
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Zhu et al. BMC Plant Biology          (2023) 23:631 
https://doi.org/10.1186/s12870-023-04643-8

BMC Plant Biology

†Hang Zhu, Ruiqiang Lai, Weiwei Chen and Chuanli Lu are co-first 
author

*Correspondence:
Xuhui Li
ylws2201@163.com
Xiangbo Zhang
zhxiangbo@126.com
Yongwen Qi
yongwen2001@163.com

1Zhongkai University of Agriculture and Engineering, Guangzhou 510225, 
Guangdong, China
2Institute of Nanfan & Seed Industry, Guangdong Academy of Science, 
Guangzhou 510316, Guangdong, China
3Guangdong Laboratory for Lingnan Modern Agriculture,  
Guangzhou 510642, Guangdong, China
4College of Agriculture, Yangtze University, Jingzhou 434025, Hubei, China
5Heyuan Provincial Academy of Sciences Research Institute, Guangdong 
Academy of Sciences, GDAS, Heyuan 517001, Guangdong, China

Abstract
Maize (Zea mays L.) is an important food and feed crop worldwide and serves as a a vital source of biological 
trace elements, which are important breeding targets. In this study, 170 maize materials were used to detect QTNs 
related to the content of Mn, Fe and Mo in maize grains through two GWAS models, namely MLM_Q + K and MLM_
PCA + K. The results identified 87 (Mn), 205 (Fe), and 310 (Mo) QTNs using both methods in the three environments. 
Considering comprehensive factors such as co-location across multiple environments, strict significance threshold, 
and phenotypic value in multiple environments, 8 QTNs related to Mn, 10 QTNs related to Fe, and 26 QTNs related 
to Mo were used to identify 44 superior alleles. Consequently, three cross combinations with higher Mn element, 
two combinations with higher Fe element, six combinations with higher Mo element, and two combinations with 
multiple element (Mn/Fe/Mo) were predicted to yield offspring with higher numbers of superior alleles, thereby 
increasing the likelihood of enriching the corresponding elements. Additionally, the candidate genes identified 
100 kb downstream and upstream the QTNs featured function and pathways related to maize elemental transport 
and accumulation. These results are expected to facilitate the screening and development of high-quality maize 
varieties enriched with trace elements, establish an important theoretical foundation for molecular marker assisted 
breeding and contribute to a better understanding of the regulatory network governing trace elements in maize.
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Introduction
Maize (Zea mays L.), recognized as a vital staple crop for 
both human consumption and animal feed, is known as a 
“longevity food” because of its rich nutrient content com-
prising essential vitamins, protein and beneficial trace 
elements [1]. While research into trace elements was ini-
tiated as early as 1925 [2], a significant number of people 
suffer from Fe and Zn deficiencies, particularly among 
populations heavily reliant on cereals as their primary 
staple food [3–5]. Trace elements are mineral substances 
that exist in minute quantities within living tissues and 
are crucial for a multitude of metabolic, and develop-
mental processes. Iron (Fe), zinc (Zn), manganese (Mn), 
iodine (I), copper (Cu), selenium (Se), molybdenum (Mo), 
and cobalt (Co) are indispensable essential trace elements 
that function as cofactors in a wide range of enzymatic 
reactions. These trace elements are of utmost importance 
and have significant impacts on overall human well-
being, affecting various aspects of physical and cogni-
tive health [6]. Understanding the genetic determinants 
of trace element accumulation in crops such as maize is 
pivotal for enhancing the nutritional quality of food and 
addressing global health challenges. Trace elements, 
despite their name, play a crucial role in both plant and 
human nutrition. Iron (Fe), manganese (Mn), copper 
(Cu), and zinc (Zn) are essential micronutrients required 
for various biological processes. However, elements like 
cadmium (Cd) and arsenic (As) are toxic even at low con-
centrations, posing a risk to health when they enter the 
food chain [7].

Furthermore, various elements, are including toxic ele-
ments such as cadmium, are assimilated from the soil by 
roots to the seed. Therefore, finding quantitative trait loci 
(QTL) related to these elements and breeding varieties 
that are enriched with beneficial elements without toxic 
elements is an important means to improve the overall 
quality of human life.

Currently, numerous studies have been conducted to 
identify QTLs and candidate genes involved in the pro-
duction of different elements in plants. In particular, the 
MOT1 gene responsible for molybdenum (Mo) [8, 9], 
the HMA3 gene associated with cadmium (Cd) [10], the 
HAC1 gene linked to arsenic (As) [11] have been success-
fully identified using GWAS in Arabidopsis. Similarly, in 
rice, previous researchers have determined a significant 
number of QTLs for specific elements using bi-parental 
populations and association mapping panels [12–18]. 
Furthermore, some candidate genes have been accurately 
mapped, such as OsHMA3 for Cd [19, 20], and OsHMA4 
for copper (Cu) [21]. In maize, several QTLs and candi-
date genes associated with different elements have been 
identified through linkage and association mapping 
[22–27]. Although these studieshave made noteworthy 
progress in identifying stable QTLs or quantitative trait 

nucleotides (QTNs) for different elements, the number 
of excavations is limited, and no researchers have used 
them to evaluate element accumulation in maize mate-
rial. There is a need to expand the range of research to 
detect more loci for breeding improvement in most sta-
ple crops, including maize.

