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Abstract
Background Basil is one of the most famous herbs, which has broad usage as a fresh vegetable and therapeutic and 
pharmaceutical services. The main abiotic stress limiting basil production globally is drought. As a result, appropriate 
drought screening-which effectively separates high-yielding but drought-sensitive genotypes from drought-tolerant 
genotypes-is necessary for the optimal selection of high-yielding basil cultivars under drought stress conditions. So, 
a split plot experiment with three replications based on a completely randomized design were carried out in a pot 
under field conditions for this investigation. Water levels (full irrigation or control, moderate stress, and severe stress) 
were assigned as main plots, while 22 basil accessions were given as sub-plots. In this study, leaf yield as well as 
physio-biochemical traits had measured on accessions.

Results Our results revealed large variation in yield, essential oil (%), protein, proline, chlorophyll, total phenol and 
flavonoids traits across the 22 accessions. The percentage of leaf yield reduction in moderate drought stress than 
normal conditions showed that G1 (−6.5%), G17 (−7.05%), G20 (−9.01%), and G12 (−10.9%) accessions had the least 
changes, respectively. Although in severe drought stress than normal conditions, the G1 (−32.01%), G12 (−33.12%), 
G4 (−33.24%), G7 (−34.11%), and G17 (−34.93%) accessions had the least amount of change in plant leaf yield, 
respectively. Furthermore, the highest yield reduction occurred in moderate and severe stress conditions in G18 
(−25.36%) and G8 (−42.98%) accessions, respectively. Cluster analysis based on the ward method in both conditions 
(moderate and severe drought conditions) placed the accessions in three groups, and accessions were identified as 
tolerant, whose average traits in that group were higher than the total average. The principal component analysis also 
showed that in moderate drought conditions, the first two components explained about 95.28% of the total variation, 
while in severe drought conditions, these two components explained about 96.37% of the total variation.

Conclusions The different multivariate analyses (cluster analysis, PCA, mean comparison) were used to identify 
tolerant and sensitive accessions based on all traits. The accessions G3, G4, G6, and G7 were found to be tolerant 
to stress, while G10, G15, G16, and G20 were found to be sensitive to drought. These accessions are a useful step in 
producing drought-tolerant, high-yielding accessions and can be utilized in breeding programs for basil.
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Background
Basil is a medicinal plant and an important vegetable of 
the mint family. Basil is an herbaceous and annual plant 
that has great diversity in terms of morphology and sec-
ondary compounds, especially for essential oil content [1, 
2]. This genus has 50 to 150 or even more herbaceous and 
shrub species. The Ocimum genus includes several spe-
cies such as Ocimum gratissimum, Ocimum carnosum, 
Ocimum sanctum, Ocimum canum, and Ocimum basili-
cum, and the Ocimum basilicum species has more than 
60 varieties [3, 4]. For this reason, it is considered one of 
the most important genera in the mint family [5], among 
which Ocimum basilicum is the most important eco-
nomic species. Basil is a long-day and cold-sensitive plant 
that grows well in moist soil with proper drainage, in full 
sunlight, and in warm weather. Basil grows naturally in 
tropical and subtropical regions and is mostly found in 
Asia, Africa, Central and South America [1]. Basil has 
been mentioned as an important medicinal plant in most 
pharmacopoeias. Its leaves and essential oil are used to 
treat some ailments, such as headache, cold, as well as 
severe diseases like diarrhea and kidney failure [6]. The 
active ingredients of this plant are used to treat flatu-
lence, strengthen the digestive system, relieve pain and 
fatigue [7, 8]. Basil is also an edible vegetable whose dried 
leaves are added to many foods as a flavouring agent and 
to aid digestion, and it has long been used to protect food 
from spoilage and also as a fresh herb [9]. Flavonoids, 
phenolic acids, and essential oils are only a few of the 
active substances found in basil. Eucalyptol, linalool, and 
methyl chavicol are the three main essential oils present 
in basil. Basil also contains phenolic acids including caf-
feic acid and rosmarinic acid, as well as flavonoids such 
as vicenin, orientin, and apigenin. These substances give 
basil its distinctive scent and therapeutic actions, includ-
ing anti-inflammatory, antioxidant, and antibacterial 
activities. Depending on the cultivar, environmental cir-
cumstances, and time of harvest of the basil plant, these 
active compounds’ precise concentration and composi-
tion may change [10, 11].

