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Abstract 

Background Eucommia ulmoides leaves have high medicinal and economic value as a dual-purpose substance 
for medicine and food. Employing leaves from 13 natural populations of Eucommia ulmoides as research objects, this 
study reveals the variation patterns of intra-specific and inter-specific trait variation and explores the response of leaf 
characteristics to geographical and climatic changes, aiming to provide a scientific basis for the efficient utilization 
of leaf resources and the breeding of superior varieties.

Results Descriptive statistical analysis and nested analysis of variance showed significant differences in 11 leaf traits 
of Eucommia ulmoides inter-populations and intra-populations, with an average coefficient of variation of 17.45%. 
The coefficient of variation for average leaf phenotypic traits is 20.77%, and the leaf phenotypic variation is mainly 
from the variation intra-populations. Principal component analysis reveals that the cumulative contribution rate 
of the top three principal components which mainly contributed to the phenotypic variation of Eucommia ulmoides 
leaves reached 74.98%, which could be sorted into size traits (34.57%), color traits (25.82%) and shape traits (14.58%). 
In addition, correlation analysis expresses there is a specific co-variation pattern among leaf traits, with a strong con-
nection between shape, size, and color traits. Geographic and climatic distances are significantly correlated, and man-
tel test and correlation analysis indicate that leaf traits of Eucommia ulmoides are mainly influenced by altitude. With 
the increase of altitude, the leaves become smaller. Partial correlation analysis shows that after controlling climate 
factors, the correlation between some characters and geographical factors disappears significantly. Temperature 
and precipitation have a great influence on the variation of leaf phenotypic traits, and the larger the leaves are in areas 
with high temperature and heavy rainfall.

Conclusions These findings contribute to a further understanding of the leaf morphological characteristics 
of Eucommia ulmoides and the extent to which the environment influences leaf trait variation. They can provide a sci-
entific basis for the protection and application of Eucommia ulmoides leaf resources in the future.
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Background
Plant phenotypic traits not only encompass morpho-
logical features such as those of leaves, fruits, and seeds 
but also serve as a direct indicator of genetic variation in 
plants [1, 2]. Leaves act as vital gateways for water and 
gas exchange between plants and the external environ-
ment. They constitute the primary organs for photosyn-
thesis and transpiration, exerting significant influence on 
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ecological material production, global carbon cycling, 
and water cycling [3]. Leaf phenotypic traits repre-
sent the most intuitive classification characteristics in 
plant taxonomy, also reflecting a plant’s adaptability to 
changing growth environments [4]. Variations in leaf 
morphology directly impact the physiological and bio-
chemical processes in plants, closely correlating with 
a plant’s efficiency in acquiring and utilizing resources 
[5]. For instance, elliptical leaves exhibit higher photo-
synthetic and water use efficiency than lanceolate leaves 
[6, 7]. Additionally, leaf size can indicate the content of 
active components within the leaf [8, 9]. Variations in 
leaf phenotypes not only serve as a crucial metric for 
gauging genotypic variations but also reveal the patterns 
and underlying mechanisms of this variation. This lays a 
foundation for the genetic improvement, introduction, 
and domestication of plants [10].

Variation in leaf phenotypes is a manifestation of 
plants adapting to different habitats under selection 
pressures, reflecting the survival strategies evolved by 
plants in response to changing environments [11]. In 
recent years, with increasing attention to global climate 
change, research on plant leaf traits in response to the 
environment has gradually expanded [12, 13]. Stud-
ies have shown that factors such as temperature, light 
intensity, precipitation, latitude, longitude, altitude, and 
soil type have a significant impact on leaf traits [14, 15]. 
For instance, in regions with warm temperatures, abun-
dant precipitation, and no direct strong sunlight, leaves 
tend to be larger. Conversely, in cold regions with strong 
sunlight or in dry or nutrient-poor soils, leaves tend to 
be smaller to avoid overheating or reduce water loss 
[16–18]. Specific leaf dry weight can reflect the adaptive 
characteristics of plants in different habitats [19]. Harsh 
environmental conditions and increasing altitude lead 
to an increase in specific leaf dry weight, which is detri-
mental to the growth of plants or communities [20]. To 
date, research on leaf phenotypic traits has overlooked 
the importance of intra-species trait variation in commu-
nity dynamics. The impact of intra-species trait variation 
on ecosystem function is significant and should not be 
underestimated [13]. Therefore, conducting a quantita-
tive study on intra-species trait variation along environ-
mental gradients can support the prediction of species 
responses to climate change and the influence of the 
environment on trait variation. This has important impli-
cations for the breeding of superior plant varieties, con-
servation of endangered plant resources, and protection 
of biodiversity [21].

Eucommia ulmoides (E. ulmoides) is a rare and endan-
gered species endemic to China. Due to the presence of 
various active components in its leaves, bark, and gum, 
it has become an important economic and industrial raw 

material tree species in China [22]. The central produc-
tion areas are located in northwestern Hunan, northern 
Guizhou, western Guizhou, and northwestern Hubei, 
among others, covering a wide range of environmental 
conditions [23]. In response to future climate change, the 
overall distribution area is shifting towards the north-
west and higher latitudes [24]. Therefore, studying the 
intraspecific variation of Eucommia ulmoides leaves 
(EULs) can provide deeper insights into its phenotypic 
differentiation and ecological adaptation. However, cur-
rent research on EULs mainly focuses on chemical com-
position [25, 26], pharmacological uses [27, 28], potential 
distribution predictions [29], and whole-genome associa-
tion analysis [30], with very little attention to the pheno-
typic trait variation of EULs. Meng et  al. found that 14 
leaf phenotypic traits from the Eucommia germplasm 
resource database showed rich variation (4.57-20.68%) 
[31]. Wang et al., on the other hand, found higher levels 
of variation in five leaf phenotypic traits within natural 
Eucommia populations (20.96-49.00%). In addition, a cor-
relation analysis between leaf phenotypic traits and three 
climatic factors revealed that annual average temperature 
and precipitation significantly influenced leaf size [32]. 
Furthermore, due to the similarity in active components 
and pharmacological effects between Eucommia leaves 
and bark, EULs have a wide range of applications [33]. 
Previous studies have found that the content of isoquer-
citrin is closely related to leaf length, leaf area, and leaf 
perimeter [34]. This provides a scientific basis for further 
research on leaf phenotypic variation and its response to 
the environment in natural Eucommia populations with 
richer phenotypic variation.

