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Abstract
Background Salt stress severely restricts rapeseed growth and productivity. Hemin can effectively alleviate salt stress 
in plants. However, the regulatory effect of Hemin on rapeseed in salt stress is unclear. Here, we analyzed the response 
and remediation mechanism of Hemin application to rapeseed before and after 0.6% (m salt: m soil) NaCl stress. 
Experiment using two Brassica napus (AACC, 2n = 38) rapeseed varieties Huayouza 158R (moderately salt-tolerant) and 
Huayouza 62 (strongly salt-tolerant). To explore the best optional ways to improve salt stress resistance in rapeseed.

Results Our findings revealed that exogenous application of Hemin enhanced morph-physiological traits of 
rapeseed and significantly attenuate the inhibition of NaCl stress. Compared to Hemin (SH) treatment, Hemin (HS) 
significantly improved seedlings root length, seedlings height, stem diameter and accumulated more dry matter 
biomass under NaCl stress. Moreover, Hemin (HS) significantly improved photosynthetic efficiency, activities of 
antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), ascorbate peroxidase (APX), and 
decreased electrolyte leakage (EL) and malondialdehyde (MDA) content, thus resulting in the alleviation of oxidative 
membrane damage. Hemin (HS) showed better performance than Hemin (SH) under NaCl stress.

Conclusion Hemin could effectively mitigate the adverse impacts of salt stress by regulating the morph-
physiological, photosynthetic and antioxidants traits of rapeseed. This study may provide a basis for Hemin to regulate 
cultivated rapeseed salt tolerance and explore a better way to alleviate salt stress.
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Background
Increased urbanization and seawater intrusion decreased 
arable land in coastal areas which has detrimental 
impacts on agricultural production [1]. Worldwide salin-
ity stress is the most extensive and influential abiotic 
stress that has adverse impacts on crop growth and pro-
ductivity. Salinity accounts for about 7% of the world’s 
total land and about 20% of irrigated land [2]. Salinity has 
deleterious impacts on plant physiology and biochemis-
try, thus creating risks to agricultural productivity and 
food security.

High salt concentration in the soil leads to three kinds 
of interacting stress. These are ionic stress caused by 
ionic toxicity (especially Na+), oxidative stress mainly 
caused by reactive oxygen species (ROS) accumulation, 
and osmotic stress caused by water deficit [3, 4]. Surplus 
ions induce stomatal closure to reduce carbon dioxide 
concentration, and decrease water loss through transpi-
ration, which inhibits net photosynthetic rate [5]. Plant 
cells and tissues typically possess well organized enzy-
matic ROS scavenging systems, including superoxide 
dismutase (SOD), peroxidase (POD), catalase (CAT) and 
ascorbate peroxidase (APX), as well as non-enzymatic 
antioxidants, glutathione (GSH) and ascorbate (ASA), 
liable to quench ROS and alleviate the damages to photo-
synthetic membrane caused by salt stress [6, 7].

Rapeseed (Brassica napus.) is one of the most vital oil-
seeds crop globally, grown as meal protein for humans 
and animal consumption [8]. This crop is very sensitive to 
salt stress throughout the plant growth and development. 
Salinity stress impacts rapeseed productivity, by impair-
ing osmotic stress and ionic imbalance, which severely 
effects water uptake and net photosynthetic rate [9]. 
Direct seeding of rapeseed in saline soils can inhibit seed 
germination, growth and developmental cycle or even 
cause seedling death [10]. Therefore, rapeseed is usually 
nursed and transplanted to the field to ensure the con-
sistency of harvest and yield [11]. To avoid these seedling 
death scenarios, the application of plant growth regula-
tors could be effective in eliminate the adverse effects of 
abiotic stresses [12].

Hemin is a novel plant growth regulator and is natu-
rally derived chloride of heme [13]. Primarily it can be 
used as an effective promoter of heme oxygenase (HO-
1), broken down by HO-1 to carbon monoxide CO, bili-
verdin (BV) and ferrous ions Fe2+ [14, 15]. Previously 
Hemin was used in animal research but currently it is 
using in plants as a powerful tool that is vital in protect-
ing plants from various abiotic stresses [16]. Literature 
showed that exogenous Hemin enhanced photosynthesis 
and reduce inhibition caused by salt stress by activating 
the antioxidant system such as SOD, POD and CAT [17, 
18]. Hemin alleviated damages in wheat seedlings caused 
by high temperature [19], and enhanced the tolerance of 

Arabidopsis thaliana under salt stress by regulating ROS 
homeostasis [20, 21]. Previous studies focused Hemin 
alleviating heavy metal stress on Brassica [17, 22].How-
ever, its definite enactment and the inevitable mecha-
nisms in alleviating salt damages and increasing salt 
tolerance in rapeseed needs to be clarified. And the stud-
ies comparing the effects of spraying Hemin before and 
after salt stress on the alleviation of salt stress in rape-
seed seedlings are minimally. We hypothesis that Hemin 
would regulate differently during different periods of salt 
stress.