Maize, is one of the top three major food crops in the 
world, especially the largest cultivated crop grown in 
China, and it is important to map novel and stable loci 
that control the accumulation of different elements 
to achieve high-quality maize cultivation. However, 
although previous studies have mostly used a limited 
number of molecular markers, such as SSR or InDel, to 
probe loci associated with target traits, compared with 
SNP, these traditional methods with less marker density 
and lower localization accuracy have limited efficiency. 
Currently, an efficient GWAS method utilizes more 
recombination events and abundant SNP markers. This 
methodology enables a higher resolution and facilitates 
the discovery of more comprehensive genetic informa-
tion regarding traits of interest. For example, using SNP 
markers, 23 and 38 QTNs related to shoot and blossom 
blight resistance, respectively were detected in 273 apple 
accessions [28]. Similarly, 18 QTNs have been found to 
be associated with stem rot resistance in soybean [29]. 
Unfortunately, GWAS areseldom featured in the genetic 
dissection of maize elemental traits.

Additionally, soil in many parts of the world lacks trace 
elements. For example, approximately 30% of the soils in 
China are deficient in manganese (Mn) and (Mo) molyb-
denum, while 40% lack iron (Fe) [30]. These deficiencies 
negatively affect the growth and development of plants, 
thereby hindering the cultivation of high yield and high-
quality maize. To address this issue, we conducted geno-
typing-by-sequencing (GBS) of 170 maize accessions 
from a natural-variation germplasm pool. This allowed 
us to identify an abundant of SNPs for explaining the 
genetic basic of Mn, Fe, and Mo elements in maize grain. 
Our objectives were to (1) detect peak SNPs and their 
superior alleles related to element traits using GWAS, (2) 
predict the best cross combination using superior alleles, 
(3) identify potential candidate genes responsible for ele-
mental traits based on peak SNPs.

Results
Phenotypic evaluation for trace elements in an association 
panel
The statistical analysis aimed to assess elemental traits 
in different environments, especially Mn, Fe and Mo 
(Table 1). The mean, range, standard deviation, skewness, 
kurtosis, coefficient of variation (CV), and broad-sense 
heritability were calculated to evaluate these traits. The 
CV for Mo exceeded 50% in all environments, while the 
CV range for Fe was 21.77 ~ 95.38%, and for Mn it was 



Page 3 of 14Zhu et al. BMC Plant Biology          (2023) 23:631 

32.84 ~ 35.75%. These results indicate the presence of 
phenotypic variation in element traits among the acces-
sions (Table  1). Analysis of gene and environmental 
effects (Table  1) revealed that both factors significantly 
influenced elemental traits. Furthermore, broad-sense 
heritability (Table 1) ranged from 71.54 ~ 79.92%, indicat-
ing the genetic factors still play an important role. Cor-
relation analysis (Fig. 1) showed a significant correlation 
between Fe and Mn elements in all three environments. 
However, no significant correlation was found between 
Mo and Fe or Mn in E1, but Mo was found to be signifi-
cantly correlated with Fe and Mn in both E2 and E3, indi-
cating that the environment has a greater impact on the 
relationship between Mo accumulation and Mn accumu-
lation, as well as between Mo and Fe than between Mn 
and Fe, respectively.

Genome-wide association mapping for elements
Population structure and principal component analysis 
were performed to obtain the.

correction coefficients, Q and PCA, respectively. More-
over, the kinship coefficient K was used as a correction 
coefficient. Subsequently, two GWAS methods (Fig.  2), 
suitable for the data from this study, including the MLM_ 
Q + K model and MLM_ PCA + K models, were used to 
detect QTNs. The results show that the MLM_Q + K 
model detected significant associations of 70 (E1), 9 (E2) 
and 34 (E3) SNPs with Mn (P < 4.31E-6). Similarly, the 
model found significant associations of 29 (E1), 92 (E2) 

and 197 (E3) SNPs with Fe, and 276 (E1), 132 (E2) and 132 
(E3) SNPs with Mo (Fig. 3A and B C; Table S1). Using the 
MLM_Q + PCA model, 85/15/38 significant SNPs associ-
ated with Mn, 35/113/163 with Fe, and 254/176/116 with 
Mo were detected in environmental context E1/E2/E3, 
respectively (Fig. 3A and B C; Table S1).

Moreover, 87 significant SNPs (Fig.  3A; Table S2) 
detected by both methods were associated with Mn ele-
ment in three environments. These SNPs were located 
on Chr1 ~ Chr4 and Chr7 ~ Chr10, with a P-value dis-
tribution ranging from 3.51E-06 ~ 6.16E-08. Similarly, 
205 SNPs (Fig.  3B; Table S2) related to Fe element in 
three environments were found on Chr1 ~ Chr10, and 
the P-value distribution ranging from 4.11E-06 ~ 1.32E-
11. Additionally, 310 SNPs (Fig. 3C; Table S2) related to 
Mo element in three environments were identified on 
Chr1 ~ Chr10, and the P-value distribution ranging from 
4.09E-06 ~ 4.95E-10.

