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Abstract
Background Rhamnus utilis Decne (Rhamnaceae) is an ecologically and economically important tree species. 
The growing market demands and recent anthropogenic impacts to R. utilis forests has negatively impacted its 
populations severely. However, little is known about the potential distribution of this species and environmental 
factors that affect habitat suitability for this species. By using 219 occurrence records along with 51 environmental 
factors, present and future suitable habitats were estimated for R. utilis using Maxent modeling; the important 
environmental factors affecting its distribution were analyzed.

Results January water vapor pressure, normalized difference vegetation index, mean diurnal range, and precipitation 
of the warmest quarter represented the critical factors explaining the environmental requirements of R. utilis. The 
potential habitat of R. utilis included most provinces from central to southeast China. Under the climate change 
scenario SSP 245, Maxent predicted a cumulative loss of ca. 0.73 × 105 km2 in suitable habitat for R. utilis during 2041–
2060 while an increase of ca. 0.65 × 105 km2 occurred during 2081–2100. Furthermore, under this climate change 
scenario, the suitable habitat will geographically expand to higher elevations.

Conclusions The findings of our study provide a foundation for targeted conservation efforts and inform future 
research on R. utilis. By considering the identified environmental factors and anticipating the potential impacts 
of climate change, conservation strategies can be developed to preserve and restore suitable habitats for R. utilis. 
Protecting this species is not only crucial for maintaining biodiversity but also for sustaining the economic benefits 
associated with its ecological services.
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Introduction
Climate is one of the most crucial elements affecting 
plant life cycles and fitness [1, 2], niche construction [3, 
4], species coexistence [5], community composition [6], 
and the geographic distribution of species [7, 8]. The 
Fifth Assessment Report of the IPCC states that global 
climate warming will continue indefinitely, and by 2100s 
the mean temperature of the Earth will increase by 
0.3–4.5  °C compared with that during 1986–2005 [9]. 
Changes in the effects of climate change on the world’s 
biota are creating a critical issue for scientists, conser-
vationists, and decision-makers [10]. Plant species are 
unlikely to be able to migrate sufficiently quickly. They 
will, therefore, have to respond in situ, e.g. through local 
adaptation, which may often fail [11]. Therefore, in order 
for forest managers to assess the susceptibilities of eco-
systems and species to climate change, it is critical to 
study how climate change affects the spatial distribution 
of species on the landscape.

One method of predicting the suitable geographic 
range and ecological needs of a species is a Species Dis-
tribution Model (SDM) [8]. There are various kinds of 
SDMs, such as CLIMEX [12], maximum entropy (Max-
ent) [7], Genetic Algorithm for Rule-set Production [13–
15], Ecological Niche Factor Analysis [16], and bioclimate 
envelope [17], which are used to forecast the geographic 
distribution, ecological reactions, and ecological needs of 
various species. Among the various species distribution 
models, Maxent stands out as a leading choice for sev-
eral compelling reasons. This general-purpose machine 
learning method is designed to require only information 
on the presence of species, not their absence, a feature 
that elegantly solves the common problem of gather-
ing absence data [18]. Maxent’s predictive capability is 
renowned for its accuracy, robustness, and efficiency, 
often considered unparalleled in the field of habitat mod-
eling [19]. Its ability to handle both linear and nonlinear 
relationships between species and environmental fac-
tors allows for a more nuanced understanding of spe-
cies’ ecological niches. Furthermore, Maxent’s flexibility 
in accommodating various types of data, its resilience to 
small sample sizes, and its powerful algorithms for iden-
tifying key environmental predictors make it a preferred 
tool for ecologists and conservationists [20].

Rhamnus utilis Decne (Rhamnaceae) is an ecologically 
and economically important shrub species occurring in 
forests, thickets, mountains, and hills below an eleva-
tion of 3300  m [21]. Based on the description in Flora 
of China, this species occurs in more than 15 provinces 
in southern China [21], and it thrives on light sandy to 
medium loamy soil that is moist and well-drained and 
has an important effect on boosting the water retention 
capacity of soils and decreasing soil loss to surface run-
off [21]. The fruits of R. utilis are a valuable resource, 

containing high levels of protein and a yellow pigment 
that is used in the manufacture of lubricating oil, printing 
ink, and soap [22, 23]. Furthermore, several pharmaceuti-
cal research studies have shown that the bark, leaves, and 
seeds of this species have anti-inflammatory, and anti-
allergic properties [24, 25].

