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Abstract
Background DNA marker profiles play a crucial role in the identification and registration of germplasm, as well 
as in the distinctness, uniformity, and stability (DUS) testing of new plant variety protection. However, selecting 
minimal marker sets from large-scale SNP dataset can be challenging to distinguish a maximum number of samples. 
Results: Here, we developed the CoreSNP pipeline using a “divide and conquer” strategy and a “greedy” algorithm. 
The pipeline offers adjustable parameters to guarantee the distinction of each sample pair with at least two markers. 
Additionally, it allows datasets with missing loci as input. The pipeline was tested in barley, soybean, wheat, rice and 
maize. A few dozen of core SNPs were efficiently selected in different crops with SNP array, GBS, and WGS dataset, 
which can differentiate thousands of individual samples. The core SNPs were distributed across all chromosomes, 
exhibiting lower pairwise linkage disequilibrium (LD) and higher polymorphism information content (PIC) and minor 
allele frequencies (MAF). It was shown that both the genetic diversity of the population and the characteristics of the 
original dataset can significantly influence the number of core markers. In addition, the core SNPs capture a certain 
level of the original population structure.

Conclusions CoreSNP is an efficiency way of core marker sets selection based on Genome-wide SNP datasets of 
crops. Combined with low-density SNP chip or genotyping technologies, it can be a cost-effective way to simplify 
and expedite the evaluation of genetic resources and differentiate different crop varieties. This tool is expected to 
have great application prospects in the rapid comparison of germplasm and intellectual property protection of new 
varieties.
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Background
Accurate identification and registration of germplasm 
resources are essential for plant conservation efforts [1–
3]. Traditional identification methods based on morpho-
logical or agronomical traits can be time-consuming due 
to the influence of environmental factors on most pheno-
types [4]. Genetic molecular markers have been recom-
mended by the International Union for the Protection of 
New Varieties of Plants (UPOV) as a more reliable and 
efficient approach for variety and cultivar identification, 
in addition to morphological characteristics [5–7].

With the increasing number of germplasm collections 
stored in genebanks, effective characterization and man-
agement have become major challenges [8]. In the USDA 
Soybean Germplasm Collection, it was discovered that 
over 30% of wild accessions and 23% of cultivated acces-
sions were redundant, as their similarity exceeded 99.9% 
[9]. Similarly, an analysis of genetic profiles in the Ger-
man ex situ gene bank revealed that approximately 33% 
of the 22,626 collections of barley (Hordeum vulgare 
L.) were potential duplicates [10]. By selecting a com-
prehensive core set of molecular markers, germplasm 
collections can be rapidly assessed and characterized. 
Assigning a unique “molecular passport” profile to each 
accession enables researchers to easily track and manage 
the collections, reducing duplication and facilitating tar-
geted utilization [11].

Furthermore, core marker sets play a vital role in pro-
tecting new plant varieties. Due to the increasing num-
ber of crop varieties being released onto the market, the 
limited genetic diversity and close similarity among elite 
parental lines lead to fewer morphological differences 
that can be utilized for variety identification in mod-
ern breeding programs [12]. The preselected small set 
of markers can be cost-effectively utilized for DUS test-
ing, identification of essential derived varieties (EDVs) 
and the verification of seed authenticity and purity. This 
benefits breeders by protecting their intellectual property 
rights [13–15].

Among various types of molecular markers, single 
nucleotide polymorphisms (SNPs) have gained signifi-
cant importance due to their high reproducibility, locus 
specificity, and wide distribution throughout the genome 
[16]. The continuous advancements in high-throughput 
sequencing technology have facilitated the generation 
of a large number of SNPs. Through various genotyp-
ing platforms, researchers can obtain millions of SNPs 
that cover the entire genome, resulting in SNP sets with 
diverse characteristics [17–19]. The reduction of SNP 
density and the development of low-density SNP geno-
typing panels have gained prominence due to its cost-
effectiveness, enabling the identification of large-scale 
germplasm and the assessment of their relatedness. A 
variety of genotyping methods and technologies, such 