Identification of reliable quantitative trait nucleotides
Significant SNPs detected through two different methods 
and across multiple environments were regarded as reli-
able QTNs., Our analysis identified 15 SNPs related to 
Fe element (Fig. 3B; Table S3) in two GWAS models. The 
corresponding P-value ranged from 4.07E-06 ~ 4.87E-10, 
and they were detected in E2 and E3. Similarly, 46 SNPs 
related to Mo element (Fig. 3C; Table S3) were detected 
in E2 and E3, and the P-value distribution was 4.14E-
06 ~ 7.38E-10. Interestingly, we observed the presence 

Table 1 Descriptive statistics for ionomic elements in 170 maize accessions in three environments
Elements Environment Mean Rang SD CV/% Kurtosis Skewness Fg Fenv Fg×env h2B/%
Mn E1 9.78 0 ~ 22.81 3.29 33.59 1.70 0.77 23.01** 884.15** 12.03** 77.95

E2 7.02 1.30 ~ 14.64 2.50 35.62 0.45 0.64

E3 7.54 1.20 ~ 15.96 2.47 32.72 1.12 0.87

Fe E1 29.59 9.61 ~ 46.58 6.14 20.76 0.07 0.06 3.10** 110.83** 1.47* 71.54

E2 49.38 0 ~ 269.89 46.93 95.04 3.27 1.38

E3 77.24 0 ~ 357.80 50.91 65.91 7.72 2.12

Mo E1 0.21 0 ~ 0.73 0.13 60.05 1.57 1.22 42.80** 5512.91** 20.50** 79.92

E2 1.08 0.30 ~ 3.85 0.63 58.41 4.19 1.69

E3 1.20 0.06 ~ 4.12 0.70 58.55 4.28 1.71
E1: Hainan experimental station (2013); E2: Jiangmen experimental station (2020); E3: Jiangmen experimental station (2021); SD: standard deviation; CV: coefficient of 
variation; Fg, Fenv, Fg×env: F values in ANOVA for genotype, environment, genotype × environment, respectively; *, **: significance at P-value < 0.05, 0.01, respectively; 
h2B: broad-sense heritability

Fig. 1 The correlations analysis among Fe, Mn, and Mo element in three environments. E1: Hainan experimental station (2013); E2: Jiangmen experimen-
tal station (2020); E3: Jiangmen experimental station (2021); The number in the rectangle is the correlation coefficient, the closer to “1”, the closer red; **: 
significance at P-value < 0.01
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of 10 SNPs (Table S3) that are significantly related to 
both Fe and Mo elements. These SNPs were categorized 
as multiple effect SNPs and were located on Chr4 (qFe/
Mo-4), Chr5 (qFe/Mo-5), Chr7 (qFe/Mo-7), Chr8 (qFe/
Mo-8a; qFe/Mo-8b; qFe/Mo-8c), Chr9 (qFe/Mo-9), and 
Chr10 (qFe/Mo-10a; qFe/Mo-10b; qFe/Mo-10c).

In addition, although Mn element related SNPs were 
not co-located in multiple environments, we aimed to 
enhance the selection of high-quality candidate materi-
als related to trace elements. To achieve this, we applied 
a stricter screening threshold of Mn related SNPs by 
considering only those with a P-value smaller than 
0.05/116,011 = 4.31E-7 as more reliable peaks. From this, 
8 SNPs (Fig. 3D; Table S3) were associated with Mn ele-
ment, located on Chr1 (qMn-1a; qMn-1b; qMn-1c) Chr3 
(qMn-3a; qMn-3b; qMn-3c), Chr4 (qMn-4) and Chr7 
(qMn-7).

Identification of stable QTNs and superior alleles for 
ionomic elements
The detected of QTNs during breeding is the goal of 
molecular marker assisted breeding. In this research, 
the evaluation of superior alleles in reliable QTNs in dif-
ferent environments was undertaken using a cohort of 
130 materials with 0 phenotypic deletion rate in three 

environments. These materials served as the basis for 
the evaluation and subsequent selection. Subsequently, 
8, 15 and 46 SNPs related to Mn, Fe, and Mo element, 
respectively, were identified. Here, the phenotypic effect 
value was calculated for QTN considered to be reliable, 
in order to understand the effect of a single QTN on the 
corresponding phenotype.

8 QTNs (Figs.  3D and 4A-H; Table S4) related to 
Mn element showed a positive trend in the accumu-
lation of Mn in three environments, indicating their 
stability. The synergistic level of superior alleles was 
0.5550 ~ 4.3721  µg/g, while the alternative allele showed 
reduction ranging from − 0.5777~-0.0770 µg/g. The accu-
mulation of Mn among materials with different alleles of 
qMn-1a (Fig. 4A), qMn-1b (Fig. 4B) and qMn-1c (Fig. 4C) 
showed significant differences (P < 0.01) in environmental 
E2 and E3, and the accumulation of Mn among materi-
als with different alleles of qMn-3c (Fig.  4F) and qMn-7 
(Fig. 4H) showed significant differences only in environ-
mental E1. Excitingly, the superior alleles GG, AA, and 
AA of qMn-3a (GG), qMn-3b (AA), and qMn-4 (AA) 
revealed a significant positive effect on Mn accumula-
tion across all three environments, with synergistic levels 
ranging from 3.2689 ~ 3.8682  µg/g, 3.1708 ~ 3.9973  µg/g 
and 1.7293 ~ 2.2727  µg/g, respectively. While the 

Fig. 2 Two GWAS models for the control of false positive (Q-Q plots). The X-axis and Y-axis is expected -log10(p) and observed -log10(p) of the Mn, Fe, and 
Mo element concentration in maize grain, respectively; The Q-Q plots of two models include MLM_Q + K on the left and MLM_PCA + K on the right; E1: 
Hainan experimental station (2013); E2: Jiangmen experimental station (2020); E3: Jiangmen experimental station (2021)
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alternative allele of AA, CC and CC exhibited a nega-
tive effect with a reduction level ranging from − 0.3576 
~ -0.3022  µg/g, -0.3331 ~ -0.2642  µg/g and − 0.3791~-
0.2602 µg/g, respectively (Fig. 4D, E and G; Table S4).

