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Abstract 

Background Geminiviruses are DNA plant viruses that cause highly damaging diseases affecting crops world‑
wide. During the infection, geminiviruses hijack cellular processes, suppress plant defenses, and cause a massive 
reprogramming of the infected cells leading to major changes in the whole plant homeostasis. The advances 
in sequencing technologies allow the simultaneous analysis of multiple aspects of viral infection at a large scale, 
generating new insights into the molecular mechanisms underlying plant‑virus interactions. However, an integra‑
tive study of the changes in the host transcriptome, small RNA profile and methylome during a geminivirus infec‑
tion has not been performed yet. Using a time‑scale approach, we aim to decipher the gene regulation in tomato 
in response to the infection with the geminivirus, tomato yellow leaf curl virus (TYLCV).

Results We showed that tomato undergoes substantial transcriptional and post‑transcriptional changes upon TYLCV 
infection and identified the main altered regulatory pathways. Interestingly, although the principal plant defense‑
related processes, gene silencing and the immune response were induced, this cannot prevent the establishment 
of the infection. Moreover, we identified extra‑ and intracellular immune receptors as targets for the deregulated 
microRNAs (miRNAs) and established a network for those that also produced phased secondary small interfer‑
ing RNAs (phasiRNAs). On the other hand, there were no significant genome‑wide changes in tomato methylome 
at 14 days post infection, the time point at which the symptoms were general, and the amount of viral DNA had 
reached its maximum level, but we were able to identify differentially methylated regions that could be involved 
in the transcriptional regulation of some of the differentially expressed genes.

Conclusion We have conducted a comprehensive and reliable study on the changes at transcriptional, post‑tran‑
scriptional and epigenetic levels in tomato throughout TYLCV infection. The generated genomic information is sub‑
stantial for understanding the genetic, molecular and physiological changes caused by TYLCV infection in tomato.
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Background
Tomato (Solanum lycopersicum) is one of the most 
important fruit or vegetable crops worldwide and a 
model research plant. Tomato genomes sequenced in 
the past decade provided a wealth of data that facilitates 
gene characterization of this agronomically important 
plant [1–3]. Among the main threats affecting the world 
production of this plant are losses due to viral infections 
[4]. Understanding the molecular and cellular mecha-
nisms underlying the interaction of tomato and viruses is 
essential for developing effective strategies to manage the 
infections.

Geminiviruses are plant viruses with single-stranded 
DNA (ssDNA) circular genomes, transmitted by phloem-
feeding insects that cause highly damaging diseases 
affecting food, feed, and fiber crops worldwide. The Gem-
inivirideae family is classified into 14 different genera, 
including Begomovirus, the largest genus of plant-infect-
ing viruses with more than 440 species [5]. It is the only 
geminiviral genus transmitted by the polyphagous white-
fly Bemisia tabaci (Family Aleyrodidae), which is consid-
ered one of the main vector species of plant viruses [6, 
7]. The begomovirus genome can be either bipartite (two 
circular ssDNA molecules independently encapsidated) 
or monopartite (a single circular ssDNA molecule). The 
small size of these genomes (around 2.7  kb) imposes a 
constraint on coding capacity, but the evolution of over-
lapping open reading frames (ORFs) that encode four 
to nine proteins has partially compensated for this size 
limitation [8]. Tomato yellow leaf curl virus (TYLCV) is 
a monopartite begomovirus that encodes nine proteins. 
TYLCV is the principal causing agent of Tomato yellow 
leaf curl disease (TYLCD), which is a viral disease that 
affects several crops from the Solanaceae family, such as 
tomato, pepper and eggplant [9–12].

During the infection, the geminiviral proteins interfere 
with the cellular machinery, causing a massive repro-
gramming of the infected cells that leads to significant 
changes in the whole plant homeostasis allowing them to 
seize the plant machinery required for the viral cycle and 
impairing the antiviral defenses [8, 13, 14].