In this study, climate and geographic data were col-
lected from 13 natural populations in the central pro-
duction area of E. ulmoides, and 11 leaf phenotypic traits 
were measured for 134 trees. The aim was to investigate 
the variation in leaf traits and its mechanisms of adapta-
tion to geographic and climatic factors. This study aims 
to reveal the patterns of variation in leaf phenotypic 
traits, providing a scientific basis for the selection of 
superior Eucommia resources, efficient utilization of leaf 
resources, and practical production.

Results
Leaf morphological variation
 Scanning and morphological comparisons were per-
formed on the leaf base, leaf tip, and leaf shape of 134 
EULs. The results indicate that there is abundant varia-
tion in EULs (Fig. 1). The leaf base has five shapes: heart 
shape, round shape, truncate shape, cuneate shape and 
oblique shape (A1-A5). The leaf apex has five types: cusp-
idate, acute, acuminate, aristate and caudate (B1-B5). The 
leaf shape has eight types: lanceolate, ovate-lanceolate, 
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ovate-oblanceolate, oblanceolate, round, ovate, oblong, 
and elliptical (C1-C8).

Leaf phenotypic variation
Descriptive statistical analysis was conducted on leaf 
traits (Table  1), and the results indicated that all meas-
ured traits exhibited varying degrees of variation. The 
coefficient of variation ranged from 9.00 to 30.88%, with 
an average of 17.45%. Among them, the chlorophyll refer-
ence value (CRV) showed the highest coefficient of vari-
ation (30.88%), followed by leaf area (LA) (26.73%) and 
specific leaf dry weight (SLDW) (20.94%). The lowest 
coefficient of variation was observed for the blue compo-
nent of leaves (BC) (9.00%). The coefficient of variation 
for the 3 leaf colour traits, the red component of leaves 

(RC) (11.64%), BC (9.00%), and green component of 
leaves (GC) (13.89%) was lower than that for the other 8 
leaf traits.

Overall phenotypic variation of Eucommia ulmoides leaves 
and differences in leaf traits among 13 natural populations
The nested analysis of variance results showed that the 
variation in the 11 leaf traits occurs in inter-popula-
tions and intra-populations (Table 2). Except for petiole 
length (PL) and length to width ratio of leaf (LTWR), 
which showed no significant differences in inter-pop-
ulations, all other traits exhibited highly significant 
differences in both inter-populations and intra-popu-
lations (p < 0.01). Further multiple comparison analy-
sis (Tables  3 and 4) indicated that the largest values 

Fig. 1 Variation types of Eucommia ulmoides leaf apex, leaf base, and leaf shape
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for LA, maximum leaf width (LW), longest leaf length 
(LL), maximum leaf perimeter (LP), minimum LTWR, 
maximum SLDW, and highest CRV were observed 
in the population from Hunan. Among the popula-
tions, the Dayongqiao Sub-district (DYQ) population 
exhibited the widest leaves, with the highest values for 
LL (155.04 mm), LW (69.55 mm), LA (6242.52  mm2), 
and LP (436.23 mm). Conversely, the highest LTWR, 
shortest LL, smallest LP, and lightest leaf colour were 
observed in the population from Hubei. Specifically, 
the Hejia town (HJ) population had the shortest leaves 
(LL = 128.17 mm, LP = 346.56 mm, LA = 4512.37  mm2).

The variance components and phenotypic differentia-
tion coefficients for the 11 leaf traits inter-populations 
and intra-populations were obtained through variance 
analysis (Table  2). The results indicate that the intra-
population variance accounts for 46.58% of the total 
variance, while the inter-population variance accounts 
for 12.65% of the total variance. The phenotypic dif-
ferentiation coefficient was 4.65-49.93%, with an aver-
age of 20.77%. Therefore, the leaf phenotypic diversity 
among the 13 natural populations of E. ulmoides is 
primarily attributed to intra-population variation. 
The trait with the highest phenotypic differentiation 

Table 1 Descriptive statistical analysis was conducted on 11 leaves phenotypic traits of 134 female trees from 13 natural populations 
of Eucommia ulmoides in China

Traits Mean SD Min Max CV(%)

Leaf length (LL) (mm) 138.94 21.31 77.95 219.94 15.34

Petiole length (PL) (mm) 15.96 3.13 8.83 33.46 19.62

Length to width ratio of leaf (LTWR) 2.20 0.33 1.47 3.67 14.92

Leaf width (LW) (mm) 63.82 9.03 34.76 98.74 14.15

Leaf area (LA)  (mm2) 5276.01 1410.18 1659.03 12599.59 26.73

Red component of leaf (RC) 71.77 8.36 52.00 127.00 11.64

Blue component of leaf (BC) 57.84 5.21 46.00 107.00 9.00

Green component of leaf (GC) 72.40 10.06 50.00 123.00 13.89

Chlorophyll reference value (CRV) 2.43 0.75 0.09 3.58 30.88

Leaf perimeter (LP) (mm) 386.09 57.40 206.94 605.10 14.87

Specific leaf dry weight (SLDW) (g/mm2) 1.00 ×  10−4 0.21 ×  10−4 0.38 ×  10−4 1.74 ×  10−4 20.94