10 out of 15 QTNs related to Fe element (Figs. 3D and 
5A-I; Table S3, S4) showed a positive trend in the accu-
mulation of Fe in three environments. These QTNs were 
considered stable, and the synergistic level of superior 

alleles was 0.4295 ~ 105.8084  µg/g, whereas the reduc-
tion level of alternative allele ranged from − 8.0681~-
0.0399 µg/g. Among them, only qFe-9 (Fig. 5H) reached 
a significant level (P-vlaue < 0.05) in all three environ-
ments, the corresponding superior allele was TT, and the 
synergistic level was 4.1660 ~ 98.5975  µg/g. Conversely, 
the alternative allele (AA), resulted in a reduction rang-
ing from − 6.4654~-0.2187 µg/g. However, the remaining 

Fig. 3 The number of significant QTNs and stable QTNs for the concentration of Mn, Fe, and Mo element identified in three environments and GWAS 
models. (A) Mn element; (B) Fe element; (C) Mo element; the color with blue when the model used MLM_Q + K in single environment, but the color 
with brown mean the model using MLM_PCA + K in single environment; and the black color mean two model was used in single environment; red color 
was used that mean QTNs which was found not only using two models, but also found in two environment. (D) Number of Stable QTLs of Mn element 
(purple), Fe element (green), and Mo element (yellow). E1: Hainan experimental station (2013); E2: Jiangmen experimental station (2020); E3: Jiangmen 
experimental station (2021). Horizontal bars show the number of QTNs for different environments and methods. The colors of circles corresponding to 
Horizontal bars indicate the environment in which QTNs was detected and the method applied
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nine QTNs (Fig.  5A-G and I) reached significant levels 
in environments E2 and E3, but not in E1. For instance, 
the QTN qFe-2 (Fig.  5A; Table S4), showed statistical 
significance, with the superior allele being AA, and the 
synergistic level ranging from 0.8746 ~ 95.2883  µg/g. 
In contrast, the alternative allele CC led to a reduction 
ranging from − 5.4229~-0.0498 µg/g in the three environ-
ments. Furthermore, we observed the same QTN effects 
for qFe-10a and qFe-10b (Fig.  5I; Table S4). Given the 
analysis of linkage disequilibrium, qFe-10a and qFe-10b 
are in complete linkage (r2 = 1) (Fig. 5J).

Similarly, 26 of the 46 QTNs related to Mo element 
(Figs.  3D and 6A-M; Table S3, S4) showed a positive 
trend in the accumulation of Mo elements in the three 
environments, therefore they were considered to stable 
QTNs, and their synergistic level of superior alleles was 
0.0108 ~ 1.5583  µg/g. The reduction level of alterna-
tive alleles ranged from − 0.1236~-0.0007 µg/g. All these 
QTNs reached a significant level (P < 0.01) in E2 and E3, 
but not in E1 (Fig.  6A-M). For example, the superior 
allele of qMo-5 is CC, with a synergistic level ranging 
from 0.0544 to 1.1079 µg/g, while the reduction level of 
TT allele is -0.0036~-0.0726 µg/g in three environments 
(Fig.  6H; Table S4). It is worth mentioning that qMo-
5 and qFe-5a belong to the same QTN (qFe/Mo-5), and 

both superior alleles are CC (Figs. 5C and 6H; Table S4). 
They are relatively stable and reliable multi effect QTN, 
which can be focused on the subsequent material screen-
ing. Furthermore, five groups of QTNs revealing simi-
lar effects, including qMo-1b, qMo-1c, qMo-1d, qMo-1e 
and qMo-1f (Fig.  6B; Table S4); qMo-3a, qMo-3b and 
qMo-3c (Fig. 6C; Table S4); qMo-3e and qMo-3f (Fig. 6E; 
Table S4); qMo-3  g, qMo-3  h, qMo-3i, qMo-3j, qMo-3k 
and qMo-3  m (Fig.  6F; Table S4); qMo-8d and qMo-8e 
(Fig. 6M; Table S4). Given the analysis of linkage disequi-
librium, QTNs are completely linked (r2 = 1) in the same 
group (Fig. 6N-R).

Distribution of superior alleles and prediction of cross 
combination
Seven (5.38%) ~ 23 (17.69%) materials including superior 
alleles of each of the eight stable QTNs associated with 
Mn element. Conversely, the majority of the material, 
107 (82.31%) ~ 123 (94.62%), exhibited alternative alleles 
of each of these eight QTN (unfavorable for element 
accumulation). Among these, 20 materials containing 
1 (15%) ~ 7 (5%) superior alleles have a high accumula-
tion of Mn in three environments (Table S5), of which-
CAU425 (15.0427 µg/g, mean of element content in three 
environments) has seven superior alleles. In contrast, 