RNA silencing, also known as RNA interference 
(RNAi), is the main antiviral defense mechanism in 
plants, with viruses acting as both inducers and targets 
[15, 16]. Inside the host cells, the geminiviral ssDNA is 
converted into double-stranded forms, which associ-
ates with nucleosomes to form minichromosomes that 
are subjected to transcriptional gene silencing (TGS). In 
addition to TGS, the RNA silencing machinery responds 
to geminiviral infection, triggering post-transcriptional 
gene silencing (PTGS), which is directed against the 
viral transcripts. To counteract these host silencing-
based antiviral mechanisms, geminiviruses encode 

silencing-suppressor proteins (e.g. several TYLCV pro-
teins act as PTGS (TrAP, C4, V2, V3, C5, C7) or TGS sup-
pressors (TrAP, Rep, V2, V3, C5) [8, 10–12, 17, 18].

The plant immune system is based on pattern recogni-
tion receptors (PRRs) at the plasma membrane, such as 
Receptor Like Kinases (RLKs) and Receptor Like Proteins 
(RLPs), that perceive pathogen-associated molecular 
patterns (PAMPs) or plant-derived damage-associated 
molecular patterns (DAMPs). The ligand perception is 
transduced into intracellular signaling to induce a Pat-
tern Triggered Immunity (PTI) response. An additional 
but interconnected branch of the immune response is the 
Effector Triggered Immunity (ETI) which is mediated by 
the recognition of pathogen-derived molecules by intra-
cellular receptors known as Nucleotide-binding Leucine-
rich repeat Receptors (NLRs) [19–21]. The role of ETI 
in antiviral defense through resistance proteins (NLRs) 
has been well documented for RNA and DNA viruses 
[22, 23]. Two NLRs of the coil-coiled type, Ty-2 and 
Sw5a, have been described as resistance loci in tomato 
for TYLCV [24] and Tomato leaf curl New Delhi virus 
(ToLCNDV) [25], respectively. Although the implication 
of PTI in viral defense is less documented, several data 
indicate that PTI extracellular receptors could play a role 
in restricting viral infection [26–29]. Several geminivi-
ral proteins have been shown to interact with RLKs [30], 
including NUCLEAR SHUTTLE PROTEIN-INTER-
ACTING KINASE 1 (NIK1), a RLK which is involved in 
antiviral defense, since its deletion increases susceptibil-
ity to infection, and its overexpression confers tolerance 
to begomovirus infection [26, 28, 31].

The use of omics technologies has profoundly impacted 
the study of plant-virus interactions, allowing research-
ers to gain a more comprehensive understanding of the 
complex molecular interactions that occur during viral 
infection. A remarkable number of studies have used 
high-resolution genome-wide sequencing to analyze the 
modifications in the transcriptional landscape of the host 
upon viral infection [32]. Since the first comprehensive 
transcriptome analysis of Arabidopsis thaliana plants 
infected with a geminivirus [33], the transcriptional 
changes triggered by geminivirus infection have been 
characterized in several plant species, including crops 
such as cassava, mung bean, melon, cotton, and various 
species from the Solanaceae family [34–43]. However, in 
general, few commonalities are detected if their results 
are compared, probably due to the differences in the 
experimental conditions and design and /or the timing 
for tissue sampling.

The expression of host small RNAs (sRNAs) during 
geminivirus infection is less characterized than that of 
the mRNA transcriptome. Most studies focus on a spe-
cific microRNA (miRNA) and its targets, or on miRNAs 
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that regulate a specific cellular process [25, 44–47]. By 
this approach some miRNAs involved in tomato-ToLC-
NDV interaction, such as sly-miR159 and sly-miR166c, 
have been identified [25, 47]. However, to the best of 
our knowledge, the host genome-wide sRNA landscape 
changes during a geminiviral infection have not yet been 
characterized.