as Taqman genotyping assays [20], Kompetitive allele-
specific PCR (KASP) [21, 22], Amplification refractory 
mutation system PCR (ARMS-PCR) [23], as well as low 
density SNP chips [24] have been extensively used in 
genotyping specific SNPs of interest. Selecting the few-
est and most representative SNPs from vast amounts of 
information that contain redundant data has become a 
concern for researchers.Currently, various methods for 
selecting core SNPs selection have been adopted in vari-
ous crop species for variety identification and DNA fin-
gerprinting [25–28]. In soybean, Liu et al. divided 4044 
SNPs into 24 panels with varying numbers of SNPs based 
on polymorphic information content (PIC) values. A core 
set panel of 20 SNPs was selected to construct molecu-
lar IDs for 138 released soybean cultivars, resulting in the 
fewest number of indistinguishable pairs of accessions 
[29]. Using a combination of polymorphisms and princi-
pal component analysis, Li et al. selected 60 core SNPs 
distributed across all chromosomes to provide sufficient 
genetic information for 166 representative inbred lines 
of Chinese cabbage from a pool of 1167 SNPs [30]. How-
ever, these studies did not consider the discriminatory 
power of combinations of SNPs, and the manual screen-
ing process used in these studies may not be sufficient to 
meet the increasing demand for selecting core SNPs from 
large-scale sequenced data.

Automated methods based on computer program-
ming have also been proposed to improve the efficiency 
of selecting core SNPs. These methods aim to construct 
relatively small marker sets capable of distinguishing a 
wide range of varieties. Hiroshi et al. (2013) employed an 
exhaustive method to develop MinimalMarker software 
for identifying minimal marker sets. They constructed a 
pairwise comparison matrix by calculating the number 
of differential alleles between each pair of varieties and 
consistently selected the marker with the highest dis-
crimination to form the minimal set [31]. This algorithm 
was subsequently used for core SNP selection in the 
identification of pepper [32] and cucumber varieties [33]. 
In their study on rice, Yuan et al. introduced a method 
called conditional random selection (CRS) to specifi-
cally distinguish between EDV and non-EDV varieties 
[34]. The method follows a “divide and conquer” strat-
egy, where specific haplotypes are initially constructed 
using randomly selected SNPs. Redundant SNPs were 
then eliminated by systematically shielding one SNP at a 
time while checking whether the remaining SNPs could 
still distinguish all varieties. Through this approach, the 
researchers selected a set of 390 SNPs that could distin-
guish between 3,024 rice varieties.

Despite the progress made in selecting core SNPs, 
these studies are relatively time-consuming and not 
user-friendly, especially when dealing with data that con-
tain missing loci. Here, we propose CoreSNP, a novel 
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and customized pipeline for developing minimal core 
SNPs. This pipeline can largely reduce the number of 
SNPs essential for identifying different varieties from 
large-scale genotyping data. Based on publicly available 
genotype datasets, the pipeline has been proven to be 
robust in different crops and across various sequencing 
platforms.

Materials and methods
Description of the coreSNP pipeline
A greedy search algorithm was applied to the core SNP 
selection and the specific workflow of the pipeline is 

summarized in Fig.  1. To provide a clear illustration of 
the selection process, we took the dataset with 8 indi-
viduals and 8 markers as an example with a schematic 
diagram (Fig.  2). In the initial step, missing SNPs were 
imputed by major homozygous SNP genotype. The Shan-
non index was calculated for each SNP was subsequently 
calculated for each SNP in the dataset, and the SNP with 
the highest value was randomly selected as the first solu-
tion. The pipeline then proceeded by iteratively analyzing 
the remaining SNPs in the dataset and constructing the 
haplotypes using the selected SNPs. Next, the SNP that 
maximized the Shannon entropy index was selected as 

Fig. 1 The basic workflow of the CoreSNP pipeline
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the second solution and accordingly removed from the 
dataset correspondingly. The iterative process contin-
ues until no additional SNPs can be added. During this 
procedure, a crucial step involvesassessing whether the 
newly selected SNP contributes to an increase in the 
number of observed haplotypes before calculating the 
Shannon index. If not, the SNP is skipped, thereby expe-
diting the pipeline. As depicted in Fig.  2, SNPs such as 
‘Marker7’ and ‘Marker8’ were used as examples. In this 
step, we exclude SNPs without polymorphisms and 
nearby SNPs linked to the selected core SNPs. Conse-
quently, at each selection step, the process achieved the 
local optimal solution to maximize sample differentiation 
and haplotype diversity.