Given the economic and ecological importance of this 
species, understanding how a changing climate will affect 
its favorable habitat is critical. Shifts in temperature, pre-
cipitation, and other climatic factors can have profound 
impacts on the species’ survival and distribution, alter-
ing the availability of resources, affecting reproductive 
strategies, and influencing interactions with other species 
within the ecosystem. Nevertheless, the current under-
standing of the suitable geographic range of this species 
has been limited to the records in Flora of China, which 
only documents the provinces without specific distribu-
tion locations or the specific environmental conditions 
that influence habitat appropriateness.

In the present study, Maxent modeling was used to 
project the potential geographical ranges of this species 
by using database recent historical and geo-referenced 
occurrence records as well as to evaluate habitat suitabil-
ity and important environmental factors that shape its 
distribution. The objectives of the present study include: 
(1) modeling the potential suitable habitat for this species 
under current and further climate change scenarios, (2) 
identifying important environmental factors that shape 
its distribution; and (3) using projected future climate 
conditions to quantify the changes in its geographical 
ranges in a way that will help researchers to create suit-
able habitat.

Results
Current potential habitat and model accuracy
The potential distribution of R. utilis was accurately 
predicted by the Maxent model as evidenced by high 
AUC values of 0.978 ± 0.001 (training) and 0.959 ± 0.012 
(testing), and TSS scores of 0.865 ± 0.025 (training) and 
0.842 ± 0.034 (testing). Areas in provinces such as south-
eastern Gansu, southern Shanxi, eastern and central to 
western Sichuan, Sichuan, northwestern Henan, western 
Chongqing, eastern Hubei, southern Jiangxi, southeast 
Fujian, central to northern Zhejiang, and northern Tai-
wan were appropriate for the growth of R. utilis (Fig. 1). 
The current areas of moderately and highly suitable habi-
tat for R. utilis encompasses ca. 3.16 × 105 and 1.18 × 105 
km2, respectively, accounting for 3.41% and 1.28% of Chi-
na’s land area.

Important environmental factors
Based on the contributions of the various environmen-
tal factors to the Maxent model (Table 1), the main fac-
tors contributing to the R. utilis distribution model 
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were VAPR01 (37.7% of variation), NDVI (27.3%), BIO2 
(15.0%), and BIO18 (4.5%) (Table  1), yielding a cumula-
tive contribution as high as 84.5% (Table 1). In contrast, 
additional factors had smaller contributions, indicating 
their restricted impact on the distribution of appropriate 
R. utilis habitat (Table 1).

The response curves (marginal responses generated 
through keeping the remaining bioclimatic factors in the 
mean sample values) of the four critical factors in Maxent 
for examining the R. utilis climatic preference are shown 
in Fig. 2. Overall, VAPR01 and BIO18 showed a nonlinear 
logistic response pattern, with the probability of presence 
increasing when VAPR01 < 0.2 KPa and BIO18 > 250 mm; 
in contrast, NDVI and BIO2 both showed an increasing 
and then decreasing pattern, with the maximum prob-
ability of presence occurring at 0.4 and 10.6 °C (Fig. 2).

Future changes in suitable habitat area
Under the SSP245 climate change scenario, Maxent pre-
dicted that R. utilis would lose a cumulative amount of 
approximately 0.73 × 105 km2 in suitable habitat area dur-
ing 2041–2060. This loss mainly occurred in Guangxi, 
Guangdong, Fujian, eastern Sichuan, southern Gansu, 
and the Ningxia Hui Autonomous Region (Fig.  3). In 
contrast, under the same climate change scenario and 
during 2081–2100, Maxent predicted a cumulative gain 
of approximately 0.65 × 105 km2 in suitable habitat area. 
The increase mainly occurred in central Sichuan Prov-
ince; at the same time, Maxent predicted an area loss of 
approximately 0.08 × 105 km2 in southern Gansu and the 
Ningxia Hui Autonomous Region. Upon careful exami-
nation, we found that the areas of increase were mainly 
concentrated in high-altitude regions, while the areas of 
decrease were primarily located in low-altitude regions.