Geminiviral proteins affect the functioning of the cel-
lular methyl cycle and interfere with the host DNA meth-
ylation machinery at different steps. Viral proteins, such 
as TrAP, Rep and V2, are able to interfere with the DNA 
methylation levels at certain host loci (mainly trans-
posons (TEs) or repeats) or transgenes that are tran-
scriptionally silenced [17, 18, 48–53]. Although an early 
attempt using methylation-sensitive amplification poly-
morphism showed changes in DNA methylation levels at 
certain tomato loci during the infection with the begomo-
virus Tomato yellow leaf curl Sardinia virus (TYLCSV) 
[54], a single nucleotide resolution analysis of the tomato 
methylome upon geminiviral infection is still needed. 
Despite the numerous genome-wide analyses carried out 
to study plant-geminivirus interactions, no integrated 
study of mRNA, sRNA, and methylome profiling along 
the different stages of the infection is available. Using 
short-read sequencing, we have followed the changes in 
the mRNA and sRNA transcriptomes of TYLCV-infected 
tomato plants at four time points (2, 7, 14, and 21  days 
post-inoculation, dpi), as well as the tomato methylome 
at 14 dpi by whole-genome bisulfite sequencing (WGBS). 
Analysis and integration of these data provided an over-
view of the changes in host gene expression as well as its 
dependency on sRNA regulation (miRNA and phased 
secondary small interfering RNAs (phasiRNA)) and DNA 
methylation during TYLCV infection. This study repre-
sents the first comprehensive analysis of the changes in 
tomato mRNA and sRNA transcriptome and methylome 
upon a geminivirus infection.

Results
Transcriptional changes during TYLCV infection in tomato 
plants
Tomato plants were infected with TYLCV by agroin-
oculation. As controls, plants were exposed to Agrobac-
terium tumefaciens carrying a binary plasmid (mock) or 
were non-treated (naïve plants) (Fig. S1). Symptom devel-
opment was measured using a semi-quantitative scale, in 
which 0 corresponds to no symptoms and 5 to the most 
severe symptoms including curling and yellowing of the 
leaflets and inhibition of plant growth. Mild TYLCV 
symptoms appeared in some plants at 7 dpi, while at 14 
dpi, all inoculated plants displayed typical TYLCV severe 
symptoms that became more intense at 21 dpi (Fig. S2A).

Apical leaf tissue was collected at 2, 7, 14, and 21 dpi 
and DNA was extracted to quantify the accumulation of 
total viral DNA. In accordance with symptom develop-
ment, viral DNA was not detected at 2 dpi but at 7 dpi. 
The amount of viral DNA increased markedly by 14 dpi 
and remained at similar levels one week later (21 dpi) 
(Fig. S2B). RNA was extracted from the same samples 
and RNA-seq was performed by Illumina sequencing 
(36 libraries; three biological replicates of naïve, mock 
and TYLCV-infected plants at the four time points). We 
obtained between 27 and 64 million raw pair-end reads 
(Mr) per sample, with an average of 33.7 Mr, and the 
mapping rate to the tomato genome ranged from 93 to 
95% (Dataset S1). In a prior publication, the transcrip-
tion of viral genes was thoroughly examined by mapping 
the cleaned reads from infected samples to the TYLCV 
genome [55].