Mean 17.45

Table 2 Variance analysis and phenotypic differentiation coefficients of Eucommia ulmoides populations

* means p < 0.05; ** means p < 0.01; *** means p < 0.001. leaf length (LL), petiole length (PL), length to width ratio of leaf (LTWR), leaf width (LW), leaf area (LA), red 
component of leaf (RC), blue component of leaf (BC), green component of leaf (GC), chlorophyll reference value (CRV), leaf perimeter (LP), specific leaf dry weight 
(SLDW)

Traits Proportion of Variance Components (%) Population Differentiation 
Coefficient (%)

F Value

Among  
Populations

Among Trees within  
Populations

Within Trees  
(Residual)

Among  
Populations

Among 
Trees within  
Populations

LL 8.10 49.22 42.69 14.13 2.63** 12.49***

PL 4.51 71.52 23.97 5.93 1.63 30.77***

LTWR 1.87 38.32 59.81 4.65 1.52 7.36***

LW 11.25 56.16 32.59 16.69 3.06** 18.15***

LA 12.03 57.33 30.63 17.35 3.20** 19.68***

RC 20.62 43.95 35.43 31.93 5.79*** 13.43***

BC 14.23 31.68 54.09 30.99 5.08*** 6.87***

GC 37.51 37.61 24.88 49.93 11.69*** 16.11***

CRV 7.39 34.68 57.92 17.57 2.84** 6.94***

LP 9.29 54.11 36.60 14.66 2.77** 15.71***

SLDW 12.37 37.77 49.85 24.67 3.54*** 8.51***

Mean 12.65 46.58 40.77 20.77
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coefficient was GC, while the trait with the lowest coef-
ficient was LTWR.

Different letters in the same column indicate signifi-
cant difference at the 0.05 level. petiole length (PL), leaf 
length (LL), length to width ratio of leaf (LTWR), leaf 
width (LW), leaf area (LA), red component of leaf (RC). 
Lianghe town, Gansu (LH); Wufeng town, Hubei (WF); 
Hejia town, Hubei (HJ); Donggongsi town, Guizhou 
(DGS); Zhongshan town, Guizhou (ZS); Jiangya forest 
farm, Hunan (JYLC); Jinyan town, Hunan (JY); Reshi 
town, Hunan (RS); Miaoertan town, Hunan (MET); 
Qianling town, Hunan (QL); Zhexi town, Hunan (ZX); 
Lean town, Hunan (LA); Dayongqiao Sub-district, 
Hunan (DYQ).

Different letters in the same column indicate significant 
difference at the 0.05 level. blue component of leaf (BC), 
green component of leaf (GC), chlorophyll reference 
value (CRV), leaf perimeter (LP), specific leaf dry weight 

(SLDW). The full names corresponding to population 
abbreviations are the same as those in Table 3.

Principal component analysis of the 11 leaf traits
 The principal component analysis (PCA) results indicate 
that the first three principal components have eigenval-
ues greater than 1, and together, they account for 74.98% 
of the total variation in the EULs traits (Table  5). This 
suggests that the first three principal components can 
explain a significant portion of the variation in the EULs 
traits. For the first principal component, traits such as 
LP (0.958), LA (0.957), LL (0.932), and LW (0.866) had 
relatively large positive eigenvectors. These traits are 
primarily associated with leaf size. For the second prin-
cipal component, the positive eigenvectors for RC, GC, 
and BC were all higher than 0.9. These traits are primarily 
associated with leaf colour. For the third principal com-
ponent, the positive eigenvector for the LTWR was the 

Table 3 Multiple comparison results for the 6 leaf traits in 13 Eucommia ulmoides populations

Population PL LL LTWR LW LA RC

ZX 17.43 ± 3.09 ab 139.64 ± 25.70 cde 2.22 ± 0.35 bcde 63.26 ± 8.13 c 5187.53 ± 1367.28 de 72.79 ± 6.63 c

QL 13.78 ± 2.52 f 130.93 ± 21.69 hi 2.10 ± 0.27 f 62.36 ± 7.18 c 4896.35 ± 1297.05 e 71.84 ± 5.98 c

MET 16.33 ± 2.82 cd 144.51 ± 15.71 bc 2.20 ± 0.30 cdef 66.58 ± 8.94 b 5631.59 ± 1160.17 bc 68.55 ± 5.72 d

DYQ 16.73 ± 2.80 bc 155.04 ± 22.49 a 2.25 ± 0.33 bcd 69.55 ± 8.18 a 6242.52 ± 1496.79 a 75.25 ± 6.41 b

JYLC 15.40 ± 2.93 de 147.20 ± 21.72 b 2.17 ± 0.25 def 68.00 ± 9.13 ab 5988.95 ± 1606.39 ab 71.70 ± 6.74 c

ZS 16.21 ± 2.73 cd 132.14 ± 25.92 ghi 2.12 ± 0.31 ef 62.40 ± 9.62 c 4906.61 ± 1608.03 e 75.81 ± 11.81 b

RS 16.16 ± 2.38 cd 137.99 ± 17.97 defg 2.10 ± 0.32 f 66.32 ± 7.73 b 5645.79 ± 1120.62 bc 78.65 ± 7.00 a

WF 17.64 ± 5.05 a 136.78 ± 20.13 efgh 2.38 ± 0.33 a 57.66 ± 5.10 d 4490.83 ± 795.50 f 69.48 ± 11.23 d

DGS 14.84 ± 1.76 e 133.66 ± 18.87 efghi 2.17 ± 0.40 def 62.83 ± 10.40 c 5203.73 ± 1289.59 de 68.59 ± 7.11 d

