementary Table S5). By comparing our findings 
with previously known lncRNAs, we identified a total of 
1,219 known lncRNAs and 4,612 novel lncRNAs (Sup-
plementary Table S6). The distribution analysis revealed 
that lncRNAs were evenly distributed across all 24 chro-
mosomes of tobacco (Fig. 2A). In comparison to mRNAs, 
lncRNAs generally exhibited lower expression levels 
(Fig.  2C). The average transcript length of the lncRNAs 
was shorter than that of the mRNAs (Fig.  2D). Spe-
cifically, 55.6% of lncRNAs shared a length of 500 bp to 
1,500 bp, while 53.4% of mRNAs had a length of 1,000 bp 
to 2,500 bp. Furthermore, most lncRNAs shared 2 or 3 
exons (Fig.  2E). Specifically, 3,855 lncRNAs, accounting 
for 66.1% of total identified lncRNAs, had 2 exons, while 
1,153 lncRNAs (19.8%) had 3 exons. In contrast, mRNAs 
typically had more exons, with 25.4%, 44.3%, and 24.1% of 
mRNAs having over 10, 4-9, and 2-3 exons, respectively. 

These differences in exon numbers may indicate or cor-
relate with distinct functions between lncRNAs and 
mRNAs.

Identification of differentially expressed lncRNAs 
(DElncRNAs) responsive to salt stress
Through pairwise comparison with K326 grown 
under normal conditions, a total of 2,147 differentially 
expressed lncRNAs (DElncRNAs) in the roots and 495 
DElncRNAs in the leaves in response to salt stress were 
identified. Among these, 214 DElncRNAs were found 
to be shared between the roots and leaves. As indicated 
in Supplementary Table S7 and Fig.  3A, the majority of 
the DElncRNAs (1,880 out of 2,147) in the roots and 
396 out of 495 DElncRNAs in the leaves exhibited sig-
nificant expression changes after 12 hours of salt stress 
compared to longer durations of 3 days or 7 days of salt 
stress. Regarding the detected three time points of salt 
stress, only a small subset of DElncRNAs (85, account-
ing for 4.0% in roots, and 9, accounting for 1.8% in leaves) 
consistently showed significant regulation throughout all 
time points (Fig. 3B and C).

Furthermore, we conducted clustering analysis to cate-
gorize the expression profiles of DElncRNAs in the roots 
and leaves. In the roots, the DElncRNAs were classified 
into two distinct groups. While in the leaves, they were 
classified into four groups (Fig. 3D and E). Interestingly, 
we observed a remarkably similar pattern of response to 

Fig. 1 Analysis of gene expression, proline and MDA content in tobacco roots and leaves under different salt treatment durations. Panels A and B 
represent expression changes in P5CS and DREB2A, respectively. Panels C and D represent proline and MDA contents, respectively
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salt stress between DElncRNAs in the roots and leaves, 
suggesting a potential correlation between lncRNA 
expression and the response to salt stress.

Target gene prediction and functional annotation 
of DElncRNAs
To gain insights into the function of DElncRNAs, we ana-
lyzed their potential cis- and trans- target mRNAs. In 
the roots, we found that 78 DElncRNAs regulated 86 cis-
target mRNAs and 1,814 DElncRNAs regulated 12,656 
trans-target mRNAs. In the leaves, 6 DElncRNAs regu-
lated 6 cis-target mRNAs and 353 DElncRNAs regulated 
3,222 trans-target mRNAs.

Additionally, we performed GO and KEGG enrichment 
analyses for all the DElncRNAs. In the root DElncRNAs, 
GO analysis revealed that translation in biological pro-
cesses, cytosol in cellular components, and structural 
constituent of ribosome in molecular functions were the 
most enriched GO terms (Fig.  4A). These results were 
consistent with the crucial role of translation and ribo-
some function in roots during salt stress. In the leaf 
DElncRNAs, the most enriched GO terms across all 
three categories were chloroplast organization in bio-
logical processes, chloroplast in cellular components, 
and mRNA binding in molecular functions (Fig. 4B). This 

suggests that chloroplasts may play a significant role in 
the response to salt stress in tobacco leaves.