Two Brassica napus (B. napus; AACC, 2n = 38) were 
selected for this study: B. napus Huayouza 62 and B. 
napus Huayouza 158R. Foliar sprayed with Hemin before 
and 24  h after NaCl treatment, respectively. Through 
assess the potential role of Hemin in mediating the anti-
oxidant system, osmoregulation, photosynthesis-related 
attributes, along with growth and biomass accumulation 
in rapeseed under salt stress. To elucidate the mecha-
nisms by which Hemin improves salt tolerance in rape-
seed seedlings under different salt stress stages, and to 
explore the optimal salt tolerance effect. The aim is to 
Provide new ideas for studying the effect of Hemin on 
salt tolerance in rapeseed and provide evidence for the 
practical application of Hemin in increasing salt toler-
ance of cultivated rapeseed in saline areas.

Results
Effect of foliar spraying of Hemin on growth parameters of 
rapeseed seedlings before and after NaCl stress
The morphological traits such as root length, seedling 
height, stem diameter and leaf area were significantly 
reduced by NaCl stress (Table 1). As the NaCl treatment 
(S) was applied to plants, at the 1st-13th days, there were 
corresponding percent decreases in seedlings height of 
16.8%, 26.3%, 38.8%, 52.5%, and 52.7% in Huayouza 158R, 
and 18.5%, 28.6%, 31%, 48.7% and 56% in Huayouza 62, 
respectively as compared to CK. Regardless of the treat-
ment method, the application of exogenous Hemin (SH 
and HS) alleviated the inhibition of NaCl stress on the 
growth of rapeseed seedlings (Fig. 1). However, the cur-
rent analysis showed that foliar application of exogenous 
Hemin (SH and HS) substantially increased root length, 
seedling height, stem diameter, and leaf area of rapeseed 
plants. At the 7th day, the application of Hemin (SH) 
increased percentage was 15.9% and 12.6% in root length, 
4.8% and 10.5% in stem diameter, 23.1% and 12.6% in leaf 
area, respectively for Huayouza 158R and Huayouza 62. 
While the pretreatment of Hemin (HS) increased per-
centage was 27.8% and 21.5% in root length, 14.3% and 
15.8% in stem diameter, 56.3% and 41.5% respectively 
for Huayouza 158R and Huayouza 62. The alleviating 
inhibitory effect of Hemin (HS) treatment was significant 
at day 7th. It means that in contrast to Hemin (SH), the 
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treatment Hemin (HS) showed better performance in 
enhancing plant morphological traits under NaCl stress.

Effects of foliar spraying Hemin before and after NaCl 
stress on biomass of Rape seedlings
With the increased of treatment time, NaCl treatment 
significantly inhibited the biomass accumulation of rape-
seed seedlings (Figs.  2 and 3). The most significantly 
decreased percentage in shoot and root dry weight 
was 77.0% and 77.8% in Huayouza 158R on day 10, and 

65.71% and 72.8% (Fig. 3) in Huayouza 62, on day 13, as 
compared to CK. The application of exogenous Hemin 
increased the fresh and dry weights of seedlings shoot 
and root compared with NaCl treatment alone, which led 
to the alleviation of the inhibition of seedling growth by 
NaCl, and the foliar spraying of Hemin was more effec-
tive before being subjected to NaCl stress (Figs. 2 and 3). 
While the shoot and root dry matter weight increased 
percentage were 123.6% and 95.1% in HS treatment, 
and 52.9% and 36.6% in SH treatment, for Huayouza 

Table 1 Effect of Hemin prophylaxis and treatment on growth parameters of rapeseed under NaCl stress
Huayouza 158R Index Treatments 1 4 7 10 13

Plant height Control 13.7 ± 0.1a 16.0 ± 0.1a 19.6 ± 0.03a 25.5 ± 0.4a 25.8 ± 0.1a

H 13.0 ± 0.2b 15.3 ± 0.03b 18.3 ± 0.3b 24.4 ± 0.3b 25.7 ± 0.5a

S 11.4 ± 0.1c 11.8 ± 0.2d 12.0 ± 0.3d 12.1 ± 0.1d 12.2 ± 0.1d

SH 12.0 ± 0.2c 12.8 ± 0.2c 13.2 ± 0.1c 13.5 ± 0.1c 14.5 ± 0.03b

HS 11.5 ± 0.3c 12.0 ± 0.03d 12.5 ± 0.1d 13.0 ± 0.2 cd 13.2 ± 0.3c

Root length Control 13.0 ± 0.2ab 14.9 ± 0.2b 18.4 ± 0.6b 19.3 ± 0.7b 21.3 ± 1.8a

H 13.5 ± 1.0a 16.2 ± 0.1a 20.0 ± 0.5a 21.6 ± 0.2a 22.0 ± 0.4a

S 11.2 ± 0.2c 12.2 ± 0.4c 12.6 ± 0.2e 14.4 ± 0.1d 14.7 ± 0.3b

SH 12.6 ± 0.5ab 13.3 ± 0.6c 14.6 ± 0.2d 15.3 ± 0.4 cd 16.5 ± 0.1b

HS 13.0 ± 0.6ab 14.7 ± 0.2b 16.1 ± 0.6c 16.5 ± 0.3c 16.9 ± 0.49b

Steam diameter Control 2.1 ± 0a 2.4 ± 0.1b 3.0 ± 0.03b 3.1 ± 0.03b 3.3 ± 0.1a

H 2.1 ± 0a 2.8 ± 0.03a 3.2 ± 0.03a 3.3 ± 0.03a 3.3 ± 0.1a

S 1.8 ± 0c 2.0 ± 0.1c 2.1 ± 0.03d 2.2 ± 0.1d 2.2 ± 0.1c

SH 2.0 ± 0.030b 2.2 ± 0.1bc 2.2 ± 0.03d 2.3 ± 0.03d 2.4 ± 0.03bc

HS 2.00 ± 0.030a 2.3 ± 0.1b 2.4 ± 0.03c 2.4 ± 0.03c 2.6 ± 0.1b

Leaf area Control 2662.7 ± 63.2a 4363.7 ± 58.2a 15071.2 ± 161.0a 16517.1 ± 654.9a 17720.0 ± 418.4a