HJ 16.58 ± 3.11 bc 128.17 ± 17.75 i 2.16 ± 0.34 def 59.74 ± 6.14 d 4512.37 ± 946.89 f 62.89 ± 5.89 e

LH 14.68 ± 3.02 e 133.13 ± 17.50 fghi 2.28 ± 0.29 bc 58.86 ± 7.48 d 4461.43 ± 1061.84 f 72.91 ± 6.73 c

LA 15.93 ± 2.59 cd 143.43 ± 18.26 bcd 2.30 ± 0.39 ab 63.42 ± 10.38 c 5456.21 ± 1488.64 cd 75.02 ± 6.19 b

JY 16.67 ± 2.53 bc 139.33 ± 16.25 cdef 2.10 ± 0.29 f 67.03 ± 8.26 b 5619.59 ± 1170.27 bc 75.63 ± 6.68 b

Table 4 Multiple comparison results for the 5 leaf traits in 13 Eucommia ulmoides populations

Population BC GC CRV LP SLDW

ZX 59.37 ± 4.69 bc 72.31 ± 6.18 d 2.61 ± 0.26 abc 390.88 ± 63.28 bcd 1.11 ×  10−4 ± 0.21 ×  10−4 a

QL 56.35 ± 2.47 ef 72.15 ± 5.42 d 2.69 ± 0.19 ab 372.49 ± 59.54 ef 1.00 ×  10−4 ± 0.18 ×  10−4 cde

MET 55.39 ± 3.37 fg 68.65 ± 5.77 e 2.81 ± 0.23 a 396.49 ± 47.85 bc 0.99 ×  10−4 ± 0.18 ×  10−4 cdef

DYQ 60.24 ± 3.86 b 77.67 ± 5.72 b 2.44 ± 0.23 cdef 436.23 ± 50.33 a 0.94 ×  10−4 ± 0.18 ×  10−4 f

JYLC 57.07 ± 3.30 de 75.32 ± 7.16 c 2.53 ± 0.43 bcd 405.39 ± 63.06 b 0.98 ×  10−4 ± 0.17 ×  10−4 def

ZS 59.25 ± 8.07 bc 74.12 ± 12.52 cd 1.91 ± 1.18 h 376.17 ± 68.33 def 0.76 ×  10−4 ± 0.22 ×  10−4 g

RS 61.70 ± 5.86 a 82.02 ± 6.80 a 2.30 ± 0.28 ef 382.39 ± 41.60 cdef 1.10 ×  10−4 ± 0.18 ×  10−4 a

WF 56.17 ± 5.57 ef 68.88 ± 14.11 e 2.23 ± 1.06 fg 365.86 ± 45.97 f 1.04 ×  10−4 ± 0.24 ×  10−4 bcd

DGS 57.90 ± 6.70 cd 65.82 ± 7.62 f 2.68 ± 0.69 ab 378.73 ± 53.71 def 0.96 ×  10−4 ± 0.23 ×  10−4 ef

HJ 54.11 ± 5.17 g 58.36 ± 5.77 g 2.05 ± 1.46 gh 346.56 ± 41.63 g 1.08 ×  10−4 ± 0.18 ×  10−4 ab

LH 58.61 ± 4.92 c 73.14 ± 6.84 cd 2.41 ± 0.74 cdef 386.73 ± 55.48 cde 0.96 ×  10−4 ± 0.19 ×  10−4 ef

LA 58.97 ± 3.08 bc 77.82 ± 6.29 b 2.47 ± 0.23 bcde 389.52 ± 50.10 bcde 0.98 ×  10−4 ± 0.22 ×  10−4 ef

JY 60.26 ± 3.75 b 80.34 ± 7.06 a 2.36 ± 0.26 def 391.38 ± 49.11 bcd 1.05 ×  10−4 ± 0.16 ×  10−4 bc
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largest, indicating that it primarily reflected leaf shape. 
As shown in Fig. 2, the vector lengths of the means of the 
Reshi town, Hunan (RS), Jinyan town, Hunan (JY), Lean 
town, Hunan (LA), Zhexi town, Hunan (ZX), Jiangya for-
est farm, Hunan (JYLC), and Dayongqiao Sub-district, 
Hunan (DYQ) populations along the PC1 axis were rela-
tively large. Among the populations, the DYQ population 
had the longest vector along the PC1 axis.

Correlations between leaf phenotypic traits
 The correlation analysis of the 11 leaf traits (Fig.  3b) 
revealed that out of the 55 pairs of relationships exam-
ined, 18 pairs exhibited a very significant correlation 
(p ≤ 0.01), while 5 pairs showed a significant correlation 
(p ≤ 0.05). Among them, 6 traits related to leaf shape 
and size (LTWR, LL, LP, LW, LA, and PL), as well as 3 
traits related to leaf colour (GC, RC, and BC), exhibited 
an extremely significant positive correlation. PL and LW 
show a significant positive correlation. LW and LTWR 

exhibited a highly significant negative correlation. SLDW 
was significantly negatively correlated with BC and GC.

Effects of geographical factors on the phenotypic traits 
of leaves
The mantel test results indicated a significant correlation 
between altitude and leaf traits (p < 0.05), while latitude 
and longitude did not show significant correlations with 
the traits (Table  6). The correlation analysis revealed a 
significant positive correlation between longitude and 
various traits (LW, LA, SLDW, and LL). Latitude was sig-
nificantly negatively correlated with LW, LA, RC, BC, and 
GC and significantly positively correlated with SLDW. 
Altitude exhibited a significant negative correlation with 
LW, LA, LP, LL, SLDW, and GC (Tables  7 and 8). Both 
the mantel test and correlation analysis results showed 
the predominant influence of altitude on Eucommia leaf 
traits.