Drought is a natural phenomenon that is typically 
defined as a period without considerable rainfall (lack of 
water), resulting in extensive crop damage and a massive 
loss of harvests [12]. Drought-caused water scarcity is a 
big problem in Iran. Iran is just one of several countries 
that have had to confront the growing problem of deplet-
ing water resources as a result of rising populations and 
the consequent demand for food and water. Iran, like 
many other developing countries, has a looming water 
crisis, and the future of its food supply is tied directly to 
the reliability of its water infrastructure and supply [13, 
14]. So, it is important to work on a plan to mass-pro-
duce high-quality basil genotypes that can thrive even in 
drought conditions [15]. The arid and semiarid regions of 

Iran receive an average of 240 millimetres of rainfall each 
year [16]. One of the most critical stresses for crop plants 
is a lack of water. But water constraints aren’t unique to 
arid regions; in fact, uneven rainfall in some areas can 
make it tough for plant growth. Loss of yield is common 
when a plant is subjected to this kind of stress [17]. Yield 
loss due to drought is caused by its impact on every part 
of the plant system. Crop damage from water deficits 
during certain phases of plant development is greater 
than during other stages [18, 19]. Thus,variations in 
response to water stress can be observed in morphology, 
physiology, and molecular responses [20, 21]. Therefore, 
breeding efforts should take into account yield and its 
components as one of the most essential criteria for the 
selection of suitable or tolerant plants [18, 19]. Thus, the 
ability to resist or tolerate drought is considered a desir-
able physiological and breeding trait.

According to a drought research conducted on basil, 
under moderate and severe water stress, drought stress 
decreased dry matter yields by 15% and 28%, respectively. 
Moreover, the results showed that the highest amount of 
proline and chlorophyll was in severe and normal stress 
conditions, respectively [22]. In the study of Kalamartzis, 
Papakaloudis [23], twenty landraces of basil were stud-
ied under different drought stress conditions for three 
years. Over the course of the three years, the data showed 
a 20% loss in dry matter production and a 21% reduc-
tion in essential oil yield in all genotypes evaluated, with 
the lowest irrigation treatment showing the greatest 
reductions in comparison to the control treatment [23]. 
Under drought stress, the effects of mycorrhiza and plant 
growth boosters were studied on basil. Under extreme 
stress, the data showed a rise in proline and a fall in chlo-
rophyll and shoot dry weight. Furthermore, the outcomes 
demonstrated that basil’s resistance to drought stress was 
raised by the application of mycorrhiza and plant growth 
stimulants [24].

Previous research has demonstrated the complex and 
multigenic nature of plant responses to environmen-
tal stress, and the roles of many activated genes are still 
not fully understood. This complexity makes selecting 
and breeding drought-tolerant cultivars extremely chal-
lenging. In order to mitigate the consequences of envi-
ronmental stress, plants have evolved excellent defense 
mechanisms by modifying their tolerance potential 
through integrated molecular and cellular responses. As 
a result, performing an appropriate drought screening 
that clearly separates high-yielding but drought-sensitive 
genotypes from drought-tolerant genotypes is necessary 
for the optimal selection of high-yielding basil cultivars 
under drought stress conditions [25].

Thus, the aim of the present study was to character-
ise the basil accessions under drought stress conditions 
and to select the best drought-tolerant accessions for 
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the future drought tolerance breeding program based on 
evaluation yield and physio-biochemical traits.

Materials and methods
Plant material
This study conformed with all applicable Iranian insti-
tutional, national, and international regulations. As the 
study’s plant material, landraces, ancient, and modern 
accessions of basil from various geographic regions were 
purchased and gathered from various businesses; no par-
ticular permits were needed to acquire the plant mate-
rials. Dr. Mahmood Maleki identified the species, and 
voucher specimens (numbers 201 to 222) were depos-
ited in the Graduate University of Advanced Technology 
Herbarium to be used for botanical research upon formal 
request (Table 1).

Experimental site
This experiment was carried out in the year of 2021 at 
the Graduate University of Advanced Technology and is 
located in Mahan city at a latitude of 30° 3′ 30.06″ north 
and a longitude of 57° 17′ 37.93″ east, at an elevation of 
2020 m above mean sea level.

Pot preparation and soil of the experiment
The plastic pots 19 cm in diameter, 15 cm in height, and 
having a capacity of 3 kg of soil were used in this experi-
ment. In addition, the soil of the pots was a combination 
of agricultural soil, sand, and animal manure in a ratio of 

2:2:1. The physical and chemical characteristics of the pot 
soil are listed in Table  2. 25 seeds were planted in each 
pot, and after germination and establishment of seed-
lings, five plants were kept in each pot and the rest were 
thinned.