H 2386.1 ± 134.1ab 4812.6 ± 183.0a 12075.3 ± 148.2b 16047.0 ± 295.1a 17705.5 ± 1185.1a

S 1897.1 ± 129.04c 2503.5 ± 62.0c 2567.3 ± 45.2e 3120.1 ± 85.9c 3581.8 ± 141.0b

SH 2195.1 ± 98.1bc 2571.6 ± 178.9c 3159.6 ± 119.5d 3762.7 ± 67.8bc 5219.7 ± 283.7b

HS 2286.8 ± 101.5b 3533.6 ± 415.9b 4012.9 ± 76.3c 4975.7 ± 504.2b 5434.9 ± 358.0b

Huayouza 62

Plant height Control 12.4 ± 0.2a 15.4 ± 0.0a 17.1 ± 0.2a 23.4 ± 0.2a 28.4 ± 0.2a

H 12.0 ± 0.3a 14.8 ± 0.1a 16.2 ± 0.1b 23.3 ± 0.1a 24.9 ± 0.2b

S 10.1 ± 0.2b 11 ± 0.5c 11.8 ± 0.2d 12 ± 0.1c 12.5 ± 0.1d

SH 10.8 ± 0.4b 12.5 ± 0.2b 12.8 ± 0.2c 13.3 ± 0.1b 13.6 ± 0.1c

HS 10.5 ± 0.0b 12.3 ± 0.1b 12.5 ± 0.5 cd 13.1 ± 0.1b 13.3 ± 0.3c

Root length Control 15.2 ± 0.1a 15.7 ± 0.3b 18.5 ± 0.5a 18.8 ± 0.2a 20.1 ± 1.1a

H 14.9 ± 0.7a 16.8 ± 0.2a 18.5 ± 0.4a 18.9 ± 0.3a 21.0 ± 1.3a

S 12.1 ± 0.3c 12.9 ± 0.1d 13.5 ± 0.6c 14.2 ± 0.4d 14.9 ± 0.1b

SH 13.5 ± 0.2b 14.2 ± 0.1c 15.2 ± 0.1b 15.8 ± 0.4c 16.1 ± 0.7b

HS 14.3 ± 0.1ab 14.6 ± 0.3c 16.4 ± 0.1b 16.9 ± 0.4b 17.5 ± 0.3b

Steam diameter Control 2.1 ± 0.03a 2.4 ± 0.03b 2.5 ± 0.03a 2.6 ± 0.03b 3.1 ± 0.03b

H 2.2 ± 0.03a 2.6 ± 0.1a 2.7 ± 0a 2.8 ± 0.1a 3.2 ± 0a

S 1.8 ± 0.1c 1.9 ± 0.1c 1.9 ± 0.1c 2 ± 0.1d 2.1 ± 0.03d

SH 1.9 ± 0bc 2.1 ± 0.03c 2.1 ± 0.1bc 2.1 ± 0.03 cd 2.3 ± 0.1c

HS 2.0 ± 0.1b 2.1 ± 0.1c 2.2 ± 0.1b 2.3 ± 0.03c 2.4 ± 0.03c

Leaf area Control 3783.3 ± 267.0a 6179.9 ± 103.8a 9367.6 ± 63.7a 15904.3 ± 143.7a 20673.4 ± 249.0a

H 3234.9 ± 151.9b 5987.7 ± 85.4a 8994.2 ± 57.5a 13758.8 ± 266.4b 19273.8 ± 464.0b

S 2162.4 ± 58.7c 2651.4 ± 57.1d 2882.9 ± 193.4c 4051.4 ± 157.2d 5400.4 ± 149.8d

SH 2319.9 ± 29.1c 2908.0 ± 101.8c 3247.2 ± 147.9c 4489.1 ± 42.6 cd 5595.1 ± 133.6 cd

HS 2933.7 ± 17.4b 3218.8 ± 24.9b 4079.9 ± 238.1b 4610.6 ± 71.6c 6330.5 ± 52.5c
CK: Control; H: Hemin; S: NaCl treatment; SH: NaCl + Hemin; HS: Hemin + NaCl. Mean ± SE of three replicates. Different letters indicate significant differences (p < 0.05)
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Fig. 1 Effect of Hemin prophylaxis and treatment on plant morphology of rapeseed under NaCl stress. CK: Control; H: Hemin; S: NaCl treatment; SH: 
NaCl + Hemin; HS: Hemin + NaCl
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158R. In Huayouza 62, the shoot and root dry weights 
were increased by 45.3% and 71.4% in HS treatment, 
and 19.0%, and 40%, in SH treatment. The above ground 
and root fresh weights had the similar trend. On the 7th 
day, at the SH treatment, there was percentage increases 
of 26.1% and 23.0% in shoot fresh weight, and 28.7% 
and 51.0% in root fresh weight, for Huayouza 158R and 
Huayouza 62. While HS treatment increased percentage 
was 53.0% and 42.9% in shoot fresh weight, and 95.4% 
and 88.9% in root fresh weight, for Huayouza 1588R and 
Huayouza 62.