Fig. 2 Biplot of the principal components analysis for the 11 leaf traits
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Geographical distance showed a significant correlation 
with climatic distance (r = 0.78, p = 0.001). After control-
ling for climatic factors, some significant relationships 

between leaf traits and geographical factors disappeared 
(Tables  7 and 8). Regarding the relationships between 
latitude, longitude, and SLDW, a significant correlation 
persisted after controlling for the influence of precipi-
tation. In the case of the relationships between altitude 
and leaf traits, after controlling for climatic factors, it was 
found that the significant correlations of SLDW, LL, and 
GC disappeared. However, after controlling for the influ-
ence of precipitation, a significant negative correlation 
with LW and LA was still observed. Furthermore, after 
controlling for the influence of temperature, a significant 
negative correlation with LP still existed.

Effects of climatic factors on leaf phenotypic traits
The mantel test results indicated significant correlations 
between climate and leaf traits (p < 0.01) (Table 6). The cor-
relation analysis revealed that temperature and precipi-
tation had a significant impact on leaf traits (Fig. 3a). For 
instance, LA, LP, LL, and LW decreased with an increase 
in mean diurnal range (BIO2) and isothermality (BIO3) 
but increased with an increase in annual mean tempera-
ture (BIO1), mean temperature of wettest quarter (BIO8), 
mean temperature of driest quarter (BIO9), precipitation 
of wettest quarter (BIO16), precipitation of warmest quar-
ter (BIO18), and precipitation of coldest quarter (BIO19). 

Table 5 Principal component analysis of the 11 leaf traits

leaf length (LL), petiole length (PL), length to width ratio of leaf (LTWR), leaf 
width (LW), leaf area (LA), red component of leaf (RC), blue component of leaf 
(BC), green component of leaf (GC), chlorophyll reference value (CRV), leaf 
perimeter (LP), specific leaf dry weight (SLDW)

Traits PC1 PC2 PC3

LL 0.932 -0.077 0.284

PL 0.453 -0.144 0.521

LTWR 0.079 -0.123 0.912

LW 0.866 0.033 -0.461

LA 0.957 -0.002 -0.214

RC -0.010 0.978 0.074

BC 0.024 0.909 0.217

GC 0.188 0.929 0.067

CRV 0.292 -0.285 0.087

LP 0.958 -0.020 0.031

SLDW -0.134 -0.265 0.313

Eigen value 3.803 2.841 1.604

Contribution rate 34.573 25.825 14.585

Cumulative Contribution rate 34.573 60.399 74.984

Fig. 3 Correlation between leaf traits and correlation between leaf traits and climate. a Correlations between 11 leaf traits and climatic factors. b 
Correlations among leaf traits. Green color represents negative correlation, orange color represents positive correlation, and the darker the color, 
the stronger the correlation
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RC and GC were positively correlated with BIO9, BIO16, 
BIO18, and BIO19. RC, GC, and BC were negatively corre-
lated with BIO2 and BIO3. SLDW was positively correlated 
with temperature annual range (BIO7). Among individual 
climate factors, seven variables explained a significant por-
tion of the leaf trait variation: BIO1, BIO2, BIO16, and 
BIO19 explained variation in seven leaf traits, while BIO3 
and BIO9 explained variation in eight leaf traits.

Discussion
Leaf phenotypic variation
Studying the correlations between various leaf traits is ben-
eficial for understanding the adaptive strategies of leaves in 
different environments [35]. In this study, traits character-
izing leaf size, including LL, LTWR, LP, LA, LW, and PL, 
showed a significant positive correlation (Fig. 3b). As leaves 
grow larger, plants need to acquire more light energy, hence 
requiring longer petioles to reduce mutual shading within 
the individual [36]. However, both LW and LTWR exhib-
ited a highly significant negative correlation while SLDW 
showed a significant negative correlation with BC and GC. 

These negative correlations reflect the trade-off strategies 
employed by plants in different environments [37].

The analysis of variation in eleven leaf phenotypic traits 
of E. ulmoides revealed coefficients of variation (CV) 
ranging from 9.00 to 30.88%, with an average of 17.45% 
(Table  1). These values are similar to those found in 
studies on Acer mono Maxim (18.07%) [38] and Davidi-
ain volucrata (16.22%) [39]. Notably, in this study, we 
observed the highest CV for the CRV (30.88%), followed 
by leaf area (26.73%). This differs from the findings of 
Meng et  al., where leaf area exhibited the highest CV 
(20.68%) and CRV showed the lowest CV (4.57%) [31]. 

Table 6 Mantel test analyzes the influence of geography, 
climate, latitude, longitude and altitude distance on the 
phenotypic distance of Eucommia ulmoides leaves

Climatic
distance

Geographical
distance

Longitude 
distance

Latitude 
distance

Altitude
distance

Leaf 
pheno-
typic 
dis-
tance

r = 0.51,
p = 0.004

r = 0.33,
p = 0.048

r = 0.02,
p = 0.435

r = 0.28,
p = 0.074

r = 0.32,
p = 0.021

Table 7 Correlation coefficient between 6 leaf traits and geographical factors after controlling climate factors

** means p < 0.01, * means p < 0.05, LON: longitude, LAT: latitude, ALT: altitude, 1: temperature-related factors (BIO1, BIO2, BIO3, BIO7, BIO8, BIO9), 2: Precipitation 
related factors (BIO16, BIO18, BIO19), petiole length (PL), leaf width (LW), leaf area (LA), leaf perimeter (LP), length to width ratio of leaf (LTWR), specific leaf dry weight 
(SLDW)