Fig. 1 Predicted potential distribution map of Rhamnus utilis Decne under current climate scenario. 1. Gansu; 2. Shaanxi; 3. Henan; 4. Jiangsu; 5. Anhui; 6. 
Hubei; 7. Chongqing; 8. Sichuan; 9. Tibet; 10. Yunnan; 11. Guizhou; 12. Hunan; 13. Jiangxi; 14. Zhejiang; 15. Fujian; 16. Taiwan; 17. Guangdong; 18. Guangxi; 
19. Ningxia Hui Autonomous Region; 20. Shanxi; 21. Hebei; 22. Beijing; 23. Shandong; 24. Shanghai; 25. Qinghai; 26. Liaoning
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Discussion
Understanding the distribution of a species is one of the 
prerequisites for employing it during ecosystem resto-
ration [7, 14, 17]. Although R. utilis is a fast-growing 
species that has been frequently applied in the ecologi-
cal rehabilitation of temperate forests and riverbanks in 
eastern and central China, the influences of alterations 
in climate on its distributions have never been evaluated. 
Our current work modeled the distributions of R. utilis 
in the present and future climatic contexts, and thus will 
provide a reference for using this species to allowing land 
managers to develop improved forest management prac-
tices and species protection strategies.

Distribution and prediction of R. utilis
Our results demonstrate that R. utilis has an extensive 
current distribution, with suitable habitat existing in the 
provinces of Jiangsu, Jiangxi, Shaanxi, Shanxi, Sichuan, 
Fujian, Gansu, Guizhou, Hebei, Henan, Hubei, Hunan, 
and Zhejiang. The results of our model suggested that 
under present climate conditions, moderately and highly 
suitable habitat for R. utilis spanned around 14.82 × 105 

km2. Our results are generally consistent with previous 
reports in Flora of China [21]. In addition, some areas 
of Yunnan, and Ningxia Hui Autonomous Region were 
also shown to be suitable for this species. However, it is 
important to note that these predictions do not necessar-
ily indicate that these places are suitable for its growth, 
and further studies with relevant field verification would 
be needed to confirm this conclusion.

Environmental factors affecting R. utilis distribution
Factors affecting the geographic distribution of spe-
cies are a critical issue in ecology and evolution. Of the 
18 environmental factors incorporated into our model, 
VAPR01, NDVI, BIO2 and BIO18 (Table  1) yielded 
cumulative contributions of as high as 84.5%. How-
ever, it’s important to acknowledge that when creating 
the response curve, all bioclimatic variables, except for 
the focal factor, were maintained at the average sample 
value (i.e., other variables were kept stable). In reality, 
these variables do not remain fixed at their average val-
ues. Changes in the appropriateness of responses due to 
interactions between these factors can take unexpected 
directions that marginal response curves might not fully 
reveal. This is because natural conditions don’t keep 
other factors at their averages; they are influenced by var-
ious interactions. Nevertheless, our method enabled us to 
explore the relationships between specific factors and the 
likelihood of identifying suitable habitat [15]. The prob-
ability of presence of R. utilis peaked when VAPR01 ≥ 0.2 
KPa. This means that the plant is able to grow and sur-
vive best in areas with relatively high humidity. Water 
vapor pressure is a measure of the amount of water vapor 
in the air, and it plays a critical role in determining the 
overall moisture content of an ecosystem [26]. For R. uti-
lis, a water vapor pressure of 0.2 KPa or greater POSSI-
BLY COULD provides the ideal level of humidity for the 
plant to grow and thrive [26]. This can help to ensure that 
the plant has access to the moisture it needs to survive, 
while also providing the ideal conditions for photosyn-
thesis, growth, and reproduction [26, 27].