Further KEGG analysis showed that the most signifi-
cantly enriched pathways in the roots were mainly related 
to C/N metabolism, such as starch and sucrose metabo-
lism, cysteine and methionine metabolism, arginine and 
proline metabolism (Fig. 4C). Similarly, the most signifi-
cantly enriched KEGG pathways in the leaves were also 
related to C/N metabolism in leaves, such as porphyrin 
and chlorophyll metabolism, circadian rhythm-plant, 
cysteine and methionine metabolism, fructose and man-
nose metabolism, and arginine and proline metabolism 
(Fig. 4D and Supplementary Table S8).

Screening of lncRNAs and genes related to salt stress 
by WGCNA
WGCNA was conducted using different time points of 
salt treatment as phenotypic information to construct 
co-expression modules of lncRNAs and genes. A total 
of 15 co-expression modules were generated (Fig.  5A 
and Supplementary Table S9). To identify salt stress-
related modules, the correlation between gene modules 
and phenotypes was calculated (Fig. 5B). Four modules, 
MEsalmon, MElightgreen, MEgreenyellow and MEdar-
kred, were found to be significantly associated with 12 
hours and 7 days salt stress in roots (R12h and R7d) and 
leaves (L12h and L7d), respectively. The eigengene net-
work further confirms the relationships among the four 
modules and stress conditions in roots and leaves. Scat-
ter plots (Fig. 5C-F) revealed a strong positive correlation 
between transcript significance (TS) and module mem-
bership (MM).

Additionally, we selected genes with higher weight 
(above 0.35 in R12h and L12h, and above 0.25 in 
R7d and L7d) in each module for network con-
struction and analysis (Fig.  5G-J). In the MEsalmon 
module, two hub genes (Ntab4.5_0001054g0030 
and Ntab4.5_0000782g0220) were identified. 
Ntab4.5_0001054g0030 encodes an E3 ubiquitin-pro-
tein ligase (UBL), which is known to play important 
roles in responding to abiotic stresses like drought 
[53] and salt stress [54]. In the MElightgreen mod-
ule, two hub genes (Nitab4.5_0000676g0030 and 
Nitab4.5_0005939g0010), both encoding unknown 
proteins, were selected. In the MEgreenyellow mod-
ule, three hub genes (Nitab4.5_0000099g0190, 
Nitab4.5_0000760g0050 and Nitab4.5_0004422g0010) 
were chosen, encoding axanthoxin dehydrogenase, 
a cytochrome P450 and an auxin-binding protein, 
respectively. In the MEdarkred module, two lncR-
NAs (MSTRG.34990.1 and MSTRG.7480.1) and 
Nitab4.5_0006525g0010 were identified as hub nodes. 
Nitab4.5_0006525g0010 encoded an F-box protein, 

Table 1 Statistical qualification of high throughput sequencing 
data

Sample Raw reads Clean reads Mapped Uniquely mapped

RCK-1 78493782 76715372 69240868(90.26%) 62395517(81.33%)

RCK-2 90652286 89528660 80175991(89.55%) 74115789(82.78%)

RCK-3 83489260 82312440 73990643(89.89%) 68268149(82.94%)

R12h-1 85202208 84101512 78435918(93.26%) 72423156(86.11%)

R12h-2 88640876 87377838 79468781(90.95%) 73413593(84.02%)

R12h-3 86437516 85094334 76240385(89.6%) 70287421(82.6%)

R3d-1 95305884 93888676 82728419(88.11%) 76105824(81.06%)

R3d-2 100594106 99110234 93446449(94.29%) 86215575(86.99%)

R3d-3 85991280 84806168 71124300(83.87%) 65374090(77.09%)

R7d-1 86545194 85415952 77896434(91.2%) 71575984(83.8%)

R7d-2 88638568 87624378 83018430(94.74%) 76613532(87.43%)

R7d-3 84833002 83686042 79242374(94.69%) 72988336(87.22%)

LCK-1 91605898 90042102 87505706(97.18%) 75753072(84.13%)

LCK-2 95443466 94230186 90449338(95.99%) 81250537(86.23%)

LCK-3 100102960 98156830 95110331(96.90%) 83578793(85.15%)

L12h-1 106122454 104127380 100634471(96.65%) 88417828(84.91%)

L12h-2 101236356 99884132 96678666(96.79%) 84497881(84.60%)

L12h-3 96617204 94803582 91850228(96.88%) 81047828(85.49%)

L3d-1 99983868 98805920 95909622(97.07%) 83805871(84.82%)

L3d-2 93316850 91999278 89195563(96.95%) 77161824(83.87%)

L3d-3 103412860 101716588 98694012(97.03%) 85989070(84.54%)

L7d-1 100040082 98593216 95527067(96.89%) 82910848(84.09%)

L7d-2 86846072 85786174 82748442(96.46%) 74186582(86.48%)

L7d-3 87868758 86879714 84326691(97.06%) 73351819(84.43%)
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which has been associated with the response to salt 
stress [55].These findings indicate that hub genes or 
hub lncRNAs may play important roles under salt stress 
conditions, either in roots or in leaves.