Fig. 4 The concentration of Mn element differences between superior and alternative alleles of each QTN of maize in different environments. (A-H): Al-
leles corresponding to red box-plot are superior alleles, while brown box-plot are alternative alleles. E1: Hainan experimental station (2013); E2: Jiangmen 
experimental station (2020,); E3: Jiangmen experimental station (2021). Different letters indicate significant differences, with significance at P-value < 0.01 
(a and c) using ANOVA.
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Fig. 5 The concentration of Fe element differences between superior and alternative alleles of each QTN of maize in different environments. (A-I): Al-
leles corresponding to red box-plot are superior alleles, while brown box-plot are alternative alleles. E1: Hainan experimental station (2013); E2: Jiangmen 
experimental station (2020); E3: Jiangmen experimental station (2021). Different letters indicate significant differences, with significance at P-value < 0.05 
(a and b), 0.01 (a and c) using ANOVA. XX represents alternative alleles CC and CC for qFe-10a and qFe-10b, respectively; SS represents superior alleles TT 
and GG for qFe-10a and qFe-10b, respectively. (J): Analysis of linkage disequilibrium; red-diamond represents they are complete linkage (r2 = 1), and the 
Hap-XX and Hap-SS corresponds to the type of the haplotype

 



Page 8 of 14Zhu et al. BMC Plant Biology          (2023) 23:631 

Fig. 6 The concentration of Mo element differences between superior and alternative alleles of each QTN of maize in different environments. (A-M): Al-
leles corresponding to red box-plot are superior alleles, while brown box-plot are alternative alleles. E1: Hainan experimental station (2013); E2: Jiangmen 
experimental station (2020); E3: Jiangmen experimental station (2021). Different letters indicate significant differences, with significance at P-value < 0.01 
(a and c) using ANOVA. X1 represents alternative alleles GG, CC, GG, GG, and GG for qMo-1b, qMo-1c, qMo-1d, qMo-1e, and qMo-1f, respectively; S1 repre-
sents superior alleles AA, TT, AA, AA, and AA for qMo-1b, qMo-1c, qMo-1d, qMo-1e, and qMo-1f, respectively. X2 represents alternative alleles CC, TT, and TT 
for qMo-3a, qMo-3b, and qMo-3c, respectively; S2 represents superior alleles AA, CC, and CC for qMo-3a, qMo-3b, and qMo-3c, respectively. X3 represents 
alternative alleles CC, and AA for qMo-3e, and qMo-3f, respectively; S3 represents superior alleles TT, and TT for qMo-3e, and qMo-3f, respectively. X4 
represents alternative alleles GG, CC, CC, GG, GG, and CC for qMo-3 g, qMo-3 h, qMo-3i, qMo-3j, qMo-3k, and qMo-3 m, respectively; S4 represents superior 
alleles TT, TT, TT, AA, TT, and TT for qMo-3 g, qMo-3 h, qMo-3i, qMo-3j, qMo-3k, and qMo-3 m, respectively. X5 represents alternative alleles GG, and TT for 
qMo-8d, and qMo-8e, respectively; S5 represents superior alleles TT, and CC for qMo-8d, and qMo-8e, respectively. (N-R): Analysis of linkage disequilibrium; 
red-diamond represents they are complete linkage (r2 = 1), and the Hap-X1 ~ X5 and Hap-S1 ~ S5 corresponds to the type of the haplotype
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CAU115 (12.1150  µg/g), CAU119 (12.6853  µg/g), and 
IL59 (11.6607 µg/g) have four superior alleles each, with 
one unique superior allele exclusive to each of the latter 
three materials but absent in CAU425 (Table 2, S5).

Seven (5.38%) ~ 13 (10%) materials have superior 
alleles of the 10 stable QTNs associated with Fe ele-
ment, and 117 (90%) ~ 123 (94.62%) materials have 
alternative alleles. Among these, 19 materials contain-
ing 1 (42.11%) ~ 9 (5.26%) superior alleles have higher 
Fe accumulation in three environments (Table S5). 
Material CAU268 (164.0771  µg/g) has 9 superior alleles 
and material CAU252 (152.2168  µg/g) and CAU106 
(128.0680 µg/g) has 7 and 5 superior alleles, respectively, 
and they feature another superior allele that CAU268 
does not have (Table 2, S5).

Five (3.85%) ~ 16 (12.31%) materials have superior 
alleles of the 26 stable QTNs associated with Mo ele-
ment, and 114 (87.69%) ~ 125 (96.15%) materials have 
alternative alleles. Among these, 17 materials containing 
1 (11.76%) ~ 13 (5.88%) superior alleles were identified 
to have higher Mo accumulation in three environments 
(Table S5). CAU254 (1.6391 µg/g), CAU78 (1.6018 µg/g), 
CAU252(2.5735 µg/g), and CAU342 (1.5765 µg/g) has 13, 
12, 12, and 11 superior alleles, respectively, including 26 
QTNs (Table 2, S5) which can be used as candidate mate-
rials for optimizing Mo element accumulation.

To obtain materials with high levels of trace elements, 
several cross combinations of materials can be leveraged 
to select offspring (Table 2). Three hybrid combinations, 
namely CAU425 × CAU115、CAU425 × CAU119 and 
CAU425 × IL59, have the potential to increase Mn accu-
mulation in derived hybrids. Two hybrid combinations, 
namely, CAU268 × CAU252 and CAU268 × CAU106, 

could significantly improve Fe accumulation in hybrid 
materials. To obtain Mo materials with a high accumula-
tion a combination of among CAU254, CAU78, CAU252, 
and CAU342 are promising. For instance, the hybrids 
derived from CAU254 × CAU78 are expected to contain 
24 superior alleles.