Experimental design and drought treatment
Since there haven’t been any studies screening basil 
accessions for drought tolerance, 22 basil accessions 
(Table 1) were examined in this study using a replicated 
design. The experiment was conducted in the form of 
a split plot based on a completely randomized design 
(CRD) with three replications in pots under field condi-
tions in 2022. Drought stress was applied as the main plot 
in three levels: normal (irrigation cycle of five days), mod-
erate (irrigation cycle of nine days), and severe (irrigation 
cycle of 13 days) stress conditions. Accessions were also 
considered sub-plot factors at 22 levels. Irrigation treat-
ment was applied at three levels of normal irrigation, 
medium and severe water deficit stress, respectively, with 
the field capacity of 85, 60, and 40% of usable moisture. 
Previously, this amount of field capacity was measured 
based on the test site conditions and was used as the irri-
gation cycle.

Characteristics studied and plant sampling
The observations for leaf yield as well as biochemical and 
physiological traits including essential oil (%), protein, 
proline, soluble sugars, chlorophyll a, b, total chloro-
phyll, carotenoids, total phenol and total flavonoids traits 
were recorded on plants for each genotype in each repli-
cation in each environment, and the average of them as 
per plant was used as the final data for statistical analysis. 
The basil plants’ leaves were picked, placed in foil in liq-
uid nitrogen, and transferred to the laboratory for physi-
ological and biochemical characteristics measurement 
using the techniques outlined by Sudhakar, Latha [26].

Leaf yield
The weight of the fresh leaves of each plant was measured 
on a digital scale at the maturity stage.

Chlorophyll content
Chlorophyll a and b concentrations as well as total chlo-
rophyll were measured using the Arnon’s method [27]. A 
test tube containing 0.2 g of fresh leaf was ground with 
10 mL of 80% acetone, and the absorbance was measured 
using a spectrophotometer at 663 and 645 nm. Using the 
following formulae as provided by by Sudhakar, Latha 
[26]. To ascertain the quantity of chlorophyll within the 

Table 1 The name and characteristics of basil accessions
Voucher Code Landrace/cultivar Origin
201 G1 Italian Genovese Italy
202 G2 Particolored Iran
203 G3 Red Rubin Denmark
204 G4 Lemon India
205 G5 Afghan Green Afghanistan
206 G6 Lettuce Japan
207 G7 Purple Iran
208 G8 Turkish Arzuman (Yesil Feslegen) Turkey
209 G9 Cinnamon Mexico
210 G10 Persian Green Iran
211 G11 Napoletano Italy
212 G12 Flower pesto Italy
213 G13 Midnight Africa
214 G14 Dark opal USA
215 G15 Horapa Thailand
216 G16 Green Mobarakeh Iran
217 G17 Purple crab Italy
218 G18 Italian Violetto Italy
219 G19 Holy Thai Thailand
220 G20 Black Turkey
221 G21 Italian Green Italy
222 G22 Holy (Tulsi) India

Table 2 Some physical and chemical characteristics of soil
C (%) EC (dS/m) Soil texture (%) K (ppm) N (%) pH
2.78 2 Sandy–clay–loam 353.75 0.23 7
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extract, it is imperative to measurably comprehend its 
concentration denoted as milligrams of chlorophyll per 
gram of tissue.

 

mg chlorophyll a/g tissue = [(12.7 × A663)

− (2.69 × A645)] × v

1000 × w
 (1)

 

mg chlorophyll b/g tissue = [(22.9 × A645)

− (4.68 × A663)] × v

1000 × w
 (2)

 

mg total chlorophyll/g tissue = [(20.2 × A645)

− (8.02 × A663)] × v

1000 × w
 (3)

Where: W = fresh weight of tissue extracted, V = final vol-
ume of chlorophyll extract, and A = absorbance at partic-
ular wavelengths.

Total carotenoids
The method developed by Price and Hendry [28] was 
used to measure the total carotenoids. This method 
involved utilizing the sample extract that was obtained 
using the acetone method to determine chlorophyll. 
According to Sudhakar, Latha [26], the pigment content 
is determined in mg/g of fresh weight and the absor-
bances are measured at 663, 645, and 480 nm in a spec-
trophotometer using the following formula:

 

mg total carotenoids/g tissue = [A480 + (0.114 × A663)

− (0.638 − A645)] × v

1000
× w  (4)

Proline
To determine the proline content of leaves, we done the 
Bates et al. technique [29]. The extract was centrifuged 
to obtain the supernatant, which was then mixed with 
2 ml of ninhydrin reagent and 2 ml of pure acetic acid. 
The resulting mixture was heated at 100 °C in an air bath 
for one hour. The tubes containing the liquid were placed 
in the ice bath as soon as possible. After adding 4 ml of 
toluene to the mixture, the tubes underwent thorough 
vortexing. For 15 to 20  min, the tubes were stacked to 
form two different layers. The upper colour phase, which 
contained toluene and proline, was used to calculate the 
proline concentration. The proline concentration was 
calculated using a standard curve after the absorbance at 
518 nm was obtained.