LncRNA‑miRNA‑mRNA networks under salt stress
LncRNAs not only have the ability to regulate mRNAs 
in a trans or cis manner, but they can also function as 
competitive targets for miRNAs, thereby influencing the 
regulatory efficiency of these miRNAs. One approach 
to assess the relationship between lncRNAs and miR-
NAs is by utilizing lncRNAs as endogenous target mim-
ics (eTMs) for miRNAs. In this study, we identified 774 

DElncRNAs in tobacco roots that are involved in the 
regulation of 2,488 mRNAs through interactions with 
162 miRNAs. Similarly in tobacco leaves, we found 139 
DElncRNAs that regulate 556 mRNAs through inter-
actions with 121 miRNAs (Supplementary Table S10). 
Notably, several miRNAs, such as miR156 [56], miR169 
[57], miR171 [58], miR386 [59], miR397 [60] and miR398 
[61], have been previously implicated in the response 
to salt stress, and we also observed their presence in 
our constructed lncRNA-miRNA-mRNA networks in 
roots, exhibiting a strong correlation of 0.95 (Fig.  6). 
For instance, nta-miR156a was associated with 44 tar-
gets, including 21 mRNAs and 23 lncRNAs, whereas 

Fig. 2 Comparison of structural features between lncRNAs and mRNAs. A Chromosomal distribution of different types of lncRNAs. B Classification 
of identified lncRNAs. C Expression level comparison between lncRNAs and mRNAs. D Length distribution of lncRNAs and mRNAs. E Exons 
distribution inlncRNAs and mRNAs. In panels C to E, green represents lncRNAs, and blue represents mRNAs
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nta-miR171a had 14 targets, consisting of 6 mRNAs and 
8 lncRNAs. It is worth noting that multiple miRNAs can 
simultaneously regulate the same target. An example of 
this is seen with the coordinated regulation of the expres-
sion of MSTRG.31446.1 by nta-miR169a, nta-miR395a 
and nta-miR397.

Validation of target genes of salt‑responsive lncRNAs
In our previous study, we have demonstrated the involve-
ment of NtNPF6.13 in the response to salt stress in 
tobacco. In this study, we constructed a co-expression 

network of TFs, lncRNAs and miRNAs associated with 
NtNPF6.13 (Fig. 7A). Within this network, we identified a 
total of 17 TFs (such as bHLH, WRKY and ERF), 15 lncR-
NAs and 2 miRNAs (nta-miR396b and nta-miR396c). 
To validate the accuracy of the sequencing data, we per-
formed qRT-PCR to examine the expression patterns of 
NtNPF6.13 and 11 lncRNAs (the other 4 lncRNAs were 
not detected in qRT-PCR). As shown in Fig. 7B, there is 
a strong agreement between the RNA-seq results and 
qRT-PCR data for NtNPF6.13 and most of the tested 

Fig. 3 Transcriptomic profiling of tobacco lncRNAs in response to salt stress. A Number of down-regulated and up-regulated lncRNAs at different 
time points of salt treatment, compared to samples before salt treatment. Venn diagrams of the DElncRNAs in roots (B) and leaves (C) at three 
different time points. Clustering analysis of DElncRNAs in roots (D) and leaves (E)
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lncRNAs, particularly at the 12-hour time point. This 
supports the reliability of the sequencing data and the 
subsequent analysis results. Interestingly, two lncRNAs, 
namely MSTRG.34192.1 and MSTRG.37778.1, exhibited 
nearly identical expression patterns to NtNPF6.13. Fur-
ther experiments are required to confirm their relation-
ship with NtNPF6.13 and to elucidate their roles in the 
response to salt stress.