The effect of vegetation indices, i.e. NDVI, also indi-
cated these indices have a significant contribution to 
the existence of R. utilis, demonstrating that NDVI has 
the capacity to influence the distribution of R. utilis. 
This might be due to the fact that the majority of R. uti-
lis populations are found in forests, thickets, mountains, 
and hills below an elevation of 3300 m [21]. In addition, 
past research has shown that a link exists between NDVI 
and features of the canopy including net primary produc-
tion [28], the percentage of absorbed photosynthetically 
active radiation [29], the leaf area index [30], and evapo-
transpiration [30, 31]. However, the habitat parameters 
will need to be studied in detail in future to draw a clear-
cut conclusion.

Table 1 Percentage contributions and permutation importance 
of the variables included in the Maxent models for Rhamnus utilis
Code Environmental 

Variables
Contribution% Permutation 

importance
VAPR01 Water vapor pressure 

of January
37.7 32.8

NDVI Normalized differ-
ence of vegetation 
index

27.3 25.5

BIO2 Mean diurnal range 15 11.7
BIO18 Precipitation of 

warmest quarter
4.5 10.3

SLOPE Slope degree 4.3 3.1
VAPR07 Water vapor pressure 

of July
2.4 2.2

ASPECT Aspect 1.8 1.6
ELEV Elevation 1.7 5.8
SRAD11 Solar radiation of 

November
1.2 1.5

BIO14 Precipitation of dri-
est month

0.7 1.5

BIO3 Isothermality 0.7 0.6
CLAY Soil clay percentage 0.5 0.6
SAND Soil sand percentage 0.5 1
SRAD4 Solar radiation of 

April
0.5 0.1

BIO7 Temperature annual 
range

0.4 0.4

SRAD8 Solar radiation of 
August

0.4 1

SRAD9 Solar radiation of 
September

0.3 0.2

BUCK Soil buck density 0.2 0.2
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BIO2 (mean diurnal range) and BIO18 (precipitation of 
warmest quarter) also are important environmental fac-
tors that affect the presence of R. utilis. The mean diurnal 
range (BIO2) indicates the variation in temperature over 
a day, and changes in temperature may have a significant 
impact on plant growth, especially photosynthesis and 
respiration of the plant, contributing to nutrient buildup 
[32]. In addition, drought stress has been reported to 
result in a significant decrease in plant height, leaf area, 
the number of branches produced, and photosynthesis of 
R. utilis. [33] Furthermore, water availability may directly 
affect the emergence and development of seedlings [34]. 
To mitigate the negative impact of drought stress on R. 
utilis, it is important to manage water resources in a sus-
tainable manner and to conserve natural water sources 
that support the growth of this species. Additionally, 
efforts to enhance the drought tolerance of R. utilis, such 
as through breeding programs or the use of drought-tol-
erant cultivars, can help to ensure its persistence in areas 
that are prone to drought.

Impact of climate change on the distribution of Rhamnus 
utilis Decne and related forest ecosystems
Global warming will result in some species migrating to 
high latitudes or elevations [7, 15], while other species 

may use physiology or phenology adapt to climate change 
[35]. Our study adopted the climate change scenario 
SSP 245. This scenario is an intermediate scenario that 
assumes that CO2 emissions begin to decline in 2045, and 
by 2100, they will be virtually half of what they were in 
2050. The SSP 245 scenario also requires a peak in meth-
ane (CH4) emissions by 2050 and that they should then 
decline to about 75% of 2040 levels; meanwhile, by 2040 
sulphur dioxide (SO2) emissions should fall to around 
20% of 1980–1990 levels [See ref [36] and references 
therein]. Our result predicted that, during 2041–2060, 
the cumulative loss of appropriate habitat for R. utilis 
should be ca. 2.0 × 105 km2 compared to current condi-
tions. Consistent with former studies (e.g. ref. 37,38), the 
lost areas would mainly occur at low elevations, with the 
increased areas would mainly occur at high elevations. 
Such result may indicate R. utilis would be unable to 
tolerate continuously increasing temperatures. Further-
more, changes of precipitation and temperature regimes 
may induce a phenological shift of R. utilis species, thus 
having indirect effects on the dependent flora and fauna. 
Additionally, such alterations would adversely affect 
numerous terrestrial insects, birds, and mammals with 
a direct or indirect dependence on R. utilis seeds, flow-
ers, and fruits. In contrast, during 2081–2100, Maxent 