After employing major allele imputation, the haplo-
types without any missing values were outputted, and 
the chosen SNPs were designated as the primary core 
markers. Recognizing that missing sites could poten-
tially result from sequencing errors, we retrieved haplo-
types with missing loci based on the positions of imputed 

values. Subsequently, the pipeline identified pairs of hap-
lotypes with differences caused by imputed missing data. 
Through an iterative process, SNPs with the highest fre-
quency were selected and added to the primary list. Even-
tually, the final core sets were generated after achieving 
complete differentiation across all sample pairs (Fig. 2).

In this study, additional command options were intro-
duced to configure the running parameters, thereby 
enhancing the applicability of the pipeline. Users can 
define input files using the “-v” option and customize 
which markers should be included or excluded using the 
“-i” and “-e” options, respectively. Since some SNP com-
binations (haplotypes) have close Shannon index values, 
the “-x” option was provided to allow users to specify the 
number of candidate SNP combinations to be selected in 
each round. This option provides users with more feasi-
ble solutions for downstream analysis. Furthermore, core 
SNPs were randomly and independently selected each 
round, and users have the flexibility to define the num-
ber of repetitions using the “-c” option. The “-m” option 

Fig. 2 Schematic diagram of the CoreSNP pipeline

 



Page 5 of 10Dou et al. BMC Plant Biology          (2023) 23:580 

allows users to specify that at least two markers are 
required to effectively discriminate between every pair 
of varieties. This criterion can indeed mitigate potential 
errors or noise introduced by the raw sequencing data, 
thereby enhancing the reliability and robustness of the 
results (Table S1).

Genotype dataset collection
To validate the CoreSNP pipeline, we collected the pub-
lic SNP genotype dataset of barley, soybean, wheat, 
rice, and maize from widely studied plant databases or 
research studies (Table S2). The SNP data were obtained 
from different genotyping and sequencing platforms, 
including SNP microarray, high-throughput genotyp-
ing by sequencing (GBS), and whole-genome sequencing 
(WGS).

For the barley analysis, genotypic information of 1,000 
accessions was downloaded from the Germinate Barley 
SNP Platforms [35]. The collection of 1,000 genotypes is 
a representative subset of the global 22,626 barley acces-
sions from the German Federal ex situ GenBank. By 
integrating our unpublished data, we curated a dataset 
consisting of 1081 barley accessions with 42,520 SNPs 
genotyped by the 50 K iSelect SNP Array, referred to as 
BarleyI. Additionally, we obtained a GBS SNP matrix 
of 1,297 barley accessions from the IPK data reposi-
tory, referred to as BarleyII [10]. We merged two differ-
ent datasets by using a shared sample set of 1081 barley 
accessions. The resulting combined dataset, designated 
Barley I & II, contains a total of 185,508 SNPs.

The soybean dataset comprises 817 soybean accessions 
with 158,959 SNPs, including 77 parental lines, 169 non-
parental lines, and 571 progenies. Genotyping was per-
formed using the ZDX1 array genotyping platform [36]. 
The wheat genotypic dataset consists of 178,803 SNPs 
and includes genotypic information for 271 Chinese 
wheat landraces that were genotyped using the 660  K 
wheat SNP array [37].

We extracted genotypic information from 453 high-
coverage rice accessions obtained from the 3,000 Rice 
Genome Project [38]. The maize genotypic dataset 
includes genotype information from 1,210 maize lines 
based on whole-genome sequencing data, comprising 
approximately 83 million raw SNPs. The data were down-
loaded from the maize HapMapV3 study [39].

Data preprocessing
Heterozygous sites were treated as missing data and 
processed using BCFtools version 1.10.2 [40]. Genotype 
imputation of missing sites was performed using FILLIN 
with default parameters [41]. Sample and SNP filtration 
as well as LD-based SNP pruning were performed using 
PLINK version 1.90 [42].

Polymorphism analysis
In this study, the Shannon indices [43] and PIC values 
[44] were calculated using the following formulas.

 
H = −

n∑

i=1

Piln (Pi) (1)

where H is the diversity index, n is the population size 
and Pi is the frequency of the combined haplotypes.
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where n is the population size and Pi and Pj are the fre-
quencies of two SNP alleles among all samples. Equa-
tion  2 suggests the simplified formula, while Eq.  3 
suggests the full formula for PIC calculation.