Hierarchical clustering of the transcriptomes showed 
that at 2 dpi infected and non-infected (naïve and mock) 
samples cluster together, indicating that there were no 
major changes in the tomato transcriptome at that time 
point (Fig.  1A). Although TYLCV DNA was detected 
systemically at the apical leaves at 7 dpi (Fig. S2B), the 
changes in the tomato transcriptional landscape were 
limited, as mock and TYLCV-infected samples arranged 
together in the hierarchical clustering analysis whereas 
naïve samples clustered separately. This suggests that in 
addition to TYLCV, a substantial part of the transcrip-
tome changes in the infected plants at 7 dpi were due 
to the presence of Agrobacterium (Fig.  1A). However, 
at 14 dpi, the TYLCV-infected samples clustered sepa-
rately from naïve and mock samples and this pattern 
was maintained at 21 dpi, showing extensive changes in 
tomato transcriptome upon TYLCV infection (Fig.  1A). 
When comparing TYLCV-infected versus mock sam-
ples, the number of differentially expressed genes (DEGs) 
increased during the systemic infection, ranging from 6 
DEGs at 2 dpi to 6122 DEGs at 21 dpi (Fig. 1B). The num-
ber of DEGs at 7 dpi represented 1.8% of tomato genes 
(considering 34,727 tomato genes [1]) and this amount 
increased almost fourfold at 14 dpi (6.9%) when viral 
DNA accumulation had reached a plateau. Although 
the amount of viral DNA was maintained from 14 to 21 
dpi (Fig. S2B) the number of DEGs increased more than 
twofold during this time frame, indicating that there 
were transcriptional changes in the host, even though 
the amount of viral DNA did not significantly change 
(Fig.  1B). Most of the DEGs were upregulated during 
TYLCV infection, with a large proportion of them con-
sistently maintaining their overexpression throughout 
time. Sixty-five percent (383/582) of the genes that were 
induced at 7 dpi remained upregulated at 14 and 21 dpi 
and 92% (1714/1867) of the genes overexpressed at 14 
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dpi, stayed induced at 21 dpi. Interestingly 20% (115/582) 
of the genes that were induced at 7 dpi were also upregu-
lated at 21 dpi but not at 14 dpi (Fig. 1C). For the down-
regulated genes the scenario was different as only 27% 
(14/51) of the repressed genes at 7 dpi, remained down-
regulated throughout the infection, and a similar per-
centage (25,5%, 13/51) was repressed at 7 and 21 dpi but 
not at 14 dpi. On the other hand, most of the downregu-
lated genes at 14 dpi (76.5%, 411/537) stayed repressed 
one week later (21 dpi) (Fig. 1C).

Functional enrichment of tomato DEGs in response 
to TYLCV infection
We identified the biological processes significantly 
enriched in up- or downregulated genes during TYLCV 
infection using the Gene Set Enrichment Analysis 
(GSEA) computational method [56] with the MapMan 
ontology [57]. Among repressed genes, we observed a 

significant enrichment of those related to translation, 
primary (carbohydrates and amino acids) and second-
ary (flavonoids) metabolism and photosynthesis (Fig.  2, 
Dataset S2). On the other hand, we observed a signifi-
cant enrichment of upregulated genes associated with 
biotic stress, defense response, RNAi, and hormone 
responses. It is worth mentioning that most of the pro-
cesses induced at 21 dpi, were already induced at 14 dpi 
and many of them also at 7 dpi. An interesting exception 
is the ethylene-mediated response that was induced at 
the beginning of the infection and at 21 dpi, but not at 14 
dpi (Fig. 2, Dataset S2). The analysis of the Gene ontol-
ogy (GO) functional enrichment of the DEGs in the bio-
logical processes category resulted in the identification of 
similar categories to the GSEA for the upregulated and 
downregulated genes. However, using GO functional 
enrichment analysis we identified additional biological 
processes over-represented for induced genes at 21 dpi, 

Fig. 1 Transcriptional changes during TYLCV infection in tomato plants. A Gene Expression profiles of tomato genes in naïve (blue), mock (green) 
and TYLCV‑infected samples (red) at 2, 7, 14 and 21 dpi are shown in heatmaps with hierarchical clustering. The blue color bar on the right 
indicates the normalized read counts. B Stacked bar charts showing the numbers of upregulated (red) and downregulated (blue) DEGs comparing 
TYLCV‑infected versus mock samples during TYLCV infection at 2, 7, 14 and 21 dpi. C Venn diagram showing common and specific upregulated 
and downregulated DEGs at 7, 14 and 21 dpi. For B) and C) only DEGs with FDR adjusted p‑value ≤ 0.05 and ≥ 1.5‑fold induction or ≤ 0.75‑fold 
repression, were represented
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such as autophagy, vesicle-mediated transport, or ubiqui-
tin-dependent protein catabolic process via the multive-
sicular body sorting pathway (Fig. S3).