Protein
In cold water with phosphate buffer, the proteins were 
isolated from the aerial portions between 0 and 4  °C. 
After that, a consistent blue colour was achieved using 
Coomassie Brilliant Blue (CBB) G-250. A spectropho-
tometer reading the absorbance at 595  nm was made 

after 25  min. Protein concentrations were calculated 
using Bradford’s method [30].

Reducing sugar
0.02 g of the plant’s leaves were combined with 10 ml of 
distilled water in a Chinese mortar and boiled on an elec-
tric stove. Once the solution reached boiling point, the 
heat was turned off and the solution was filtered using 
filter paper. Test tubes were then filled with 2 ml of the 
resulting extract and 2 ml of a copper sulphate solution. 
The tubes were securely closed with cotton and heated in 
a hot bath at 100 °C for 20 min. After cooling, 2 ml of the 
phosphomolybdic acid solution were added to the tubes, 
resulting in the appearance of a blue tint. The color was 
then evenly distributed by shaking the test tubes errati-
cally with a vortex device. Using a spectrophotometer, 
the Somogyi method [31] was used to measure the absor-
bance intensity of the solutions at 600 nm wavelength in 
order to demonstrate the concentration of reducing sugar 
using the standard curve.

Total phenolic content
The total phenolic content of the extract was ascertained 
using the Folin-Ciocalteu method [32]. 200 ml of a herbal 
extract were mixed with 0.8 ml of sodium carbonate 
(7.5%), and 1 ml of the Folin-Ciocalteu reagent. All sam-
ples’ absorbance was assessed with a spectrophotometer 
at 750 nm after 1.5 h of dark storage at 30 °C. The amount 
of phenol in the test sample was calculated using the 
standard curve and represented as mg phenols/100 g of 
material.

Essential oil
Using equipment of the Clevenger type that was based on 
the European Pharmacopoeia, the percentage of essential 
oil was also calculated [33]. After drying the essential oil’s 
water with sodium sulphate to remove impurities, the dry 
weight of the essential oil was estimated, along with its 
quantity and essential oil content.

Total flavonoid content
The total flavonoid content of the dense extract was 
determined by the colorimetric method [34] based on the 
standard curve of the standard solution of (+)-catechin at 
0, 20, 40, 60, 80, and 100  mg/l. 4 ml of distilled deion-
ized water (dd H2O) and an aliquot of the extracts (1 ml) 
were added to a10 ml volumetric flask. Then, 0.3 cc of 5% 
NaNO2 was added. 0.3 ml of 10% AlCl3 was added after 
5 min. At the six-minute mark, 2 ml of NaOH 1 M were 
added, and dd H2O was used to bring the total volume 
to 10 ml. A spectrophotometer was used to measure the 
solution’s absorbance at a wavelength of 510 nm, and the 
results were represented as milligrams of catechin equiv-
alents (CE) per 100 g of dry weight (mg CE/100 g dw).
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Statistical analysis
The split plot design based on CRD design was utilised 
for the variance analysis of the data using SAS software 
version 9.4 [35], and Duncan’s test was applied at the 1% 
probability level to compare averages. The biochemical 
and physiological trait datasets were subjected to prin-
cipal component analysis (PCA) using PAST 4.0.3 soft-
ware [36], and hierarchical clustering using the UPGMA 
method and Euclidean distance measurement were also 
carried out on the datasets. Using the factoextra package 
and the R programming language, the number of groups 
was calculated [37].

Results
Descriptive analysis
In the present investigation, 22 basil entries were anal-
ysed for important physio-biochemical parameters under 
three different moisture conditions. At 60% field capac-
ity (moderate drought condition), the reduction in the 
physio-biochemical traits ranged from − 23.43 to 59.43%. 
The summary statistics of the accessions under different 
levels of drought stress revealed that chlorophyll b, total 
chlorophyll, and chlorophyll a were reduced by 33.05%, 
28.71, and 26.82% in the severe drought condition, while 
they were reduced to 17.94%, 21.77%, and 23.43% in the 
moderate drought compared to the control condition 
(Table 3), respectively. Some traits increased under stress 
conditions instead of decreasing compared to normal 
conditions. These traits included protein, proline, sugars, 
total phenol, and total flavonoids traits.