Effects of foliar spraying Hemin before and after NaCl 
stress on membrane lipid peroxidation of rape seedlings
As the NaCl treatment was applied to plants, at the 
1st-7th days, the average percentage were increased of 
151.2% and 29.4% in EL and 172.2%, 23.0% in MDA for 
Huayouza 158R and Huayouza 62. The HS treatment, at 

1st-13th days, there were corresponding percent signifi-
cantly decreases in EL of 38.4%, 16.9%, 30.4%, 32.3% and 
10.8% in Huayouza 158R, and 17.3%, 49.8%, 35.2%, 26.8% 
and 25.3% in Huayouza 62 (Fig.  4C, D), respectively as 
compared with NaCl (S) treatment. The SH treatment, 
at 1st-13th days, there were corresponding percent sig-
nificantly decreases in EL of 15.1%, 16.4%, 4.2%, 29.9% 
and 5.1% in Huayouza 158R, and 3.7%, 44.1%, 9.0%, 8.2% 
and 16.2% in Huayouza 62. On the 13th day, the MDA 
content most significantly decreased by 19.1% (SH) and 
30.9% (HS) in Huayouza 158, and 26.6% (SH), and 30.6% 
(HS) in Huayouza 62, compared with NaCl (S) treatment. 
It means that the content of EL and MDA under stress 
was significantly reduced by Hemin treatment, and the 
decrease in Hemin pretreatment (HS) was significantly 
higher than that of rescue (SH) (except for MDA on the 
7th day of Huayouza 62).

Fig. 2 Effect of Hemin prophylaxis and treatment on fresh weight of rapeseed above (A, B) and below ground (C, D) under NaCl stress. Mean ± SE of 
three replicates. CK: Control; H: Hemin; S: salt treatment; SH: NaCl + Hemin; HS: Hemin + NaCl. Different letters indicate significant differences (p < 0.05)
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Effect of foliar spraying of Hemin on photosynthetic 
parameters of rapeseed seedlings before and after NaCl 
stress
Under NaCl stress, the SPAD values decreased by 7.3% at 
the 7th day, and 10.6% at the 13th day of Huayouza 158R, 
compared with CK (Fig. 5). The SPAD values reduced by 
4.4% at the 10th and 9.8% at the 13th day, respectively 
of Huayouza 62. Foliar application of Hemin increased 
by 3.8%, 9.6%, 18.2%, 10.0% and 7.8% in SH and 15.6%, 
16.8%, 22.6%, 1.2% and 17.8% in HS of Huayouza 158R, at 
days 1st-13th, compared to S treatment. The SPAD values 
increased by 2.1%, 6.0%, 5.7%, 4.4% and12.2% in SH, and 
10.6%, 4.2%, 7.2%, 13.7% and 22.2% in HS, respectively of 
Huayouza 62. In summary, HS treatment was more effec-
tive than SH treatment in alleviating salt stress.

Photosynthetic indicators such as net photosynthetic 
rate (Pn), stomatal conductance (Gs), and transpiration 
rate (Tr) were significantly decreased by NaCl stress 

(Fig. 6). From the 1st day to the 10th day, decreased Pn 
by 58.2%, 65.0%, 56.9%, 66.7% and 67.7%, 61.5%, 26.1%, 
43.2%, Gs by 72.2%, 64.0%, 77.0%,80.4% and 72.2%, 41.6%, 
62.2%, 69.1%, Tr by 63.9%, 52.5%, 71.2%, 73.6% and 61.5, 
36.8%, 54.3%, 58.9% in Huayouza 158R and Huayouza 
62 (Fig.  6). Except for the increase of Ci content under 
NaCl stress at the 4th day, it decreased significantly at 
the 1st, 7th and 10th days. The average percentage of Ci 
was reduced by 34.2% and 24.4% in Huayouza 158R and 
Huaouza 62, respectively (Fig.  6G, H). Compared with 
NaCl treatment, Hemin (HS) pretreatment increased 
percentage was 25.3%, 98.2%, 77.5%, 100.6% and 150.4%, 
55.3%, 22.7%, 42.3% in Pn, 123.1%, 34%, 1667.5%, 298.7% 
and 169.3%, 18%, 49.1%, 15.7% in Gs, 139.3%, 28.3%, 
127.4%, 248.6% and 81.2%, 30.7%, 58.4%, 20.6% in Tr, 
respectively for Huayouza 158R and Huayouza 62. And 
Hemin (HS) pretreatment was generally higher than that 
of spraying Hemin (SH) during the stress period, but it 

Fig. 3 Effect of Hemin prophylaxis and treatment on the dry weight of rapeseed upper (A, B) and lower ground (C, D) of rapeseed under NaCl stress. CK: 
Control; H: Hemin; S: NaCl treatment; SH: NaCl + Hemin; HS: Hemin + NaCl. Mean ± SE of three replicates. Different letters indicate significant differences 
(p < 0.05)
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did not reach a significant level. Foliar spraying of Hemin 
(SH and HS) significantly increased Ci compared with 
NaCl treatment. On the contrary, Hemin treatment was 
higher than NaCl (S) treatment only on the 7th day in 
Huayouza 62. Hemin (SH and HS) treatments were sig-
nificantly higher than NaCl alone, alleviating the inhi-
bition of photosynthesis and having a positive effect on 
seedling growth.