In addition, CAU425 has a high accumulation of 
Mn and contains the most relevant superior alleles. 
While the CAU78 displayed high accumulation of Fe 
(114.4238 µg/g) and Mo, with 3 and 12 superior alleles, 
respectively and contains qFe/Mo-5 (Table S5). Moreover, 
the Fe and Mo accumulation level of CAU252 in different 
environments is high (Table S5), which can also be used 
as a candidate material. Therefore, the cross combina-
tions CAU425 × CAU78 or CAU425 × CAU252 can be 
utilized to breed high-quality offspring with high accu-
mulation of Mn/Fe/Mo (Table 2).

Identification of candidate genes base on SNP peak
Here, we present information on candidate genes asso-
ciated with each QTNs based on the ± 100kbp regions 
that include three elements (Table S6). We specifically 
focused on the candidate genes related to Mn, Fe and 
Mo elements, identified 8, 10 and 26 QTNs, respec-
tively. Through mining efforts, we discovered 22 (Mn), 
32 (Fe) and 49 (Mo) candidate genes (Table S3, S6), and 
the corresponding protein IDs were obtained (Table S7). 
GO analysis was conducted on each of the candidate 
genes (adjust P-value < 0.05), and three candidate genes 
(Table 3, S7, S8) related with Mn belonged to 5 biological 
processes (BP), 2 molecular function (MF), and 1 cellular 
component (CC). For example, Zm00001eb028460 was 
located 84.926kbp downstream qMn-1c (Table S3, S6). 

Table 2 Best parental cross combinations for trace elements in maize from superior alleles
Direction P1 P2 P1-

Phenotypt#
(µg/g)

P2-
Phenotypt#
(µg/g)

P1-Superi-
or Alleles

P1-Superi-
or Alleles

Ex-
pected 
offspring
Alleles

Higher Mn CAU425 CAU115 15.0427 12.1150 7 4 8

CAU425 CAU119 15.0427 12.6853 7 4 8

CAU425 IL59 15.0427 11.6607 7 4 8

Higher Fe CAU268 CAU252 164.0771 152.2168 9 7 10

CAU268 CAU106 164.0771 128.0680 9 5 10

Higher Mo CAU254 CAU78 1.6391 1.6018 13 12 24

CAU252 CAU78 2.5735 1.6018 12 12 20

CAU254 CAU342 1.6391 1.5765 13 11 19

CAU78 CAU342 1.6018 1.5765 12 11 19

CAU254 CAU252 1.6391 2.5735 13 12 18

CAU252 CAU342 2.5735 1.5765 12 11 18

Higher Mn/Fe/Mo CAU425 CAU78 15.0427/103.2969
/1.6063

9.3486/114.4238/1.6018 7/3/21 0/3/12 7/6/26

CAU425 CAU252 15.0427/103.2969
/1.6063

9.7351/152.2168/2.5735 7/3/21 4/7/12 7/8/25

#: Phenotypic values are the mean of element concentrations in three environments
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Two candidate genes (Table 3, S7, S8) related to Fe were 
found to involve 2 BPs, including ribosomal large sub-
unit biology (GO: 0042273) and mRNA translation (GO: 
0009299). Seven candidate genes (Table 3, S7, S8) related 
to Mo belonged to 2 PB, 5 MF, and 3 CC. For example, 
Zm00001d034856 was located 1.24kbp upstream qMo-1a 
(Table S3, S6), expressing a putative translation elonga-
tion/initialization factor family protein involved in the 
mitochondrial translation elongation (GO: 0070125; 
Table 3, S8) and has a translation elongation factor activ-
ity (GO: 0003746, Table 3, S8). In addition, KEGG analy-
sis (adjust P-value < 0.05) found that 1 candidate gene 
involved 1 KEGG pathway (zma00960), which could 
be associated with the accumulation of Mn element 
(Table 3, S7, S8).

Discussion
Maize is an important economically crop and act as 
a model plant for genetic studies [24]. There are sev-
eral reasons for focusing on the trace elements in maize 
grains. First, maize grains more important in the pro-
duction process than other parts, and trace elements in 
grains are closely related to grain quality and geographi-
cal adaptation. Secondly, the accumulation of trace ele-
ments in plants is an important factor that affects growth 
and development, and ultimately yield, falling under the 
umbrella of quantitative genetics.

In our study, phenotypic data analysis showed that Mn, 
Fe and Mo elements in maize grains were greatly affected 
by environment, yet also being significantly affected by 
genetic factors. This finding indicates that it is feasible to 
manipulate the content of trace elements in maize grains, 
paving the way to the development of maize varieties 
with high quality, high yield and extensive geographical 
adaptability.

Population structure can lead to false correlation in 
association analyses. For example, Flint-Garcia et al. [31] 
found that the average phenotypic variation explained 
by population stratification was about 9.3%, resulting 
in false associations with loci caused by non-functional 
genes. In addition,, it is beneficial to weaken the false 
correlation by adding a kinship coefficient in an associa-
tion analysis [32]. Moreover, earlier research suggested 
that QTNs identified by multiple methods are similar to 
environmentally stable QTNs and are reliable [33]. In our 
study, we employed population structure analysis and 
principal component analysis to reduce false associations 
caused by population stratification using the MLM_Q + K 
and MLM_ PAC + K models for GWAS. Through these 
approaches, we successfully identified multiple QTNs 
associated with Mn, Fe, Mo elements in three environ-
ments, and searched for candidate gene information near 
these QTNs, laying the foundation for future research.