Fig. 2 Response curves for important environmental predictors in the species distribution model for Rhamnus utilis
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predicted the cumulative gains for R. utilis would be ca. 
0.73 × 105 km2 in appropriate habitats compared to cur-
rent conditions. This, as state above, may be due to the 
scenario we selected, i.e. a predicted decline in CO2 and 
CH4 in the 2100s.

Implications for conservation plans
According to our model predictions, the potential suit-
able habitat of R. utilis increased in high elevations under 
future climate scenarios. Ensuring continuous monitor-
ing and regular updating of climate models is essential 
for the accuracy and sensitivity of these predictions. We 
propose that R. utilis plantations in appropriate habitats 
could serve as a preservation strategy, allowing the spe-
cies to respond to future climate change. In addition, our 
findings might be used to categorize natural habitats of 
R. utilis, ranging from low to high risk for this species, 

based on predicted climate change during conserva-
tion planning, In other words, we should only introduce 
this species in areas of suitable habitat. Moreover, natu-
ral regeneration must be maximally conserved in high-
risk regions under the future climate scenarios. The 
unchanged appropriate habitat may provide underlying 
refugia for climate change, and preserving these habitats 
is an essential aspect of the conservation and protection 
of in-situ and ex-situ R. utilis forests. To further mitigate 
the effects of climate change on its habitat, establishing 
ecological corridors can be used to ensure natural disper-
sal and gene flow of R. utilis. Finally, flexibility and adapt-
ability must be maintained within conservation plans, 
allowing for potential future changes and involving peri-
odic review and adjustment of conservation strategies 
and measures.

Fig. 3 Predicted potential distribution map of Rhamnus utilis under future climate change scenario. 1. Gansu; 2. Shaanxi; 3. Henan; 4. Jiangsu; 5. Anhui; 6. 
Hubei; 7. Chongqing; 8. Sichuan; 9. Tibet; 10. Yunnan; 11. Guizhou; 12. Hunan; 13. Jiangxi; 14. Zhejiang; 15. Fujian; 16. Taiwan; 17. Guangdong; 18. Guangxi; 
19. Ningxia Hui Autonomous Region; 20. Shanxi; 21. Hebei; 22. Beijing; 23. Shandong; 24. Shanghai; 25. Qinghai; 26. Liaoning
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Limitations of modeling and future research directions
Species distribution modeling has been widely adopted 
and has been proven to be an effective method for pro-
viding related guidelines for forest management under 
future global climate change [13, 14, 17]. However, there 
are uncertainties in the use of different climate change 
scenarios for projecting possible plant distribution. Fur-
thermore, the BCC-CSM2 model was used in the pres-
ent work, but it showed the uncertain nature of future 
climate change, even though it is recommended for 
studying climate change in China, thus leading to uncer-
tainties in projected habitat distribution/suitability. Con-
sequently, future studies must adopt diverse SDMs and 
GCMs. Additionally, although Maxent models are com-
monly used, there exist several restrictions that should 
be highlighted and thoroughly considered [37]. The cur-
rent study complies with the need for presence-only 
data derived from a variety of diverse and multifaceted 
sources. However, the collected data may not be fully 
representative, leading to potential biases [38]. Neverthe-
less, the sampling bias layer used in our models reflects 
only a near approximation of actual species distribution. 
In addition, some biologically important factors, such as 
human activities, dispersal capability, and competition, 
were not included in the model because robust data were 
lacking. This omission points towards an opportunity for 
future research to incorporate these elements, ensuring 
a more comprehensive and realistic representation of 
species distribution dynamics. Finally, future research 
should be integrated with field studies to validate our 
results, allowing for a more nuanced understanding of 
the distribution patterns and facilitating the application 
of our findings in conservation and management efforts.