Effects of foliar spraying Hemin on antioxidant enzyme 
activity of rape seedlings before and after NaCl stress
Except that the CAT activity in Huayouza 62 decreased 
with the increase of treatment time, the activities of 
SOD, POD, CAT and APX enzymes in other treat-
ments increased first and then decreased. Compared 
with CK, NaCl stress significantly enhanced the activi-
ties of antioxidant enzymes (SOD, POD, APX). As the 
NaCl treatment (S) was applied to plants, there was most 

significantly enhanced by 50.6% at 7th day and 62.6% at 
1st day in SOD, 51.4% at 7th day and 68.1% at 4th day in 
POD, 39.9% at 4th day and 41.9% at 7th in APX, respec-
tively for Huayouza 158R and Huayouza 62. The SOD, 
POD, and APX enzyme activities under SH treatment 
were increased by an average of 7.5%, 16.4%, 15.4% in 
Huayouza 158R and 7.4%, 18.7%, 4.1% in Huayouza 62 
compared with those under S treatment. The HS treat-
ments were enhanced by an average of 12.1%, 9.0%, 28.8% 
in Huayouza 158R, and 13.4%, 35.1%,16.8% in Huayouza 
62 (Fig. 7A-F). In contrast, the CAT activity of Huayouza 
158R under NaCl stress was significantly enhanced by 
11.4% on the 4th day, and then decreased significantly 
at the 7th -13th days (Fig. 7G). Hemin treatment signifi-
cantly enhance CAT activity 1.7% enhancement in SH 
and 8.7% enhancement in HS at day 10 compared with S 
treatment. The most significant enhancement was 41.2% 
and 27.6% in SH and HS treatments, respectively on the 

Fig. 4 Effect of Hemin prophylaxis and treatment on electrolyte leakage rate (EL) (A, B) and malondialdehyde (MDA) (C, D) in rapeseed leaves under NaCl 
stress. CK: Control; H: Hemin; S: NaCl treatment; SH: NaCl + Hemin; HS: Hemin + NaCl. Mean ± SE of three replicates. Different letters indicate significant 
differences (p < 0.05)
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7th day, for Huayouza 62. It means that the activities of 
antioxidant enzymes in seedlings under different treat-
ments behaved differently. Both Hemin pretreatment 
(HS) and leaf spraying with Hemin (SH) during stress sig-
nificantly enhanced antioxidant enzyme activities com-
pared with NaCl treatment alone, and the enhancement 
was more pronounced for prevention (HS) than for res-
cue (SH) (except for SOD enzyme activity of Huayouza 
62 at the 4th day).

Effect of foliar spraying of Hemin on the soluble protein of 
rapeseed seedlings before and after NaCl stress
The soluble protein decreased with time under NaCl 
treatment (Fig. 8). In Huayouza 158R, the soluble protein 
content was lower than that of the control at days 4–10, 
and was significantly increased by 3.1%, on the 13th day, 
under NaCl stress. At days 1 to 13, SH treatments were 
significantly increased by 1.4-4.2% and HS treatments 
were significantly increased by 2.5-4.7% compared to 
NaCl (S) treatment. Huayouza 62 only showed a signifi-
cant increase of 2.9% in the SH treatment and 6.1% in the 
HS treatment on the 13th day (Fig. 8B).

Discussion
Salinity severely inhibits plant morph-physiology and it 
is important to enhance stress tolerance of plants [23]. 
Hemin application can mitigate the adverse effects of 
abiotic stress on plant growth and development [24]. 
Therefore, we investigated the effects of Hemin foliar 
application on phenotype, cell membrane, antioxidant 
enzymes activities, photosynthesis and biomass accu-
mulation of rapeseed seedlings under salinity stress. The 
results showed that seedling height, root length, stem 
diameter, and leaf area of rapeseed of both varieties were 
significantly reduced under salt stress (Table  1; Fig.  1). 

Exogenous application of Hemin alleviated the inhibi-
tory effect of salt stress. Except for seedling height, which 
was lower in HS than in SH treatment, the other indexes 
(root length, stem thickness, leaf area and biomass accu-
mulation) were higher than in SH treatment, and the 
effect of HS treatment increase was more significant in 
Huayouza 158R (Table  1; Figs.  2 and 3). It’s indicating 
that Hemin pre-treatment (HS) achieved the objective of 
seedling strength. The study suggesting that prophylaxis 
(HS) is better for alleviating salt stress. Previous studies 
have shown that Hemin promotes root elongation and 
lateral root formation [25], consistent with the results of 
this study. Hemin promotes IAA synthesis [26, 27]. IAA 
plays an important role in root growth [28, 29].Therefore, 
it was speculated in this experiment that Hemin might 
promote root elongation under salt stress by indirectly 
increasing the accumulation of IAA in the root system.