The C.V. % in (Table 3) varied from 9.18% (carotenoids) 
to 55.64% (proline) for the traits in normal condition. 
Proline and essential oil (%) had the highest percent-
ages of phenotypic variation under normal conditions, at 
55.64% and 47.21%, respectively (Table 3). Moreover, the 
C.V. % of the leaf yield was about 21.35%. The higher val-
ues of the coefficient of variation indicate that a response 
to selection can be expected for their improvement. 
The C.V. % of moderate drought stress varied between 
“10.19 and 48.69’’ for the studied traits (Table  3). The 
proline showed the highest value of C.V.% and the low-
est value was observed for carotenoids. The amount of 
C.V. % observed for essential oil and leaf yield in these 
conditions was equal to 34.46% and 21.66%, respectively 
(Table 3). Table 3 showed that the value of C.V. % of the 
studied traits varied between 9.96 and 48.69 under severe 
drought conditions, and the traits carotenoids and pro-
line had the lowest and highest values, respectively. In 
this condition, the traits under study showed good diver-
sity, and traits such as leaf yield and essential oil had 
22.67% and 32.02% of variation, respectively.

Variance analysis and mean comparison
The ANOVA has indicated significant variation among 
the genoytpes as well as accession× environment intrac-
tion (Table  4) which indicates that significant differ-
ences exist among accessions and the expression has 
shown a non-linear relation with environments. As the 
genotype×environment component was significant for 
all traits, the comparison of the mean values of a trait of 
each genotype in each environment was taken into con-
sideration and presented in (Table 5). The accessions G1, 
G3, and G5 had the highest values, while G19 and G22 
had the lowest values for protein, proline, and sugar con-
tents under severe drought conditions. As higher pro-
tein, proline, and sugar content confer higher tolerance 
to stress, G1, G3, and G5 are better suited for drought 
stress. The accessions G4, G3, and G7 had the highest 
values for leaf yield under normal drought conditions, 
indicating their suitability for normal conditions, while 
the highest yield was recorded in moderate and severe 
stress conditions for the G4 and G7 accessions (Table 5).

Principal component analysis (PCA)
The percentage of total variation explained by various 
principal component groups and their relationship to 
the investigated traits are displayed in the rotating com-
ponent matrix. The PCA in normal conditions (Fig.  1), 
moderate drought (Fig.  2), and severe stress conditions 
(Fig.  3) was used to identify tolerant accessions. The 
results of PCA in normal conditions (Fig.  1) showed 
that the first two components explained about 59.51% of 
the variation (PC1 = 44.22% and PC2 = 15.29%), and the 
important and influential traits in the first component 
included leaf yield, protein, proline, chlorophyll a, chlo-
rophyll b, total chlorophyll, and total phenol. The sec-
ond PC is mostly contributed by soluble sugars and total 
flavonoids, and PC3 is contributed by essential oil. In 
the first component, traits that were related to yield and 
drought tolerance, such as protein, proline and sugar, had 
a positive and increasing effect. So, the accessions located 
in the first region of the biplot (G1, G2, G3, G5, G10, and 
G13) can be identified as tolerant accessions (Fig. 1).

The PCA-biplot in moderate drought showed that PC1 
exhibited about 42.35% of the total variability and was 
explained principally by leaf yield, proline, chlorophyll a, 
chlorophyll b, total chlorophyll, and total phenol (Fig. 2). 
The second PC accounted for about 16.55% of the total 
variation and was mostly contributed by essential oils 
and carotenoids. The PC3 explained about 11.85% of the 
total variability and is contributed by soluble sugars and 
total flavonoids. The accessions located in the first region 
of the biplot (G3, G7, G8, G17, and G15) can be identified 
as tolerant accessions (Fig. 2) due to the positive effect of 
yield and drought tolerant such as protein, proline, and 
sugar in this region.
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Under extreme drought conditions, the PCA revealed 
four principal component groups with an eigenvalue of 
higher than one, contributing 50.59% variability (Fig. 3). 
The PC1, PC2, PC3, and PC4 groups each provided 
a variable amount of 43.21, 14.64, 12.67, and 10.07%, 
respectively. Different criteria affected PC groups dif-
ferently, both positively and negatively. In the PC1, leaf 
yield (0.428), protein (0.318), proline (0.328), chlorophyll 
a (0.418), chlorophyll b (0.420), total chlorophyll (0.420), 
and total phenol (0.270) recorded the highest variability. 
Maximum variability was observed for protein (0.469), 
proline (0.465), carotenoids (−0.384), total flavonoids 
(0.331), and essential oil (−0.288) in the PC2 group, 
whereas the essential oil (0.574), soluble sugars (0.516), 
total phenol (0.462), and total flavonoids (0.381) recorded 
higher variability than the other traits in the PC3 group. 
Henceforth, it came to light that the PC1 group exhib-
ited the utmost diversity (amounting to 43.21%) when it 
comes to traits that contribute to drought tolerance, sur-
passing all other groups in this regard. Amidst the water 
scarcity environment, the plant species were predomi-
nantly clustered towards positive values on both PC1 
and PC2 dimensions. Notably, G1, G2, G3, G5, G6, and 
G8 genotypes presented a profound inclination towards 
attributes such as leaf yield, protein content, proline 
concentration,total flavonoids level, and soluble sugars 
abundance (Fig.  3). Consequently,the identification of 
these accessions that exhibit exceptional performance in 
relation to these particular traits allows them be recog-
nized as possessing an admirable capability to withstand 
and endure periods of drought stress.