PL LW LA LP LTWR SLDW

LON 0.169 0.175* 0.199* 0.057 0.011 0.322**

LON (Control 1) 0.182 0.011 0.018 -0.084 0.016 -0.030

LON (Control 2) 0.095 -0.010 -0.036 -0.109 -0.017 0.306**

LON (Control 1 and 2) -0.097 -0.110 -0.180 -0.266 -0.175 0.020

LAT 0.008 -0.217* -0.240** -0.167 0.060 0.197*

LAT (Control 1) -0.183 -0.024 -0.047 0.066 -0.022 -0.007

LAT (Control 2) 0.085 -0.062 -0.066 0.006 0.126 0.284**

LAT (Control 1 and 2) -0.106 -0.034 -0.070 -0.055 -0.018 -0.153

AL -0.007 -0.357** -0.354** -0.204* 0.141 -0.207*

AL (Control 1) 0.059 -0.087 -0.060 -0.187* 0.010 0.097

AL (Control 2) 0.095 -0.305** -0.262** -0.141 0.223 -0.131

AL (Control 1 and 2) 0.097 -0.104 -0.064 -0.124 0.086 0.144

Table 8 Correlation coefficient between 5 leaf traits and 
geographical factors after controlling climate factors

** means p < 0.01, * means p < 0.05, LON: longitude, LAT: latitude, ALT: altitude, 1: 
temperature-related factors (BIO1, BIO2, BIO3, BIO7, BIO8, BIO9), 2: Precipitation 
related factors (BIO16, BIO18, BIO19), leaf length (LL)red component of leaf 
(RC), blue component of leaf (BC), green component of leaf (GC), chlorophyll 
reference value (CRV)

LL RC BC GC CRV

LON 0.186* 0.029 -0.005 0.150 0.018

LON (Control 1) 0.030 -0.068 -0.140 -0.082 -0.151

LON (Control 2) -0.007 -0.373 -0.363 -0.371 -0.036

LON (Control 1 and 2) -0.241 -0.100 -0.218 -0.150 -0.023

LAT -0.155 -0.296** -0.240** -0.326** -0.168

LAT (Control 1) -0.033 -0.040 -0.006 -0.043 0.135

LAT (Control 2) 0.066 -0.151 -0.191 -0.077 -0.009

LAT (Control 1 and 2) -0.052 0.074 0.021 0.046 -0.110

ALT -0.242** -0.108 -0.099 -0.250** -0.156

ALT (Control 1) -0.094 0.136 0.087 0.097 -0.118

ALT (Control 2) -0.128 0.123 0.091 0.035 -0.129

ALT (Control 1 and 2) -0.026 0.017 -0.039 -0.042 -0.052
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Chlorophyll is a green pigment in plants, and its content 
directly influences photosynthesis [40]. The concentra-
tion of chlorophyll is primarily influenced by atmospheric 
and soil factors [41]. This variation in the CRV may be 
attributed to the more diverse natural habitats of the E. 
ulmoides populations studied here compared to those 
in the germplasm resource base. This increased habitat 
diversity likely contributed to the observed higher varia-
tion in the CRV.

In this study, rich variation was observed in traits rep-
resenting leaf size (Table  1), which aligns with previous 
findings on leaf variation within natural populations of E. 
ulmoides [32]. Leaf size directly influences a plant’s abil-
ity to capture light and acquire carbon [42], and it can 
also reflect the content of active components within the 
leaf [8, 9]. Additionally, morphological scans of E. ulmo-
ides leaves revealed a diverse range of variations in leaf 
quality traits, particularly the leaf base, the leaf tip, and 
leaf shape (Fig. 1). Among these, leaf shape exhibits the 
highest degree of variation, encompassing eight distinct 
types, including lanceolate, ovate, elliptic, and inverse 
lanceolate forms and others. Changes in leaf shape pro-
vide a visual representation of the plant’s adaptation to 
environmental shifts; for instance, oval-shaped leaves 
exhibit higher photosynthetic efficiency and water use 
efficiency than lanceolate leaves [6, 7]. As E. ulmoides 
serves both medicinal and dietary purposes, further 
research is needed to ascertain whether leaf shape and 
size can serve as indicators of the content of active com-
ponents within EULs.

Sources of leaf phenotypic variation
The 11 leaf phenotypic traits of E. ulmoides exhibit sig-
nificant variations both intra- and inter-populations 
(Table  2), which is consistent with findings for Litsea 
coreana Levl. var. sinensis [10] and Carpinus tschonoskii 
[43]. The average coefficient of variation for leaf pheno-
typic traits across the 13 E. ulmoides populations was 
20.77%, which is lower than that of Tetracentron sin-
ense (46.69%) [44] and Phoebe chekiangensis (Lauraceae) 
(41.43%) [45] but higher than that of Azadirachta indica 
(11.89%) [46]. In comparison with these other woody 
plants, E. ulmoides populations show a moderate degree 
of leaf phenotypic variation, with most attributable to 
intra-population variation. Hamrick et al. suggested that 
outcrossing plants can mitigate the impact of genetic drift 
on genetic structure, facilitating the maintenance of low 
levels of genetic differentiation inter-populations [47]. E. 
ulmoides is a dioecious plant. From the 1950s to the late 
1980s, traditional bark harvesting for medicinal purposes 
led to severe over-exploitation of E. ulmoides resources, 
resulting in their current scarcity and fragmented dis-
tribution [48]. Consequently, cross-pollination between 

populations of E. ulmoides is relatively challenging, 
thereby providing conditions conducive to genetic differ-
entiation inter-populations.