Genetic diversity analysis
Allele counts and frequencies and IBS information were 
calculated by PLINK version 1.90 [42]. LD estimation was 
measured as parameter r2 with a maximum distance of 
10 Mb using PopLDdecay version 3.40 [45]. A Mantel test 
for correlation between distance matrices was performed 
using an in-house python script [46]. Principal compo-
nent analysis (PCA) of the barley samples was performed 
using EIGENSOFT/smartPCA software version 6.1.4 
[47]. All figures were generated using R software version 
4.1.2 using the packages ggplot [48] and RIdeogram [49].

Data availability
The CoreSNP pipeline was developed using the Python 
programming language and accepts compressed Vari-
ant Call Format (VCF) files or uncompressed VCF files 
as input. The cost-free program is readily executed 
from the command line, relying on specific dependen-
cies, such as Python (version 3.6 or higher), Numpy and 
PLINK 1.9. Both the source code and the essential depen-
dencies are accessible on GitHub (https://github.com/
admy55/CoreSNP) or Gitee (https://gitee.com/admy55/
CoreSNP).

Results
Performance test of the CoreSNP pipeline
Initially, imputation and filtration were performed on 
the raw dataset. Samples with a genotype missing rate of 
≥ 0.5 and SNPs with a missing rate of ≥ 0.2 were removed. 
The final datasets used for testing the pipeline are shown 
in Table S2. Using default parameters, the pipeline suc-
cessfully differentiated 1081 barley samples using 21 core 

https://github.com/admy55/CoreSNP
https://github.com/admy55/CoreSNP
https://gitee.com/admy55/CoreSNP
https://gitee.com/admy55/CoreSNP
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SNPs, 1297 barley samples using 32 core SNPs, a merged 
dataset of 1081 barley samples using 19 SNPs, 800 soy-
bean varieties using 52 SNPs, 271 wheat varieties using 
24 SNPs, 453 rice accessions using 18 SNP markers, and 
1206 maize varieties using 60 SNPs (Fig. 3, Table S2). The 
data represent the minimum set of markers obtained 
after running the pipeline ten times (Other results are 
not shown).

We compared CoreSNP with a Random Selection (RS) 
method using the Barley I & II dataset to evaluate their 
performance in selecting core SNPs. In the RS process, 
two markers were randomly selected from the long and 
short arms of each chromosome, forming a combination 
of 28 SNPs with aMAF greater than 0.3 (RS1) and MAF 
greater than 0.4 (RS2). After 20 iterations of selection, the 
randomly selected 28 SNPs from RS1 and RS2 identified 
accessions ranging from 977 to 1061. Through satura-
tion curve analysis, we found that the CoreSNP approach 
exhibited significantly higher efficiency in SNP selection 
than the RS method, as it efficiently identified the same 
number of germplasms with a smaller set of selected 
SNPs (Fig. S1).

Characteristics of the core SNPs selected from different 
datasets
To assess the utility of the core SNPs, we calculated the 
genetic diversity parameters, including MAF and PIC, 
as indicators of the markers’ discriminatory ability. Val-
ues closer to 0.5 for MAF and 0.375 (depending on the 

formula) for PIC of biallelic markers indicate better dis-
criminatory properties.

The results showed that more than 70% of the core 
SNPs had an MAF greater than 0.3 and PIC greater than 
0.35, except for the soybean dataset (Fig. S2). In the 
case of the soybean and maize datasets, there are 6 and 
8 markers, respectively, with a minor allele frequency 
(MAF) below 0.1. These markers were specifically cho-
sen to distinguish individuals with high genetic similarity. 
Notably, all markers selected from the Barley I & II data-
set exhibited MAF values greater than 0.3 and PIC val-
ues greater than 0.35, except for two markers located on 
chromosome 1 H and chromosome 5 H, which displayed 
MAF values of 0.23 and 0.19, respectively.

The 24 core markers were cover 13 chromosomes in 
the wheat genome, and in addition to these, the selected 
markers are distributed across nearly every chromosome 
in the genome. The majority of the core SNPs were not 
located in close proximity to each other, suggesting a 
lower LD distance between them (Supplementary Data 
2).