Conclusions
Our results indicate that January water vapor pressure, 
the normalized difference vegetation index, mean diur-
nal range, and precipitation of the warmest quarter rep-
resented the critical factors explaining the environmental 
requirements of R. utilis. The potential habitat of R. utilis 
included most provinces from central to southeast China. 
Under climate change scenario SSP 245, Maxent pre-
dicted a cumulative loss of ca. 0.73 × 105 km2 of suitable 
habitat for R. utilis by 2041–2060, while an increase of 
ca. 0.65 × 105 km2 occurred in the 2081–2100. Further-
more, under this climate change scenario, the suitable 
habitat will geographically expand to higher elevations. 
Our results will assist land managers in avoiding the 
blind introduction of R. utilis into unsuitable habitat and 
enhance its quality and production.

Methodology
Species distribution data
The species occurrence data of R. utilis were gathered 
from the online herbaria databases shown below: the 
Chinese Virtual Herbarium (http://v5.cvh.org.cn/), Trop-
icos (http://www.tropicos.org/), and the GBIF (http://
www.gbif.org). Inaccurate locations without precise geo-
coordinates in the occurrence records were excluded. For 
specimens with only village locations documented in the 
Chinese Virtual Herbarium, we identified their longitude 
and latitude via Google Earth (http://ditu.google.cn/). 
Duplicate data points were eliminated, and the remaining 
points were subjected to spatial filtering. Hence, a maxi-
mum of one point per 1.0 × 1.0 km grid cell was mapped. 
The total number of geo-referenced occurrence records 
used was 219. (Fig. 4).

Environmental variables
The 54 environmental factors that can potentially affect 
the distribution of R. utilis were used. Those include 19 
bioclimatic along with 12 solar radiation and water vapor 
pressure variables acquired from the World Climate 
Database [39]. Data related to three topographic variables 
of slope, aspect, and elevation covering 1984–1995were 
acquired from the RESDC website (http://www.resdc.cn/
Default.aspx). Also, data for seven soil variables including 
soil organic carbon content, soil pH, soil bulk density, soil 
conductivity, along with soil sand, silt and clay percentage 
were obtained from the Harmonized world soil database 
v1.2 [40]. Moreover, normalized difference of vegetation 
index (NDVI) data were acquired from the China Meteo-
rological Data Sharing Service System.

With regard to future climate scenarios, the climate 
change modeling data from the Beijing Climate Cen-
ter climate system model version 2 (BCC-CSM2)-MR of 
the CMIP6 model were adopted from the Shared Socio-
economic Pathways (SSPs) 245 scenario, as put forward 
by the Intergovernmental Panel on Climate Change to 
predict the distribution of R. utilis in 2041–2060 and 
2081–2100. The suppliers of BCC-CSM2 advised it 
should be used for research related to short-term opera-
tional climate prediction and change within China [see 
ref [41]. and references listed therein]. The SSP 245 sce-
nario indicates possible radiative forcing in 2100 relative 
to the optimistic + 4.5  W/m2 pre-industrial value [42]. 
The selection of SSP245 was based on its representa-
tion as an intermediate scenario. This scenario provides 
a balanced view of the future, considering both mitiga-
tion policies and socio-economic changes. It allows us to 
explore the potential impacts on the species’ distribution 
without leaning towards extreme pessimistic or optimis-
tic views. By choosing the time periods ‘2041–2060’ and 
‘2081–2100,’ we intend to investigate two separate future 
scenarios, providing a substantial time gap to enable the 

http://v5.cvh.org.cn/
http://www.tropicos.org/
http://www.gbif.org
http://www.gbif.org
http://ditu.google.cn/
http://www.resdc.cn/Default.aspx
http://www.resdc.cn/Default.aspx
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observation of potential shifts and trends in the species’ 
distribution over the medium to long term. Other vari-
ables, such as soil and topography, were included in our 
analysis of the current distribution of R. utilis. However, 
when modeling the future potential habitat, future val-
ues for these variables should ideally be used [38]. Since 
expected changes in these variables were not available 
for modeling within future climate change scenarios, 
we left them unchanged in our predictions [38]. There-
fore, those variables were left unchanged for the current 
analysis of the future potential suitable habitat for R. uti-
lis. To ensure consistent results among diverse layers, we 
processed all environmental layers with identical cell size, 
spatial extent, while using WGS84 projection in the Arc-
GIS 10.0 scenario.