A closer look at the “biotic stress” and “defense 
response” categories at 14 and 21 dpi using Map-
Man, revealed that many of the subcategories related 
to the plant immune response, including plasma 
membrane pattern recognition receptors (RLKs and 
RLPs), Receptor Like Cytoplasmatic Kinases (RLCKs), 
intracellular receptors (NLRs), transcription fac-
tors, and pathogenesis-related proteins (PR), were 

overrepresented in upregulated genes (Fig. S4A to S4F). 
Based on the nature of the ligand-binding extracellular 
domain of the RLKs/RLPs, they are divided into dif-
ferent subfamilies and several of them were overrep-
resented with upregulated genes: LRR (Leucine-Rich 
Repeat), DUF26 (Domain of Unknown Function 26), 
LRK10-like (Leaf Rust 10 Disease-Resistance Locus 
Receptor-Like Protein Kinase), S-locus (Self-incompat-
ibility locus), and Thaumatin (Fig. S4A and S4B). The 
LRR-RLK constitutes the largest subfamily (around 
38% of tomato RLKs) and it is divided into 15 groups 

Fig. 2 Biological processes transcriptionally deregulated in tomato in response to TYLCV infection. Gene Set Enrichment Analysis (GSEA) 
computational method and MapMan ontology as the source for the gene sets were used to identify the biological processes significantly enriched 
in upregulated (red‑colored) or downregulated genes (blue‑colored) at 7, 14 and 21 dpi. No color indicates no statistically significant enrichment 
(FDR adjusted p‑value ≤ 0.05)
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(from I to XV) [58, 59], three of which (X, XI and XII) 
were overrepresented with upregulated genes at both 
time points (Fig. S4B). Although most RLKs are local-
ized in the plasma membrane, there is a large RLK 
subfamily named RLCK with 128 members in tomato, 
that does not possess either an extracellular region or a 
transmembrane domain. Interestingly, the group VII of 
the RLCKs, which contains members that mediate PTI 
and contribute to resistance against bacterial and fun-
gal pathogens as well as aphids [60–64], was the only 
RLCK group overrepresented with upregulated genes 
at 14 and 21 dpi (Fig. S4C). The intracellular NLRs 
involved in ETI, were also significantly induced upon 
TYLCV infection (Fig. 2, Fig. S4D). Furthermore, at 14 
and 21 dpi the MapMan BIN holding transcription fac-
tors which are involved in biotic stress responses, such 
as WRKY, DOF (DNA-binding One Zinc Finger) and 
ERF (Ethylene Responsive Factor), and the PR genes 
were also overrepresented in upregulated genes 
(Fig.  2, Fig. S4E and S4F). This suggests that TYLCV 
infection induced the transcriptional reprogramming of 
the host to establish the plant immune response. Addi-
tionally, the categories that included genes involved in 
hormone-dependent responses, such as jasmonic acid 
(JA), ethylene, and abscisic acid (ABA), were also sig-
nificantly enriched in upregulated genes as response to 
the infection (Fig. 2, Fig. S4G).

The ontology category that included the main defense 
mechanism against plant viruses, i.e., RNA silencing, was 
also overrepresented in upregulated genes in the GSEA 
and MapMan analyses (Fig.  2, Dataset S2). To charac-
terize this response in more detail, we examined the 
expression of the main Arabidopsis orthologues of DCL 
(DICER-like), AGO (ARGONAUTE) and RDR (RNA-
dependent RNA polymerase) genes. The expression of the 
core RNA silencing machinery genes increased steadily 
after the infection, reaching the highest levels at 21 dpi 
(Table 1).