Genetic diversity analysis of the test datasets
Significant variations were noted in the count of the 
ultimate core sets during the evaluation of the CoreSNP 
pipeline across different datasets. To investigate the 
drivers underlying these disparities, we assessed sev-
eral factors, encompassing MAF, missing rate, linkage 

Fig. 3 Discrimination saturation curve of core SNPs selected from raw dataset
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disequilibrium decay distance (LDD), and identity by 
state (IBS) information utilizing the test dataset (Fig. 4).

No specific regularity was observed in the distribution 
of MAF or missing rate in soybean experiments (Fig. 4A-
B). However, the soybean dataset exhibited a slower LD 
decay and consisted of 817 individuals, including both 
parental populations and their descendants (Fig.  4C). 
Finally, 52 markers capable of differentiating 800 samples 
were selected. In contrast, the maize dataset with a faster 
LD decay exhibited a higher missing rate and rare genetic 
variations. Approximately 28% of the SNPs exhibited 
missing rates between 0.05 and 0.2, and 20% of the SNPs 
had an MAF below 0.01. Consequently, during the pro-
cess of selecting core SNPs in maize, we initially selected 
26 markers to form the primary core, which was later 
expanded to include 60 SNPs after accounting for miss-
ing loci.

The wheat and barley I dataset showed a relatively uni-
form pattern in MAF distribution (Fig.  4A). However, 
the wheat dataset exhibited a higher proportion of mark-
ers with missing rates ranging from 0.05 to 0.2, slower 
LD decay and higher IBS peaks compared to the barley 
dataset (Fig. 4B-D). Consequently, the efficiency of core 
SNP selection was found to be lower in the wheat data-
set. Under similar conditions, we were able to distinguish 

1081 barley samples using 21 core markers, whereas only 
271 wheat samples could be differentiated using 24 core 
markers (see Table S2). Overall, both the genetic diver-
sity of the population and the specific characteristics of 
the sequencing data significantly influence the number of 
core markers.

Flexible application of CoreSNP for barley accessions
The fertility of spikelet florets, commonly referred to as 
row type, and the presence or absence of grain hulls are 
two crucial infraspecific morphological traits in barley. 
In this study, we assessed the feasibility of the CoreSNP 
pipeline with three SNP markers (rs7_527405910 on 
chromosome 7  H, JHI-Hv50k-2016-107445 on chromo-
some 2 H, and JHI-Hv50k-2016-230985 on chromosome 
4 H) that are tightly linked to these two traits as included 
markers for core SNP selection. By establishing a crite-
rion of a minimum of at least two markers distinguish-
ing each pair of samples, we successfully identified 31 
core SNP markers that differentiated 1081 barley samples 
using the merged dataset. These core SNP markers were 
distributed across all seven chromosomes (Fig. S3).

The genetic structure of 1081 barley collections was 
analyzed using both the core SNP set and the complete 
set of genome-wide SNPs. Principal component analysis 

Fig. 4 Genetic diversity of the raw test datasets. A, Frequency distribution of MAF values among raw dataset. B, Frequency distribution of PIC values 
among raw dataset. C, Linkage disequilibrium (LD) decay patterns of different species. The decays of LD (r2) with physical distance (kilobases) for SNPs in 
five crops are shown. D, Identity by states (IBS) distribution across five crops
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(PCA) revealed that some samples with relatively distant 
genetic distances within three clusters were still well sep-
arated along the PC1 and PC2 dimensions. This observa-
tion highlights that the core SNPs capture a certain level 
of the original population structure (Fig. S4).

The correlation coefficient (r) values of 0.4024 indicate 
a significant correlation between the genetic distance 
matrices of the core SNP panels and the total genome-
wide SNPs. This affirms the robustness and reliability of 
our core SNP selection process (Table S10).

Discussion
Development of the CoreSNP pipeline
Appraising the discriminatory power of loci combina-
tions is a necessary step in marker screening [50]. When 
assessing the performance of multiple loci combina-
tions, MAF values have shown lower sensitivity com-
pared to PIC values and the Shannon Diversity index, 
as demonstrated through statistical analysis. In the case 
of the frequency distribution presented in Table S11, it 
was observed that the Shannon index displayed a simi-
lar trend to that of the complete PIC formula. However, 
the computational complexity associated with calculating 
the full PIC formula is relatively higher than that associ-
ated with calculating the Shannon index, especially as the 
diversity of loci combinations expands.