To reduce collinearity and minimize model overfit-
ting, we applied Principal Component Analysis (PCA) in 
conjunction with Pearson correlation analysis. If a pair of 
variables had a correlation coefficient greater than |0.85|, 
they were considered proxies of one another, and one of 

the variables was consequently removed from the analy-
sis. Factors enrolled into the final environmental data-
set used here included April and August solar radiation 
(SRAD4 and SRAD8), aspect, average diurnal tempera-
ture range (BIO2), elevation, isothermality (BIO3), Janu-
ary, July, and November water vapor pressure (VAPR01, 
VAPR7, and VAPR11, respectively), NDVI, precipita-
tion of driest month (BIO14), precipitation of warmest 
quarter (BIO18), slope, soil buck density, soil sand and 
clay content, and annual range of temperature (BIO7) 
(Table 1).

Model simulation and evaluation
Models were established with Maxent version 3.3.3 k 
[43] based on species records together with bioclimatic 
variables. We used 25% and 75% of occurrence records 
for model testing and training, respectively. It is well 
known that sampling bias significantly affects presence-
background distribution models, which was avoided 
by using one bias file layer in the present work [44]. A 

Fig. 4 Distribution records of Rhamnus utilis Decne in China
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bias file layer was produced based on occurrence point 
through the derivation of one Gaussian kernel density 
map according to the description by Elith et al. [19]. We 
used a bias file in Maxent to create maps. Recent stud-
ies have indicated that the default setting of Maxent may 
not necessarily be suitable at all times, especially if only 
a few species occurrence records can be obtained [20]. 
As a result, we evaluated various regularization multi-
plier values, taking into account feature class and addi-
tional pertinent parameters. Our analysis revealed that 
the default option yielded the most optimal performance 
by providing the most accurate representation of the cur-
rent distribution without causing the model to overfit 
(see Merow et al. [20] for details). We restricted the back-
ground point number to 10,000 during sampling. How-
ever, a further increase in background point number (e.g., 
100,000) made no difference to the model. The maximal 
iteration number was set to 1,000, which provided suf-
ficient time for model convergence, and a convergence 
threshold was selected at 1 × 10− 6 [8, 45]. We employed 
the standard ‘autofeatures’ setting, encompassing all pos-
sible features such as linear, quadratic, product, thresh-
old, and hinge characteristics (following Deb et al. [43])

Response curves were used to interpret Maxent output 
patterns. A Jackknife test was performed to analyze the 
relative importance of the environmental variables. The 
robustness of the Maxent model was calibrated using 
tests of threshold-independent receiver operating char-
acteristics (ROCs). The area under the ROC curve (AUC) 
and True Skill Statistics (TSS) were used to evaluate the 
model performance. TSS is a threshold-dependent evalu-
ation metric used to assess the performance of species 
distribution models. It ranges from − 1 to + 1, where + 1 
indicates perfect agreement between observed and pre-
dicted presences and absences, 0 indicates a performance 
no better than random, and − 1 indicates total disagree-
ment. TSS is particularly useful in cases where presence-
only data is available, as it does not require information 
about true absences. It considers both sensitivity (true 
positive rate) and specificity (true negative rate) and is 
less affected by prevalence than other metrics like accu-
racy. Four types of potential habitats were developed 
based on the final potential distribution map, with values 
ranging from 0 to 1. The habitat was classified as highly 
suitable (> 0.75), moderately suitable (0.50–0.75), poorly 
suitable (0.25–0.50), or as providing no potential habitat 
(< 0.25), following the literature by Coban et al. [46] and 
Adhikari et al. [47]. Moreover, by comparing this data 
with the currently known suitable habitat, future poten-
tial distribution maps were re-categorized as, (i) becom-
ing suitable, (ii) becoming unsuitable, and (iii) remaining 
suitable; the spatial extents of areas in each category were 
calculated and are presented.
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