Under natural conditions, E. ulmoides seedlings take 
7–8 years to flower, resulting in limited seed production 
[49]. E. ulmoides seeds face persistent challenges such as 
low germination rates, poor seedling development, and 
a loss of germination capacity in the second year [50]. 
This leads to slow self-renewal intra-populations, pro-
moting genetic differentiation intra-populations. Field 
investigations have revealed that E. ulmoides populations 
are widely distributed, primarily in mountainous areas, 
which increases the difficulty of inter-population pollina-
tion. Additionally, E. ulmoides fruits are relatively heavy 
(with a weight of 4.24–13.42 g per hundred seeds) [32], 
making long-distance seed dispersal challenging. Some 
populations show high plant density, intensifying genetic 
exchange intra-populations and thereby increasing the 
level of differentiation intra-populations. Consequently, 
intra-population variation serves as the primary source 
of leaf variation in E. ulmoides populations.

Relationship between leaf phenotype and environmental 
factors
In this study, the mantel test results revealed significant 
correlations between altitude and leaf traits (Table  6). 
Traits representing leaf size, such as LW, LA, and LP, 
decreased with increasing altitude (Tables 7 and 8), con-
sistent with Ternstroemia lineata [14] and Salix triandra 
L. [51]. In high-altitude, low-temperature environments, 
smaller leaves incur lower respiration and transpira-
tion costs, reducing the plant’s maintenance expenditure 
[52]. Additionally, at higher altitudes, regions experience 
higher wind speeds, and smaller leaves are more wind-
resistant than larger leaves [22]. This aligns with the 
results of the PCA (Fig. 2), where populations in lower-
altitude regions (RS, JY, LA, ZX, JYLC, and DYQ) had 
larger leaves than populations in higher-altitude regions 
(ZS, LH, WF, DGS, HJ, QL), with plants in DYQ exhibit-
ing the largest leaves. The results of multiple analyses also 
corroborate this conclusion (Tables  3 and 4). Further-
more, latitude and longitude show no significant correla-
tion with the traits, indicating that the 11 leaf phenotypic 
traits do not exhibit a consistent geographic variation 
pattern along latitudinal and longitudinal gradients.

Climate has a significant impact on the leaf phenotypic 
traits (p < 0.01). LA, LP, LL, and LW are positively corre-
lated with BIO1, BIO8, BIO9, BIO16, BIO18, and BIO19, 
indicating that in regions with higher temperatures and 
greater precipitation, leaves tend to be larger (Fig.  3a). 
This finding is consistent with those for Litsea core-
ana var. sinensis [10] and Tetracentron sinense Oliv [15]. 
Larger leaves have thicker boundary layers, which slow 



Page 10 of 14Gong et al. BMC Plant Biology          (2023) 23:562 

sensible heat exchange with the surrounding air. [16]. All 
leaves cool themselves through transpirational water loss. 
When water supply is insufficient, plants reduce leaf area 
to minimize water consumption and prevent the leaf sur-
face from becoming excessively hot [18, 53]. Therefore, 
in regions with lower altitudes, higher temperatures, and 
higher precipitation, the leaves of E. ulmoides tend to be 
larger.

Protection and management strategy
Based on the results of this study and considering the 
current shortage of E. ulmoides resources, the follow-
ing conservation and management strategies are pro-
posed: (1) Prioritize the protection of high-quality 
germplasm resources. Using high coefficients of varia-
tion and low phenotypic differentiation coefficients as 
selection criteria for desirable traits is more reliable than 
other approaches. Additionally, high-quality germplasm 
resources may be more prevalent in regions with lower 
altitudes, higher temperatures, and lower precipitation. 
This could lead to a modification of sampling strate-
gies. (2) E. ulmoides is an endemic monotypic tree spe-
cies in China with a wide range of adaptability and clear 
geographical advantages. As the population distribution 
gradually shrinks, establishing germplasm resource pro-
tection through individual transplants is recommended 
to facilitate gene exchange. (3) Reducing human activities 
is a crucial measure for strengthening the protection of 
existing resources and habitats.

Conclusions
The leaf phenotypic variation in different popula-
tions of E. ulmoides is abundant, with a diverse range 
of morphological variations, including in leaf shape. 
Significant differences in the variation in 11 leaf phe-
notypic traits existed both in intra- and inter-popu-
lations, exhibiting a gradient pattern with respect to 
altitude. Regarding climatic factors, the leaf pheno-
typic variation is closely associated with local climate 
variables such as temperature and precipitation at the 
sampling sites. The variability in E. ulmoides leaf traits 
primarily arises from intra-population variation. In the 
future, the collection of germplasm resources should 
focus on selecting representative individual samples 
from populations in low-altitude and warm regions. 
In summary, E. ulmoides exhibits rich leaf phenotypic 
variation, showing strong adaptability to different 
environments. This variation is conducive to expand-
ing its range of adaptation and supports the breeding, 
utilization, and evaluation of E. ulmoides germplasm 
resources.

Materials and methods
Plant materials
 In September and October 2022, a total of 134 female 
tree samples were selected from 13 natural populations. 
The basic information on the populations and sampling 
sites can be found in Fig. 4; Table 9. Within each popu-
lation, the distance between sampled trees was set to 30 
m to reduce their relatedness. For each tree, 10 fresh 
and mature leaves without obvious diseases or pests 
were collected from the middle branches in four direc-
tions (east, south, west, and north). These leaves were 
used for measuring morphological traits [54].

Collection of environmental data
Geographical data (longitude, latitude, and altitude) of 
the populations were obtained using GPS 315 (Magel-
lan). Climate data were obtained from WorldClim v2.1 
(http:// www. world clim. org/), which provides global 
meteorological data in raster format [55]. A total of 19 
meteorological variables were extracted for the corre-
sponding populations using ArcGIS 10.8. Correlation 
analysis was performed to remove strongly correlated 
factors (r2 ≥ 0.9) among the meteorological variables 
[56]. Finally, 9 climatic factors and 3 geographic factors 
were selected, and the results are shown in Table 10.