Photosynthesis plays an essential physiological func-
tion in plants’ growth and development, providing vari-
ous organic substances for their growth, and it is also 
the most sensitive process of plants after salt stress [30]. 
Higher salt concentrations increase the accumulation of 
reactive oxygen species, damage the structure of cysts, 
stomatal closure, disrupt electron transfer, and inhibit 
photosynthetic efficiency [31, 32]. Hemin improves pho-
tosynthetic efficiency, antioxidant capacity and increases 
biomass accumulation under heavy metal stress [24]. 
The present results showed that salt stress significantly 
reduced stomatal conductance (Gs), net photosynthetic 
rate (Pn), transpiration rate (Tr), and intercellular car-
bon dioxide concentration (Ci) in rapeseed. And both 
HS treatments were higher than the SH treatment (but 
did not reach significant levels, Fig.  6). Too low stoma-
tal conductance hinders carbon dioxide diffusion (sto-
matal restriction), inhibits photochemical reactions 

Fig. 5 Effect of Hemin prophylaxis and treatment on rapeseed’s relative chlorophyll content (SPAD) (A, B) under NaCl stress. CK: Control; H: Hemin; S: NaCl 
treatment; SH: NaCl + Hemin; HS: Hemin + NaCl. Mean ± SE of three replicates. Different letters indicate significant differences (p < 0.05)
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Fig. 6 Effect of Hemin prophylaxis and treatment on net photosynthetic rate (Pn) (A, B), stomatal conductance (Gs) (C, D), inter-cellular CO2 concentra-
tion (Ci) (E, F), and transpiration rate (Tr) (G, H) in rapeseed under NaCl stress. CK: Control; H: Hemin; S: NaCl treatment; SH: NaCl + Hemin; HS: Hemin + 
NaCl. Mean ± SE of three replicates. Different letters indicate significant differences (p < 0.05)
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Fig. 7 Effect of Hemin prophylaxis and treatment on superoxide dismutase (SOD) (A, B), peroxidase (POD) (C, D), ascorbate peroxidase (APX) (E, F), cata-
lase (CAT) (G, H) in rapeseed under NaCl stress. CK: Control; H: Hemin; S: NaCl; SH: NaCl + Hemin; HS: Hemin + NaCl. Mean ± SE of three replicates. Different 
letters indicate significant differences (p < 0.05)
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(non-stomatal restriction), and reduces intercellular car-
bon dioxide concentration, making the photosynthetic 
raw material insufficient and reducing photosynthetic 
rate [33, 34]. The study found that the Gs and Ci values 
changes in Huayouza 158R were consistent (Fig. 6C, E), 
indicating that the decrease in net photosynthetic rate 
may be caused by stomatal limitation [35, 36]. On the 
contrary, the Gs and Ci values of Huayouza 62 changed 
oppositely at the 7th-10th day (Fig.  6D, F), indicating 
that it may be limited by stomata in the early stage and 
non-stomatal limitation in the later stage, which led to 
the decrease of Pn. This is consistent with previous stud-
ies on the reduction of Pn values by non-stomatal factors 
under drought and salt stress [37]. Plants under stress 
form self-protection by reducing water transport [38], 
and the increase in Tr under Hemin treatment reduces 
leaf temperature and favors photosynthesis. Therefore, it 
was concluded that Hemin treatment could improve the 
photosynthetic capacity by increasing the gas exchange 
capacity of seedlings under NaCl stress.

High chlorophyll content (SPAD values) increases 
light absorption to drive the photosynthetic process [39]. 
Heme oxygenase-1 (HO-1) protects photosensitive pig-
ment clusters and promotes chlorophyll synthesis [40, 
41]. As a heme oxygenase-1 (HO-1) inducer, Hemin 
application can alleviate the inhibition of photosynthesis 
by heavy metals such as zinc and cadmium [18, 42]. Con-
sistent with the present study, Hemin increased SPAD 
values, Pn, and accumulation of biomass (Fig. 5, and 6 A, 
B, and Figs.  2 and 3). In Huayouza 158R, NaCl stress 
caused a significant decrease in SPAD values. It may be 
mainly due to two reasons: (i) a decrease in chlorophyll 
synthesis; and (ii) an increase in chlorophyll degrada-
tion [43]. In the Huayouza 62 variety, the SPAD values 

increased significantly at the 1st-7th days of NaCl treat-
ment, probably due to decreased leaf area and increased 
leaf thickness [44], which increased relative chlorophyll 
content per unit of leaf area. In this study, we found the 
SPAD values about the two varieties of HS treatment was 
significantly higher than that of SH treatment (Fig.  5). 
Hemin alone did not increase SPAD values in rapeseed 
seedlings, probably due to the absence of stress signal-
ing, HO1 was not expressed. In contrast when plants feel 
salt stress, the activity of HO1 increases, increasing the 
chlorophyll content of seedlings under stress, thus play-
ing a protective role in photosynthesis. The study dem-
onstrated that Hemin pretreatment was more protective 
of photosynthesis under salt stress in rapeseed, and was 
more conducive to plant biomass accumulation and 
growth and development of rapeseed.

The accumulation of osmoregulatory substances in 
plant cells is an essential mechanism for plant tolerance 
to salt stress [45, 46]. The osmoregulation of Hemin 
focuses on glycan osmoregulatory substances [18, 47]. 
In this study, the soluble protein content of Huayouza 
158R seedlings decreased significantly under salt stress. 
Hemin increased the soluble protein content. This indi-
cates that Hemin can improve salt tolerance in rapeseed 
by increasing soluble protein content. Severe salt stress 
can cause protein degradation or inhibition of protein 
synthesis [48]. In Huayouza 62 rapeseed, salt stress and 
exogenous application of Hemin had no significant effect 
on leaf soluble protein content. This suggests that Hemin 
may improve the salt tolerance of rapeseed through other 
osmoregulatory substances.