Discussion
Despite extensive research on lncRNAs in various plant 
species, the exploration of lncRNAs in tobacco is still 
in its early stages. Previous studies have investigated 
tobacco lncRNAs under root-knot nematode stress [62], 

herbivore stress [63], nicotine pathway [64] and axillary 
bud development [65]. However, there is a notable dearth 
of studies focused on the identification of tobacco lncR-
NAs responsive to salt stress. In this study, we conducted 
an investigation to analyze the expression of lncRNAs 
in tobacco roots and leaves under salt stress at various 
treatment time points by employing whole transcriptome 
sequencing. And 2,147 and 495 DElncRNAs were identi-
fied in tobacco roots and leaves, respectively. It has been 
reported that roots of both the wild tomato Solanum 
pennellii and cultivated tomato M82, belonging to the 
same Solanaceae family as N. tabacum, exhibited 154 and 
137 DElncRNAs respectively [20]. The significant differ-
ence in the number of DElncRNA between tobacco and 

Fig. 4 Functional annotation of differentially expressed lncRNAs by GO classification (A & B) and KEGG enrichment (C & D) in roots (A & C) 
and leaves (B & D). The top 20 significant GO terms in the biological process category and the top 5 significant GO terms in the cellular component 
and molecular function categories were selected based on the cutoff of p adjust < 0.05. The top 10 KEGG enrichment pathways were selected 
based on the cutoff of p adjust < 0.05. The KEGG pathway map was sourced from KEGG Mapper (https:// www. kegg. jp/ kegg/ mapper/), and we have 
obtained written permission to use and adapt it [50–52]

https://www.kegg.jp/kegg/mapper/
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previous reports may be attributed to variations in plant 
species, ploidy level, salt stress duration, or the specific 
filter criteria applied for lncRNA identification.

Despite the observed diversity among different plant 
species and stress conditions, lncRNAs generally dis-
play certain fundamental characteristics, including a 
relatively short sequence length, low expression level, 
and a predominance of 1 or 2 exons [66]. Consistent 
with the previous findings in peach and other plants 
[22, 27], our study found that the majority of lncRNAs 
in tobacco were less than 1,000 nt in length and con-
sisted of only 2-3 exons. In comparison to previous stud-
ies that identified salt-stressed lncRNAs in other plants 
[20, 23, 24, 26, 27], our study considered different time 
points post salt stress, ranging from the early-stage (12 
hours) to the long-term stage (7 days) in both roots and 
leaves. Notably, the number of DElncRNAs in the roots 
was more than four times higher than that in the leaves. 
Particularly, the highest number of DElncRNAs was 

observed at the early-stage of salt stress treatment. Fur-
thermore, our findings revealed that some DElncRNAs 
were expressed at a single time point, while others were 
expressed at multiple time points (Supplementary Figure 
S1). This dynamic expression pattern suggests that DEl-
ncRNAs may play a role in regulating salt stress in a more 
dynamic manner and time-dependent manner. These 
results strongly support the notion that the expression of 
salt–responsive lncRNAs in tobacco is tightly regulated 
in a tissue-specific and temporal-dependent manner, in 
accordance with previous reports in duckweed [26].

WGCNA is a commonly employed method in systems 
biology that allows for the identification of gene mod-
ules displaying co-expression patterns. It also enables the 
investigation of the relationship between these modules 
and phenotypic data [46]. It was observed that tobacco 
plants exhibited wilting at 12 hours under salt stress, 
indicating a significant influence of salt stress at this time 

Fig. 5 WGCNA of genes and lncRNAs in tobacco roots and leaves under salt treatment. A Transcripts hierarchical clustering tree of different 
modules. Each major tree branch represents one module, each leaf in the tree represents one transcript, and different modules are labeled 
with different colors. B Module-trait relationship. Each row represents a module eigengene, and each column presents a trait. The coefficient and p 
value of the correlation between each module and trait are shown. C-F Scatter plots of transcript significance (TS) versus module membership (MM) 
of the transcripts in the four exemplified salt-associated modules (MEsalmon, MElightgreen, MEgreenyellow and MEdarkred). G-J Gene networks 
and hub nodes involved in the four salt-associated modules
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point (data not shown). After the plants adapted to the 
salt stress for 3 days, they were able to grow normally 
but were slightly smaller than the controls. However, 
after 7 days of salt stress, the plant growth was signifi-
cantly inhibited, suggesting that long-term responses to 
salt stress involve specific genes. In line with the growth 
conditions, our study identified four distinct salt-asso-
ciated modules at the early-stage (12 hours) and long-
term stage (7 days) of salt stress both in roots and leaves 
(Fig.  5C-F). Previous research in Populus trichocarpa 
reported the identification of six salt-responsive mod-
ules using WGCNA in different tissues (leaf, stem and 
root) under short-term (24 hours) and long-term (7 days) 

salt stress [67]. Interestingly, the correlations among the 
modules were significantly lower in the short-term salt 
stress compared to the long-term salt stress, indicating a 
more pronounced response to long-term salt treatment 
in Populus. In our study, the correlation values of mod-
ules in both the 12 hours and 7 days salt treatment were 
higher. Additionally, the correlation values of modules in 
long-term salt treatment were slightly lower than those 
in the short- term treatment. In our study, several hub 
genes and lncRNAs within the salt-responsive modules 
were identified. However, it is interesting to note that no 
TFs were identified as hub genes in contrast to previous 
studies.