Measurement of leaf phenotype
10 leaves were selected from each tree to measure their 
11 phenotypic traits. The LA-S Plant Leaf Image Ana-
lyzer (Hangzhou Wanshen Detection Technology Co., 
Ltd.) was used to measure the following leaf phenotypic 
traits: LL, LW, LA, RC, BC, GC, CRV, and LP. RGB is a 
color model that describes colors using the intensities 
of red, green, and blue primary colors. In this study, the 
RGB values were used to describe the color character-
istics of the leaves [31]. The PL was measured using a 
vernier caliper. The SLDW is the ratio of leaf dry mass 
to leaf area. According to the Chinese Pharmacopoeia 
(2020 edition), fresh leaves were dried to constant 
weight at low temperature, and then the dry weight 
of leaves was measured by one-thousandth electronic 
balance.

Method statement
The investigation and collection of E. ulmoides leaf sam-
ples in this study have been approved by the local regula-
tory authorities. The mature leaves of E. ulmoides were 
identified by Professor Boru Liao from Jishou univer-
sity as belonging to the genus Eucommia in the family 
Eucommiaceae. A voucher specimen has been deposited 

http://www.worldclim.org/
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Fig. 4 Eucommia ulmoides (E. ulmoides) sampling map. a The gray area in the figure represents the geographical range where the sampling 
sites of the 13 natural populations of E. ulmoides are located, b Enlarged figure of sampling sites of 8 natural populations of E. ulmoides in Hunan 
Province, c Adult tree of E. ulmoides natural population. The specific locations are as follows: Lianghe town, Gansu (LH); Wufeng town, Hubei 
(WF); Hejia town, Hubei (HJ); Donggongsi town, Guizhou (DGS); Zhongshan town, Guizhou (ZS); Jiangya forest farm, Hunan (JYLC); Jinyan town, 
Hunan (JY); Reshi town, Hunan (RS); Miaoertan town, Hunan (MET); Qianling town, Hunan (QL); Zhexi town, Hunan (ZX); Lean town, Hunan (LA); 
Dayongqiao Sub-district, Hunan (DYQ). (The maps are created by authors using ArcGIS software)

Table 9 Population, number of trees sampled and geographic factors for 13 natural populations Eucommia ulmoides 

Population Number of Longitude  (°E, LON) Latitude  (°N, LAT) Altitude  (m, ALT)

LH (Lianghe town, Gansu) 10 105.88 33.17 1073-1098

WF (Wufeng town, Hubei) 10 110.58 30.09 930–1430

HJ (Hejia town, Hubei) 14 110.60 32.94 420–780

DGS (Donggongsi town, Guizhou) 10 106.88 27.73 924–978

ZS (Zhongshan town, Guizhou) 7 106.03 27.00 1221-1389

JYLC (Jiangya forest farm, Hunan) 18 110.77 29.52 140–360

JY (Jinyan town, Hunan) 8 110.71 29.14 210-610

RS (Reshi town, Hunan) 10 111.25 29.37 250–280

MET (Miaoertan town, Hunan) 10 109.48 28.87 690–720

QL (Qianling town, Hunan) 10 109.68 28.80 470–570

ZX (Zhexi town, Hunan) 7 111.17 28.34 110–280

LA (Lean town, Hunan) 10 111.60 28.10 208–387

DYQ (Dayongqiao Sub-district, Hunan) 10 110.46 29.14 216–232
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in the Herbarium of the College of Biology and Environ-
mental Sciences, Jishou university, with voucher number 
JSU-EU116.

Statistical analysis
Statistical analysis was performed to calculate the maxi-
mum, minimum, mean ( 

−

X ), standard deviation (SD), and 
coefficient of variation (CV) for all 11 phenotypic traits of 
the leaves. CV was calculated as:

The linear model used for conducting nested analysis of 
variance for leaf traits is as follows:

where µ is the overall average, αi is the random effective 
value of the ith population, βj(i) is the random effective 
value of the jth tree in the ith population and ǫ(ij)n is the 
experimental error of the ijnth observation value, which 
is the variation within trees [57].

The formula for calculating the population differentia-
tion coefficient is:

where σ 2
i  is the variance among populations and σ 2

j(i) is 
the variance within the population.

After the nested analysis of variance, multiple com-
parison analysis was conducted using the Duncan 
method to compare the specific differences in leaf 
traits inter-populations [58]. Pearson correlation anal-
ysis was used to investigate the correlation between 
leaf phenotypic traits and the influence of climate and 
geographical factors on leaf trait variation. After con-
trolling climate factors by partial correlation analysis, 
the correlation between geography and leaf traits was 
studied. The data were standardized by Z-sore, and the 

CV = (SD/
−

X)× 100%

Yijn = µ+ αi + βj(i) + ǫ(ij)n

Vst =
σ 2
i

σ 2
i + σ 2

j(i)

× 100%

PCA was carried out after the influence of dimensions 
was eliminated. PCA was used to condense phenotypic 
traits into several principal components and explore 
the structure and relationships of leaf traits inter-pop-
ulations. The data statistics were analyzed using Excel 
2016, SPSS 26.0, and R 4.1.3 software.
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Table 10 Climatic and geographic factors

Name Description Name Description

LON (°E) Longitude BIO7 (°C) Temperature annual range

LAT (°N) Latitude BIO8 (°C) Mean temperature of wettest quarter

ALT (m) Altitude BIO9 (°C) Mean temperature of driest quarter

BIO1 (°C) Annual mean temperature BIO16 (mm) Precipitation of wettest quarter

BIO2 (°C) Mean diurnal range BIO18 (mm) Precipitation of warmest quarter

BIO3 Isothermality BIO19 (mm) Precipitation of coldest quarter
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