In addition, we conducted a comparative analysis with 
the Conditional Random Selection (CRS) method using 
the data released in their research [34]. The results dem-
onstrate that, for the same fractal dataset, our approach 
can differentiate 1000 samples with 44 SNPs, while the 
CRS method requires 54–59 SNPs. Additionally, due to 
the random sampling nature of their method, the final 
number of labels exhibited significant fluctuations. Fur-
thermore, it was noted that their method has limitations 
in handling missing data. Thus, in the present study, we 
introduced CoreSNP, an screening pipeline that utilizes 
the Shannon index to create core sets of SNPs. Overall, 
the pipeline initiates from the input VCF dataset and 
proceeds through a fast and thorough process. CoreSNP 
achieved discrimination of over 1000 barley samples in 
just five minutes of runtime on our machine (OS: Win-
dows 11, CPU: Intel Core i7-9850 H 2.6 GHz, RAM: 32 
GB), outperforming other traditional methods [31, 32, 
34].

Polymorphic analysis of the core SNPs selected based on 
the different datasets
The discrimination curve of the markers was plot-
ted based on the haplotype count obtained at each step 
(Fig.  2). This curve demonstrated that the SNP panels 
generated by this pipeline possess a remarkable discrimi-
natory capacity. The selected core SNP markers distin-
guished 100% of the test collections, with the exception 

of 17 soybean samples and two maize samples. This dis-
crepancy in these samples can be attributed to the MAF 
filtration applied to the raw dataset obtained from pub-
lic sources. These particular samples represent closely 
related accessions, as evidenced by the calculated iden-
tical by state (IBS) information, where pairs of samples 
exhibited an IBS value of 1.

The selected core SNPs exhibited a high degree of poly-
morphism and were distributed across the genome. In 
fact, within the pipeline, the evaluation of an increase in 
haplotype numbers involved removing redundant linked 
markers, ensuring that adjacent pairs of SNPs were not 
positioned too closely to each other. The number of core 
SNPs is influenced by the genetic diversity of different 
populations. However, it is also significantly influenced 
by the missing rate in the original dataset. In terms of 
population structure, certain closely related samples are 
still unable to be distinctly separated in the reduced-
dimensional data. This limitation could be attributed 
to the insufficient number of markers in comparison to 
the original dataset, which hindered their ability to ade-
quately capture the genetic variations present.

Applications of CoreSNP pipeline in the future
The cost of genome sequencing tools remains high for 
routine large-scale germplasm identification. However, 
with the development of low-density sequencing tech-
niques, such as KASP and ARMS-PCR, our CoreSNP 
pipeline provides a cost-effective solution for germplasm 
identification and genetic relationship analysis. By con-
structing a reference library using a combination of core 
SNP alleles (haplotypes), it becomes possible to establish 
a comprehensive catalog of DNA profiles and DNA fin-
gerprints for each accession. This will greatly facilitate the 
analysis of variety traceability and genetic backgrounds. 
However, it is important to note that this reference 
library is not a one-size-fits-all solution, thereby neces-
sitating additional efforts in collecting more genotypes.

Moreover, these SNPs can also be utilized for parent 
combination selection and progeny screening during the 
breeding process, thus enhancing breeding efficiency 
and precision. Additionally, the processing of many sam-
ples inevitably introduces the issue of sample mix-up. It 
becomes challenging when samples contain mixtures 
with few identifiable characteristics. The combination of 
genetic profiles and core SNP alleles can be used to iden-
tify accidental sample mix-ups, ensuring the authenticity 
and purity of seeds. In summary, the CoreSNP pipeline 
takes into account sequencing platform constraints and 
user-specific preferences. By potentially saving time and 
reducing costs, it simplifies and streamlines the process 
of genomic identification. This tool will serve as a valu-
able foundation for modern breeding efforts and future 
germplasm management and preservation endeavors.
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Conclusion
In conclusion, we developed the CoreSNP pipeline for 
evolution of the discrimination power of SNP combi-
nations. We validated it using diverse genotype files 
from various crops and found that it exhibited high effi-
ciency. This tool can be efficiently used for selecting core 
SNPs capable of representing genome-wide variation to 
identify similarity and redundancy within germplasm 
resources.
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