Cluster analysis
The accessions were divided into three clusters under 
normal conditions based on the examined attributes by 
Ward method cluster analysis, suggesting the presence 

of more genetic diversity among the accessions in dis-
tinct clusters, as shown in Fig. 4. Group 1 included G1, 
G2, G9, G10, G14, G15, G16, and G21 accessions. The 
accessions G5, G8, G11, G12, G13, G17, G19, G20, and 
G22 were placed in the second group, and accessions G3, 
G4, G6, G7, and G18 were included in the third group. 
The average traits of the third group were higher than the 
total average for most of the traits, so it was identified as 
a tolerant group. In addition, the average traits of the first 
group were lower than the total average identified as a 
sensitive group. Finally, the second group was identified 
as the semi-tolerant group.

The basil accessions were placed in three groups under 
moderate drought conditions (Fig.  5) using the Ward 
method with the cophenetic correlation coefficient 
equal to 73.14%. The average traits of the second group 
(G3, G4, G6, and G7) were higher than the average of 
all groups for most of the traits, so it was identified as a 
tolerant group. In addition, the average traits of the first 
group (G1, G2, G9, G10, G14, G15, G16, G20, and G21) 
were lower than the average of all groups for most of the 
traits, so it was identified as a sensitive group. Finally, the 
average traits of the third group (G5, G8, G11, G12, G13, 
G17, G18, G19, and G22) were in the middle of the other 
two groups, and the accessions of this group had been 
identified as semi-tolerant.

The accessions of basil had been split into three groups 
by cluster analysis under severe drought conditions using 
the Ward method (Fig.  6), with a cophenetic correla-
tion coefficient equal to 69.1%. The average of the traits 
of the third group (G3, G4, G6, and G7) was higher than 
the average of all groups for most of the traits, so it had 
been identified as a tolerant group. In addition, the aver-
age of the traits of the first group (G1, G2, G8, G9, G10, 
G12, G14, G15, G16, G17, and G20) was lower than the 
average of all groups for most of the traits, so it had been 

Table 4 Split plot variance analysis of the biochemical traits in basil accessions in different stress environments based on completely 
random design with three replications

Mean square of traits CV%
S.O.V Environments Reps within 

Environment
Genotype Environments×Genotype Error

DF 2 6 21 42 126
Leaf yield 336.10** 6.42 38.74** 0.99** 0.037 1.99
Essential oil (%) 1.019** 0.0429 0.599** 0.867** 0.00028 1.32
Protein 4.581** 0.025 0.190** 0.0056** 0.00025 1.77
Proline 2.865** 0.0239 0.568** 0.0291** 0.00014 2.28
Soluble sugars 3.437** 0.0241 0.0371** 0.0605** 0.000061 0.69
Chl. a 186.211** 2.630 29.019** 0.7936** 0.0074 0.89
Chl. b 45.149** 1.894 13.353** 0.6744** 0.00598 1.86
Total Chl. 403.119** 8.981 81.35** 2.3403** 0.01346 0.85
Carotenoids 5.787* 1.084 0.2098** 0.2242** 0.004064 2.30
Total phenol 3012.732** 2.528 769.418** 6.0002** 0.00488 0.14
Total flavonoids 119.729** 0.421 7.420** 8.783** 0.00165 0.58
* and ** are significant at 5% and 1% probability level, respectively
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identified as a sensitive group. The average traits of the 
second group (G5, G11, G13, G18, G19, G21, and G22) 
were in the middle of the other two groups, and the 
accessions of this group had been identified as semi-tol-
erant. The outcomes of this approach agreed with those 
of the mean comparison and PCA. The accessions of the 
tolerant group in this study performed better than other 
accessions in terms of yield, essential oil, proline content, 
and total protein (Table 5).

Discussion
The development of basil drought-tolerant varieties is 
one of the most important breeding objectives. Screening 
of diverse basil accessions under limited water conditions 
is an efficient breeding programs [38, 39]. In the current 
study, basil accessions showed high variation under nor-
mal and water stress conditions. Drought stress is the 
main cause of yield reduction. To reduce the possibility of 
a global food crisis in the future, it is necessary to develop 
methods to identify and select drought-tolerant plants. 