Plants have evolved a complex antioxidant system 
in response to abiotic stresses [25]. In this study, NaCl 
treatment significantly increased the membrane lipid 

Fig. 8 Effect of Hemin prophylaxis and treatment on soluble proteins (A, B) in rapeseed under NaCl stress. CK: Control; H: Hemin; S: NaCl; SH: NaCl + 
Hemin; HS: Hemin + NaCl. Mean ± SE of three replicates. Different letters indicate significant differences (p < 0.05)
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peroxidation level of seedlings and the electrolyte leakage 
rate of leaves (Fig. 4). The MDA content of both rapeseed 
varieties reached a maximum on the fourth day and then 
decreased (Fig. 4C, D). In the early stages of stress, plants 
may perceive the stress-induced damage and adapt to the 
stress through an antioxidant defense system or osmotic 
substance synthesis, thus reducing the MDA content [49, 
50]. In our study, salt stress significantly increased SOD, 
POD, and APX activities in rapeseed seedlings compared 
with CK and decreased with time (Fig. 7). However, the 
CAT activity of Huayouza 158R decreased (Fig. 7G, H). It 
is demonstrated differences in the response pattern of dif-
ferent antioxidant enzymes activities in response to salt 
stress in plants due to differences in genes, plant species, 
treatment times and treatments [51, 52]. Previous stud-
ies have shown that Hemin activates antioxidant enzymes 
and reduces MDA content under salt stress [53]. M.A. 
Shkliarevskyi’s study found that Hemin increased SOD, 
POD, CAT and APX activity of wheat under heat stress 
[19, 54]. n our study, Hemin reduced membrane damage, 
increased SOD, POD, and APX activities. Especially the 
POD and APX activities were significantly higher in HS 
treatment than in SH treatment in both varieties, while 
the opposite was true for SOD activity in Huayouza 62 
(Fig. 7B-F). This indicates that the regulatory mechanism 
of Hemin differs in medium salt tolerance Huayouza 
158R and strong salt tolerant Huayouza 62 varieties. The 
current studies have found that Hemin can alleviate the 
oxidative damage by enhancing the antioxidant capacity 
[17], promoting HO1 expression, and its metabolite Fe2+, 
CO enhances antioxidant enzyme activity in the plant, 
which participates in the ROS scavenging process and 
mitigates the damage to the plant [55]. Consistent results 
were shown under zinc stress in rice, salt stress, and 
cadmium stress in cabbage [17, 18]. However, whether 
Hemin plays a role in rapeseed salt tolerance through its 
metabolites and the regulatory mechanism of prevention 
and treatment remains to be further elucidated.

Conclusions
In conclusion, we have demonstrated that under salt 
stress, exogenous Hemin treatments can drastically 
increase antioxidant enzymes activities such as SOD, 
POD and APX, effectively reduces membrane oxida-
tive damage. Furthermore, exogenous Hemin enhanced 
morph-physiological traits such as photosynthesis in 
rapeseed leaves, delayed leaf senescence, and improved 
dry matter accumulation and distribution under salt 
stress. The results of this study showed that the effect of 
Hemin pretreatment (HS) to alleviate salt stress in rape-
seed was more significant. Thus, Hemin can be used as 
effective inducer to enhance the tolerance of rapeseed 
seedlings to salt stress and improve the sustainability 
of rapeseed production in saline soils. In agricultural 

applications, preventive measures can be adopted to 
enhance rapeseed salt tolerance, and increase crop eco-
nomic benefits.

Materials and methods
Design of the experiment
The Brassica napus (AACC, 2n = 38) moderately salt-
tolerant variety Huayouza 158R and strongly salt-tolerant 
variety Huayouza 62 were selected in this investigation. 
The seeds provided by Academician Fu Tingdong’s team 
from Huazhong Agricultural University. The plant 
growth regulator Hemin (provided by Shanghai Chang-
deduo Agricultural Technology Co., Ltd.) was used for 
foliar application. The pot experiment used completely 
randomized block design was conducted in 2022–2023 
at the daylight linkage greenhouse (under natural light, 
25/20 ± 2 °C day/night temperatures, 60% relative humid-
ity) of Binhai College of Agriculture, Guangdong Ocean 
University (N: 21°8′56 ″, E: 110°17′58″, ASL: 20 m).

Fully mature and uniform seeds were chosen manu-
ally and sterilize with 3% hydrogen peroxide for 10 min, 
then thoroughly rinse 3–5 times with distilled water. 
Seeds were sown in plastic seedling trays (54  cm × 
28 cm) containing 32-hole (4 × 8), each per hole (with an 
upper diameter of 6 cm, lower diameter of 2 cm, height 
of 11 cm, and no holes in the bottom) filled with about 
0.12 kg of test soil (a mixture of vermicompost and sand 
(3:1, v:v)). 2 seeds were sown in each hole. Interplanted 
at one true leaf and retained 1 seedling per hole. Water 
1/2 Hoagland nutrient solution once at the growth of two 
true leaves, 20 ml per hole, and no more nutrient solution 
at a later stage.