Dynamics of the transcriptional changes during TYLCV 
infection
To better understand the genome-wide transcriptional 
changes upon TYLCV infection in a time-dependent 
manner, we performed a cluster analysis of the DEGs 
and obtained 48 clusters. The upregulated genes were 
comprised in 32 clusters while the downregulated ones 
in 13 (Fig. 3, Fig. S5, Dataset S3). A few genes included 
in tree clusters (11, 12 and 13), changed from induced to 
repressed or vice versa along the infection; however, no 
obvious biological or functional relations between these 
genes were found.

As mentioned before, most genes that were induced at 
early stages of infection (7 dpi) stayed deregulated up to 
21 dpi (Fig. 3, Fig. S5). GO enrichment analysis of those 

Table 1 Differentially expressed tomato genes involved in post‑transcriptional gene silencing during TYLCV infection

* RDR3.2 (Solyc06g051170.2) correspond to the Ty‑1/Ty‑3 resistance gene
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genes, identified functional categories mainly related to 
defense response and gene silencing (Fig. S6A). When 
MapMan analysis was performed on those genes, over-
represented terms were related to genes encoding stress 
biotic receptors, mainly NLR genes and signaling recep-
tor kinase genes, including LRR-RLKs (groups XI and 
XII) (Fig. S6B). This analysis indicated that the first 
antiviral response from the plant was a wave of induced 
genes that was maintained throughout the infection and 
comprised the two main plant defense mechanisms: gene 
silencing and the immune response. A second wave of 
upregulated genes at 14 dpi which stayed induced at 21 
dpi, belonged to other GO categories related to response 
to pathogens, such as: (i) protein autophosphorylation 
of calcium dependent protein kinases [65, 66], (ii) pro-
tein N-linked glycosylation, which plays a relevant role 
in plant immunity against pathogens and pest [67, 68], 
(iii) signal transduction, including RLKs and (iv) locali-
zation, which encompasses components of the vesicle 
trafficking pathway (Fig. S6C). On the other hand, there 
were fewer genes repressed in response to TYLCV infec-
tion and most of them were deregulated at 14 dpi and 
stayed repressed at 21 dpi (Fig. 3). Functional enrichment 
analysis of these late infection-repressed genes identified 
overrepresented terms such as photosynthesis, glycolytic 
process, plastid organization, alpha-amino acid meta-
bolic process and cellular response to oxidative stress 
(Fig. S6D).

Tomato small RNA profile during TYLCV infection
TYLCV infection interfere with the proper functioning 
of the plant gene silencing pathway by the production of 
viral suppressors of RNAi (VSRs) and the generation of 
large amounts of viral RNAs and sRNAs that could “over-
flow” the RNAi machinery [55, 69]. To assess the impact 
of TYLCV on gene silencing regulation in tomato, we 
analyzed the host small RNA (sRNA) profile during the 
viral infection. Deep sequencing of sRNA libraries (24 
in total from naïve, mock and TYLCV-infected samples) 
was performed on two of the three biological replicates 
used to resolve the transcriptome at 2, 7, 14 and 21 dpi 
(Fig. S1, Dataset S1). The total number of raw sRNA reads 
ranged from 64 to 92 million (81 high-quality million 
reads on average per sample, Dataset S1). The normalized 
amount of total cleaned 18–26-nt sequences that were 
mapped to tomato genome discarding the reads from 

other non-coding RNAs (rRNAs, tRNAs, snRNAs and 
snoRNAs), ranged from 82 to 89% (average 86%, Dataset 
S4). The cleaned reads from infected samples were also 
mapped to the TYLCV genome, and the characterization 
of the viral sRNA landscape during the infection was 
previously described [55].