To identify more stable and high-quality candidate 
materials, this study employed a scientific approach by 
combining various environmental factors, screening 
thresholds, and phenotypic values across three different 
environments. We identified a set of stable QTNs related 
to Mn (8), Fe (10) and Mo (26) and identified their cor-
responding superior alleles. This information facilitates 
the breeding of maize varieties with high Mn, Fe, and Mo 
contents through molecular breeding. We also used these 
superior alleles to predict the best cross combinations 
for producing maize hybrids with high concentration of 
trace elements in the three environments, following the 
single parent participated in multiple crosses approach 
described in previous studies [34–36]. For instance, Jiay-
ang Li’s team leveraged on superior alleles developed a 
high-yielding rice variety LYP9 through molecular breed-
ing [34, 37]. These new superior alleles will improve our 

Table 3 The GO and KEGG information of candidate genes
Related element Genes ID Gene Ontology ID KEGG ID

BP MF CC
Mn Zm00001eb028460 GO:0030970/GO:0030433 - GO:0005788 -

Zm00001d042152 GO:0006072 GO:0004367 - -

Zm00001eb028430 GO:0045893 GO:0000976 - -

Zm00001d048723 - - - zma00960

Fe Zm00001d025857 GO:0042273 - - -

Zm00001d038016 GO:0009299 - - -

Mo Zm00001d038903 - GO:0004045 - -

Zm00001d034855 - - GO:0042788/GO:0005854 -

Zm00001d034856 GO:0070125/GO:0006414 GO:0003746 - -

Zm00001d039674 - - GO:0005794 -

Zm00001d038676 - - GO:0005794 -

Zm00001d038904 - GO:0030170 - -

Zm00001d010476 GO:0008353/GO:0004693 -
- means there is no corresponding information
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ability to enrich trace elements in maize and optimize 
their quality.

We also examined CAU425, which holds superior 
alleles related to Mo than the recommended candi-
dates (CAU254, CAU78, CAU252, and CAU342). Since 
CAU425 did not show high accumulation Mo at E1, 
suggesting a relative instability, it was not selected as a 
preferable candidate. Further verification across mul-
tiple environments would provide more reliable locus 
information.

The detection of most micro-effect genes is challeng-
ing due to their low single effect ability, making it even 
more difficult to locate stable QTNs in various environ-
ments. Here, we integrated multiple factors, focusing on 
the candidate genes near eight QTNs related to Mn, ten 
QTNs related to Fe, and twenty-six QTNs related to Mo. 
Through genome comparison, literature search, GO and 
KEGG analyses, we identified 13 candidate genes that 
may directly or indirectly participate in the transport 
process of Mn (4), Mo (7), and Fe (2), of which, 10 have 
homologous genes in Arabidopsis thaliana. For example, 
the homologous gene AT5G35080 of Zm00001eb028460 
encodes a glycoprotein located in the endoplasmic 
reticulum, involved in the process of endoplasmic retic-
ulum inward transport and endoplasmic reticulum 
protein degradation. Loss of function leads to salt sensi-
tivity in plants [38]. The homologous gene AT2G41540 
of Zm00001d042152 is related to glycerol metabo-
lism andaffecting root development [39]. The homolo-
gous gene AT1G36580 of Zm00001d048723 encodes a 
2,4-Dienoyl-CoA reductase related protein, involved in 
the metabolism of peroxisomes [40]. The homologous 
gene AT4G27090 of Zm00001d025857 encoded a pro-
tein that participates in the ribosomal large subunit bio-
synthesis process and is reported to be closely related 
to plant fertilization, which can positively regulate seed 
development [41]. The homologous gene AT1G07090 of 
Zm00001d038016 encodes the AtLSH6 protein, and its 
homologous protein AtLSH1 is functionally dependent 
on photosensitive pigments, which then mediates light 
regulation of seedling development [42]. AT1G18440, a 
homologous gene of Zm00001d038903, encodes a hydro-
dynamic protein and participates in transcription [43]. 
The homologous gene AT4G02930 of Zm00001d034856 
encodes a Mitochondrial Elongation factor Tu, which can 
interact with Zn2+ and participate in the oxidative res-
piration function of mitochondria [44]. AT3G01550, a 
homologous gene of Zm00001d039674, encodes a phos-
phoenolpyruvate PEP/phosphate transporter AtPPT2, 
which plays an important role in chloroplasts and affects 
leaf development [45]. AT4G07960, a homologous gene 
of Zm00001d038676, encodes a protein of cellulose syn-
thase like C12 (CSLC12), which is involved in the syn-
thesis of xylan, consequently affecting, the formation of 

plant primary cell walls. It is necessary for the normal 
growth of root hairs and the interaction between pollen 
and pistil tissue [46]. The homologous genes AT4G29840 
and AT1G72810 of Zm00001d038904 encode proteins 
AtMTO2 and AtTSY2 respectively, which are closely 
related to the development of plant root tip meristem 
[47]. We anticipate that the findings from this study will 
help determine the exact function of these genes in reg-
ulating the accumulation of trace element in maize and 
strengthen the planning of the implementation of MAS 
in maize breeding.

Materials and methods
Plant material and phenotyping
The association panel included 170 maize accessions 
from Dr. Lai’s laboratory at China Agricultural Univer-
sity [48]. These 170 accessions were planted at Hainan 
experimental station in SanYa city (18.75 N °, 109.17E °) 
in November 2013, serving as the first replicate (denoted 
E1) and Guangdong experimental station in Jiang Men 
city (22.61  N °, 113.06E °) in September 2020 and 2021 
(denoted E2 and E3, respectively). At each location, the 
accessions were arranged in plots spaced 0.25  m within 
rows and 0.6  m between rows, following a randomized 
complete block design.