Fig. 6 LncRNA-miRNA-mRNA co-expression network. Diamond indicates lncRNA, triangle indicates miRNA, and ellipse indicates mRNA
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Fig. 7 Calculated interaction network of NtNPF6.13 (A) and gene expression validation of NtNPF6.13 and its associated lncRNAs. For panel B, 
the black line with a solid circle represents the RNA-seq results, and the red line with a solid box represents the qRT-PCR results. The error bars 
represent the standard error of 3 replicates
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LncRNAs are known to interact with miRNAs in vari-
ous ways, such as serving as miRNA precursors, target 
mimics or direct targets in response to abiotic stress 
[6]. Among the plant miRNA families, miR169 is the 
largest and most conserved miRNA family [68]. It typi-
cally targets members of the NF-YA transcription fac-
tor gene family, playing a crucial role in plant abiotic 
stress resistance. In this study, the NF-YA transcription 
factor Nitab4.5_0007165g0020 was found to be asso-
ciated with nta-miR169. Interestingly, two lncRNAs 
(MSTRG.31446.1 and MSTRG.31446.10) were also 
identified interacting with nta-miR169. However, the 
exact mechanism of their interaction needs to be further 
investigated.

NtNPF6.13, a gene involved in chloride uptake, was 
found to be significantly down-regulated after salt stress 
[30]. To further investigate the function of NtNPF6.13, 
a co-expression network was constructed (Fig.  7A). 
Interestingly, two members of the nta-miR396 family 
were identified as targeting NtNPF6.13 within this net-
work. The role of miR396 in plant growth and develop-
ment has been extensively studied. Over-expressing of 
miR396 in tobacco has been shown to lead to cotyledon 
fusion and the absence of a shoot apical meristem [69]. 
Furthermore, miR396 has also been reported to play a 
role in the response to salinity stress, particularly in the 
regulation of the  Na+ transporter SOS1 in creeping bent-
grass [59]. However, it is still not determined whether 
miR396 is involved in regulating the  Cl- transportation by 
NtNPF6.13 in tobacco. Further investigation is needed to 
provide evidence for this hypothesis. In addition, 17 TFs 
were identified in this co-expression network, including 
bHLH, WRKY and ERF. Notably, the transcription factor 
MtNLP1 has been shown to be essential for the regulation 
of MtNPF6.5, which mediates chloride uptake and pref-
erence in Medicago roots [70]. Consequently, it would be 
intriguing to explore and identify potential transcription 
factors that may play a role in regulating NtNPF6.13 and 
its involvement in chloride uptake in tobacco. Further-
more, during the validation of NtNPF6.13 co-expressed 
lncRNAs, it was observed that MSTRG.34192.1 or 
MSTRG.37778.1 exhibited a similar expression pattern as 
NtNPF6.13. Further investigation into the specific roles 
of MSTRG.34192.1 or MSTRG.37778.1 in the tobacco 
salt stress would be valuable.

Conclusions
In summary, a comprehensive analysis of lncRNAs 
involved in the salt stress response in tobacco was con-
ducted. A total of 5,831 lncRNAs were identified, with 
2,428 of them being differentially expressed in response 

to salt stress. KEGG pathway enrichment analysis high-
lighted the involvement of starch and sucrose metabo-
lism pathways in the salt stress response of tobacco roots. 
The WGCNA analysis helped in identifying hub genes 
and lncRNAs associated with salt stress. Furthermore, 
the lncRNA-miRNA-mRNA network provided insights 
into the regulatory mechanism underlying salt stress 
in tobacco and identified potential candidate genes for 
enhancing salt stress tolerance in tobacco. This study 
contributes valuable information about the roles of lncR-
NAs in the salt stress response of tobacco. However, 
further functional analysis is necessary to validate the 
findings and elucidate the precise mechanisms by which 
these lncRNAs function in salt stress tolerance.
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