Fig. 2 PCA scatter plot across 22 accessions of basil under moderate drought conditions

 

Fig. 1 PCA scatter plot across 22 accessions of basil under normal conditions
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The degree of drought tolerance of the species and the 
mechanisms involved in plant survival in arid and semi-
arid environments must be established for this purpose 
[40]. Plant variety plays a significant role in determining 
tolerant genotypes in biotic and abiotic stress conditions 
[41].

Leaf yield is one of the important traits of basil because 
it is used as a vegetable. Drought stress reduced leaf yield 
in basil plants. The leaf yield reduction was between 
− 6.55% and 25.33%, and − 32.01% and − 42.97% for mod-
erate and severe stress conditions, respectively. Acces-
sions that showed the lowest amount of reduction can be 
identified as tolerant. But the yield value should also be 
considered. Crossing tolerant with high-yielding geno-
types and examining their progeny is one of the ways to 

improve the identification of high-yielding as well as tol-
erant genotypes.

A trait that can be impacted by genotype, growing cir-
cumstances, growth stage, etc. is essential oil content 
[42, 43]. In this study, both the drought and the culti-
var, as well as how they interacted, had an impact on the 
essential oil content. The Lettuce accession has the high-
est essential oils, followed by Horapa and Black. In some 
genotypes, the percentage of essential oil increased with 
drought level, but in others it decreased, like the results 
of some other research [22–24]. According to results 
from other basil studies [39, 44, 45] and other species 
[46–48], water stress can have either a good or detrimen-
tal impact on the content of essential oils. The cultivars 
showed a wide range of essential oils. The use of diverse 

Fig. 4 Ward cluster analysis of basil accessions under normal conditions

 

Fig. 3 PCA scatter plot across 22 accessions of basil under severe drought conditions
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genetic material and varying environmental conditions 
may account for differences in basil essential oil content 
between this study and previous ones. The quantity and 
quality of essential oils might alter depending on genetic 
and environmental factors. Other studies have revealed 
significant changes in essential oil components’ qualita-
tive and quantitative composition as a result of unfavour-
able conditions [22, 24].

The protein results showed that the amount of pro-
tein increased in tolerant cultivars. Abiotic stresses usu-
ally cause the incomplete functioning of proteins [49]. 
Proteins that increase in plants during stress may be a 
form of nitrogen storage that is later used by the plant 
or may play a role in osmotic adaptation. Moreover, they 
may cause their reuse for the synthesis of smoothie-like 

proteins or structural proteins or change the struc-
ture of the cell wall. These proteins may be synthesised 
in response to stresses or may be structurally present in 
small concentrations [50].

The results of proline content showed that the con-
tent increased linearly with the increase in stress 
(Table  5). The highest increase in proline among acces-
sions belonged to Italian Genovese, Particolored, and 
Red Rubinunder, respectively, in severe and moderate 
stress conditions. The higher accumulation of proline in 
basil plants under drought stress was an adaptation for 
drought tolerance, which in turn helped the plant to sur-
vive and reproduce under drought conditions. Although 
it has been shown that proline accumulation is linearly 
related to increasing drought stress, it is not always true 

Fig. 6 The ward cluster analysis of basil accessions under severe drought conditions

 

Fig. 5 Ward cluster analysis of basil accessions under moderate drought conditions
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to say that genotypes with higher proline content are 
always drought-tolerant. The other studies also showed 
a significant increase in the amount of proline [51, 52]. 
The results of many papers on other plants also show an 
increase in proline in improving tolerance to drought 
stress [53–55]. Proline accumulation is a widespread 
physiological response in many plants in response to a 
wide range of biotic and abiotic stresses [56, 57]. There 
is a lot of information about the accumulation of pro-
line as a common physiological response in many plants 
under different environmental stress conditions [58, 59]. 
The role of proline in increasing stress tolerance has 
been reported in many studies, but there are conflicting 
reports regarding its use as a tolerance index [60]. Plants 
have different strategies, including biochemical mecha-
nisms, to reduce the effects of stress. For example, pro-
line can act as a compatible solvent, an osmotic protector, 
and a protector for cytosolic enzymes and cell organelles. 
In addition, proline can be used as a carbon and nitro-
gen source, membrane stabiliser, and accelerator for free 
radicals [57].