Well pollinated ears were harvested from each acces-
sion in the different environments. After manual thresh-
ing, representative mature grains from each accession 
were dried at 80℃ for 3 days and pulverized for mea-
suring elements, including iron (Fe), manganese (Mn), 
molybdenum (Mo). Each sample weighing 5  g was 
digested in MARS6 microwave (CEM) with 65% nitric 
acid (superior purity) and covered and left for 1 h. Sub-
sequently, the lid was screwed on the jar with a gradient 
of temperatures ranging from 120℃ to 180℃ for 45 min 
followed by a 30 min cooling period. The lid was slowly 
opened to vent the air, then the inner lid was rinsed 
with a small amount of water, and the digestion jar was 
placed on a temperature-controlled hot plate and heated 
at 100℃ for 30 min. After dilution with deionized water 
and fixed to 10 mL, the mixture was thoroughly mixed 
and set aside. A blank test sample was prepared the, 
samples were diluted in deionized water and the concen-
tration of 3 elements (ug/g) were measured using induc-
tively coupled plasma mass spectrometry (Agilent 7700 
series). Finally, the mean of each element was calculated 
based on three replications.

Statistical analysis of the elemental traits
The mean, range, standard deviation (SD), skewness, kur-
tosis, and coefficient of variation (CV) were calculated 
for the element concentration of the 170 maize acces-
sions in different environments using the PYTHON soft-
ware. The correlation analysis of each pair elements was 
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performed using “corr” function, and we drew a heat-
map correlogram. Analysis Of Variance (ANOVA) was 
performed to understand the interactions between genes 
and the environment (g×e) using the “Agricolae” pack-
age of R software. The Broad-sense heritability (h2) was 
calculated for elemental traits according Knapp [49] as: 
h2 = δ2

g / (δ2
g + δ2

e / E + δ2
g×e / RE ) where δ2

g, δ2
e, δ2

g×e, 
E, and RE is genetic variance, residual variance, g×e vari-
ance, environment number, and product of the repeat 
number × the environment number, respectively.

Genome-wide association mapping and LD analysis
A total of 170 accessions were performed genotyping-by-
sequence (GBS) as described in our previous works [48]. 
The population structure was evaluated to obtain the Q 
matrix using Admixture (v1.3.0) with default parame-
ters using 5-fold cross-validation, and hypothetical sub-
group (K) values from 2 to 15, and finally we found That 
when K = 10, the maximum posterior probability value 
occurred, Therefore, the Q matrix was used for GWAS. 
Principal component analysis (PCA) was used to visual-
ize the genetic relationships among samples using PLINK 
(v1.9), and10 PCs were used to better distinguish groups 
and fix the effect for GWAS. The Kinship matrix was cal-
culated using EMMAX software with the parameters -v 
-h -s -d 10 [50].

A total of 3  million SNPs (3,123,762) with a minor 
allele frequency of ≥ 0.05 were used to perform GWAS 
via emmax software. Finally, using plink software with 
the parameters r 2 ≥ 0.2, window size = 50, and step 
size = 50, 116,011 independent SNPs were obtained.
GWAS was performed to identify peak SNPs using 
the emmax software with Multiple Loci Linear Mixed 
(MLM_Q + Kinship and MLM_PCA + Kinship) Model 
using the mean of the phenotype. A threshold value of 
P-value < 0.5/116,011 = 4.31E-6 (Bonferroni correction) 
was used to detect significant SNPs.

Haploview 4.2 software [51] was used to perform the 
analysis of linkage disequilibrium (LD), and given the 
default parameters with allele spacing less than 500  kb 
and deletion rate less than 50%. Finally, LD analysis 
between alleles was performed using the subroutine “LD 
Plot”. The LD within 100 kb [52, 53] was used for search-
ing candidate gene at the upstream or downstream.

Superior allele analysis for ionomic element
The phenotypic effect value was calculated according to 
the method of [54]. The specific calculation formula is 
as follows: Ai=∑Nij/ni - ∑Ny/ny. Ai represents the phe-
notypic effect value of each QTN allele; Nij is the deter-
mination value of the jth material property phenotype 
carrying the ith QTN allele; ni is the number of materi-
als with the ith QTN (i) allele; Ny representsthe phe-
notypic determination value of all materials; ny is the 

number of all materials. When Ai is < 0 or > 0, the QTN 
allele is considered as reduced (minus sign “-”) or syner-
gistic (plus sign “+”) QTN allele. Here, given “+” mean 
the QTN allele is superior allele, while “-” as alternative 
allele. Then, ANOVA was performed evaluate the level 
of significance in the differences for phenotypic values of 
materials carrying different alleles using IBM SPSS Statis-
tics 19 software.

Candidate gene prediction, GO and KEGG Analysis
Potential candidate genes were searched on MaizeGDB 
(http://www.maizegdb.org) and NCBI (https://www.ncbi.
nlm.nih.gov/), based on the peak SNPs. Next, a BLAST 
analysis (http://plants.ensembl.org/index.html) was 
performed for all identified candidate genes to search 
homologous genes and annotate the function compared 
with Arabidopsis. Gene Ontology (GO) and KEGG analy-
sis was conducted to explain the functional categories 
using KOBAS v3.0 software (http://kobas.cbi.pku.edu.
cn/).The analysis was performed using KOBAS v3.0, 
in which were observed significant enrichment of the 
zma00960 KEGG pathway, which plays a pivotal role in 
the biosynthesis of secondary metabolites in maize.
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