The treatments were carried out at three true leaves, 
and morphologically similar plants were selected and 
divided into five groups: (1) CK (clear water, foliar spray-
ing with distilled water); (2) H (clear water, foliar spray-
ing with 5 µmol/l of Hemin); (3) S (0.6% NaCl sodium, m 
salt: m soil = 6:1000 brine, distilled water); (4) SH (NaCl 
sodium; foliar spraying with 5 µmol/l of Hemin after 
NaCl stress 24 h); (5) HS (foliar spraying of 5 µmol/l of 
Hemin before NaCl stress 24 h; NaCl sodium ), where the 
salt treatment was watered by dissolving a quantitative 
amount of NaCl into 20 ml of water per hole. Treatments 
were carried out at 7:00 p.m., where salt and Hemin were 
co-treated at 24  h intervals, and all salt treatments and 
Hemin alone were carried out on the same day, and all 
treatments were completed in 3d. Sampling was done on 
the 1st, 4th, 7th, 10th, and 13th days after completion of 
all treatments, 3 replicates per treatment.

Measurement items and methodology
Measurement of growth parameters
Rapeseed seedling height and root length were measured 
with a straightedge. Stem thickness at the cotyledon scar 
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was measured with vernier calipers, and fresh weights 
of above-ground and below-ground parts were weighed 
with an electronic balance. Fresh samples were killed in 
an oven at 105 °C for 30 min, dried at 75 °C to a constant 
weight, and weighed to determine the dry weights of 
above-ground and below-ground parts.

Determination of electrolyte leakage rate
Electrolyte leakage (EL) was determined according to 
the method described by Dionisio-Sese and Tobita [56]. 
For each treatment of 5 plants, leaf tissues from the same 
site were selected and cut to 5  mm size, weighed 0.1  g 
placed in test tubes containing 10ml of deionized water, 
and left at room temperature (25  °C) for 24  h, the con-
ductivity of the solution was measured using a conduc-
tivity meter (E1), the samples were heated for 30 min in a 
thermostatic water bath at 100 °C, cooled down and then 
the conductivity of the solution was measured again (E2). 
The EL value was calculated using the following The EL 
value is calculated using the following formula:

 Electrolyte Leakage = (E1/E2) × 100%

Analysis of lipid peroxidation and membrane permeability in 
leaf blades
The concentration of malondialdehyde (MDA) was 
measured according to Stewart and Bewley [57]. Fresh 
leaf samples were separated from the growing branches 
and ground with a mortar in a mortar containing 5 mL 
of TBA 0.6% and 10% TCA. The mixture was heated at 
100  °C for 15  min. In the next step, the samples were 
cooled on ice for 5 min and centrifuged at 5000 rpm for 
10 min, and the absorbance of the supernatant was mea-
sured at 450 nm, 532 nm, and 600 nm.

MDA content was calculated based on fresh weight as 
follows:

 (NMOLMDAg−1 FW)=6.45 (OD532−OD600)− 0.56 (OD450)

SPAD and gas exchange parameters
SPAD values were determined on the 1st, 4th, 7th, 10th, 
and 13th days using the American photosynq MultispeQ 
multifunctional phytometer. Net photosynthetic rate 
(Pn), stomatal conductance (Gs), intercellular CO2 con-
centration (Ci), and transpiration rate (Tr) of the func-
tional leaves were measured daily from 9:00 to 11:30 a.m. 
at the end of all treatments on the 1st, 4th, 7th, and 10th 
days using a Li-6400 portable photosynthesize (LI-COR, 
Inc., USA). Leaf chamber conditions were: photosynthet-
ically active radiation of 1000 µmol m− 2 s− 1, flow rate of 
500ml/s, and relative humidity of 60-70%.

Determination of antioxidant enzyme activity
The preserved fresh leaves (0.5 g) were ground with liq-
uid nitrogen and 10 ml of pre-cooled phosphate buffer 
(50 Mm; PH 7.8) was added in two batches, ground to a 
homogenate and poured into a centrifuge tube and cen-
trifuged for 20 min at 4 °C and 10,000 g. The supernatant 
was taken to determine the activities of catalase (CAT), 
superoxide dismutase (SOD), peroxidase (POD), and 
ascorbic acid peroxidase (APX). SOD activity was calcu-
lated by measuring its ability to inhibit nitrotetrazolium 
blue (NBT) photoreduction as described by Giannopoli-
ties and Ries [58]. Referring to the method of Stewart and 
Bewley [57], 0.1 ml of enzyme solution was mixed with 
2.9 ml of reaction solution and subjected to light reac-
tion at 4000 lx for 20 min at 25 °C and then absorbance 
at 560 nm was measured using unilluminated tubes as a 
control. For POD activity, refer to the method described 
by Klapheck, Zimmer, and Cosse [59]. The absorbance 
values of the reaction mixture at 470  nm were deter-
mined by the guaiacol method as described and counted 
every 30s. CAT activity was calculated by measuring the 
decomposition of H2O2 at 240 nm according to Gupta et 
al. [60], Li et al. [61]. APX activity was calculated accord-
ing to Nakano and Asada [62].

Osmoregulatory substances
The soluble protein content was measured according to 
the method of Bradford [63], and the absorbance value 
at 595 nm was determined by binding the proteins with 
Caumas Brilliant Blue.

Statistical analysis
Excel 2016 was used for data organization and collection, 
one-way ANOVA and Duncan’s test (p < 0.05) were used 
to analyze the data using IBM SPSS Statistics 26 software, 
and origin 2021 software was used for plotting.
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