The total phenol and flavonoids increased with drought 
levels. The highest phenol was observed in Lemon, Pur-
ple and Red Rubin accessions, respectively. Moreover, 
the highest flavonoids belonged to Black, Cinnamon and 
Midnight accessions, respectively. Other studies also 
showed an increase in these traits in basil under drought 
stress conditions [61, 62]. Moreover, various reports in 
different plants have shown that under stress conditions, 
the increase of these indices can help with stress toler-
ance, and based on that, tolerant accessions can be iden-
tified [63, 64]. Also, in the study of Varela, Arslan [65], 
phenolic compounds have been used as an indicator to 
identify stress-tolerant accessions. Phenols are powerful 
antioxidant compounds in plant tissues under dry condi-
tions. Due to their skeletal structure, these compounds 
will play an important role in eliminating the oxygen-free 
radicals produced in stressful conditions [66, 67].

The results showed the reduction of chlorophyll a, b, 
total chlorophyll, and carotenoids with drought levels. 
However, this decrease was not the same in all acces-
sions. The results of other studies also showed a reduc-
tion of these traits under drought stress conditions [15, 
39, 44, 68]. The chlorophyll decrease can be due to the 
change in nitrogen metabolism towards the production 
of compounds such as proline, which is used in osmotic 
regulation [69]. The soluble sugar results increased with 
drought levels. Some accessions showed an increase 
in soluble sugars and some showed a decrease in the 
drought level, and it was in line with other studies [44, 
51] on basil. Researchers have reported an increase in 
soluble sugars in plants under stress conditions. They 
stated that the reason is due to the breakdown of insol-
uble carbohydrates, the synthesis of osmotic substances 

from non-photosynthetic pathways, growth arrest, a 
reduction in the rate of transfer of substances, and the 
increase in sucrose synthesis (due to the activation of 
the sucrose phosphorosynthase enzyme) [70]. Research 
showed an increase in soluble sugars. The accumula-
tion of soluble sugars helps to regulate the osmolarity 
in plant cells, preserve biomolecules and membranes, 
store carbon materials, and neutralise free radicals [59]. 
More tolerant accessions have better osmotic regulation 
by accumulating and maintaining more soluble sugars. 
These conditions make the turgor pressure necessary for 
growth in stress conditions better maintained [71].

To further clarify the association between more than 
two traits at once, multivariate analysis is also used, such 
as cluster analysis and PCA. The extensive range of variet-
ies displayed by cluster analysis helps in the identification 
of tolerant accessions. An interpolated biplot between 
PC1 and PC2 revealed a distinct pattern of genotype 
clustering along the vector line. Plotted closer to the vec-
tor line were specific accessions that performed excep-
tionally well for a given characteristic. By comparing the 
PCA method under normal and severe stress conditions, 
as well as the effective traits of the components, the first 
part of the biplot was identified as the drought-tolerant 
area. The accessions located in this area are tolerant, 
and G3, G4, G6, G7, and G18 were identified as toler-
ant accessions. Due to differences in how well 20 basil 
accessions tolerated drought-induced stress, hierarchical 
cluster analysis and PCA identified contrasting variances 
in the accessions and grouped the accessions into dis-
crete clusters. Additionally, cluster analysis was used to 
classify the accessions according to their characteristics 
under drought conditions and to identify the group that 
displayed the highest level of tolerance. Cluster analysis 
in all three conditions classified the accessions into three 
categories, and these groupings were very similar. G3, G4, 
G6, and G7 were placed in one group in each condition. 
The average traits of this group were higher than those of 
other groups. The results of PCA largely confirmed the 
results of cluster analysis. Their high dissimilarity is due 
to the method of PCA not using all information about the 
traits. In the present study, using multivariate statistical 
methods, basil cultivars were grouped, and superior and 
weaker genotypes were identified in each environment. 
Moreover, the important and key variables in differenti-
ating and justifying the total variation were determined 
using PCA. In total, G3, G4, G6, and G7 accessions were 
in the top group in all conditions and were identified as 
tolerant genotypes.

Conclusion
This study showed the superior ability of physiological 
and biochemical parameters and provided evidence to 
determine which crop is most tolerant to water stress. 



Page 14 of 15Rahimi et al. BMC Plant Biology          (2023) 23:523 

Moreover, this was the main criterion for examining a 
large number of lines and varieties and determining their 
response to this dangerous environmental factor. In this 
regard, hierarchical clustering and PCA biplot analysis 
had played a fruitful role in screening all basil accessions 
in terms of their response to water stress. This point is 
considered a essential statistical factor in saving time 
when considering the evaluation of these accessions, 
again in other environments characterised by a scarcity 
of water resources. According to the study’s findings, the 
accessions Red Rubin, Lemon, Lettuce, and Purple can be 
suggested as the most drought-tolerant accessions and 
can also be utilised as donors for further development of 
drought-tolerant varieties. This research contributes to 
the genetic enhancement of basil for drought tolerance.
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