The analysis of the accumulation and size distribution 
of the tomato sRNAs, showed that in agreement with 
previous data for tomato leaves [70, 71], the 24-nt sRNAs 
were the most abundant size class (51%) followed by 21-, 
22- and 23-nt sRNAs that accumulate in similar quanti-
ties (10%, 12% and 16%, respectively) (Fig.  4A, Dataset 
S4). No significant changes in the overall tomato sRNA 
size distribution between naïve, mock and infected 
samples could be detected throughout TYLCV infection 
(Fig. 4A).

Hierarchical clustering analysis of the total tomato 
sRNA population from naïve, mock, and TYLCV-infected 
samples showed that at 14 dpi, sRNAs from TYLCV-
infected tissues clustered separately from mock and naïve 
samples similarly to the gene expression data. This distri-
bution was maintained at 21 dpi as well (Fig. 4B).

We identified and quantified the differentially 
expressed siRNA loci (DEsiRNAs) of 21-, 22- and 24-nt 
throughout TYLCV infection and mapped them to gene 
bodies and promoters (defined as 2 kb upstream the tran-
scriptional start site) of tomato protein-coding genes, and 
to TEs/repeats. The number of DEsiRNAs was similar at 
7 and 14 dpi but larger at TEs/repeats than at gene bodies 
or promoters (Fig. S7, Datasets S5-S10). However, there 
was a significant increase in the number of DEsiRNAs 
from 14 to 21 dpi, mainly due to the increase in the num-
ber of differentially expressed 24-nt hetsiRNAs (29-fold 
for those at gene bodies, 22-fold at promoters and 13-fold 
at TEs/repeats) (Fig. S7, Datasets S5-S10).

Changes in the microRNA expression profile in tomato 
during TYLCV infection
MicroRNAs (miRNAs) are key regulators of cellular 
homeostasis and are involved in many essential cel-
lular processes, including cell defense responses [72, 
73]. Transcription of MIR genes results in generation 
of hairpin miRNA transcripts, that are processed by 
the RNA silencing machinery, typically producing 21- 
or 22-nt mature miRNAs [74]. The miRNAs detected 
in our infected and control samples at any time point 

(See figure on next page.)
Fig. 3 Dynamics of transcriptional regulation during TYLCV infection in tomato plants. Clustering of DEGs in tomato plants in response to TYLCV 
infection (2, 7, 14 and 21 dpi) using SplineCluster algorithm. Cluster membership is shown by colors on the left and numbered on the right (missing 
cluster numbers are represented by dots). Expression of transcripts in clusters is presented as heatmap. The color scale for gene expression 
on the right, red to blue, represents highly positive to highly negative  log2FC (FC: ratio TYLCV/mock). Gray indicates not differentially expressed 
genes
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Fig. 3 (See legend on previous page.)
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represented approximately 7% of the total sRNA fraction 
that could be assigned to the tomato genome (Dataset 
S4). To examine the miRNA population in more detail, 
we first compared the miRNA sequences with annotated 

miRNAs in miRBase database and identified 135 unique 
tomato miRNA that belonged to 37miRNA families and 
two unique miRNAs that belong to a new family (sly-
miR1-5p) (Table  2, Fig. S8, Dataset S11). Around 28.2% 

Fig. 4 Tomato sRNA profile during TYLCV infection. A Percentage of each size‑class of 20–25‑nt sRNA reads relative to the total sRNA reads 
that mapped to the tomato genome (18–26‑nt) in naïve, mock and TYLCV‑infected tomato samples at 2, 7, 14 and 21 dpi. Each bar corresponds 
to one biological replicate. B Expression of tomato sRNAs in naïve (blue), mock (green) and TYLCV infected samples (red) at 2, 7, 14 and 21 dpi are 
shown in heatmaps with hierarchical clustering. The blue color bar on the right, indicates the normalized read counts per million (CPM)
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of these miRNAs were conserved in other plant spe-
cies, 9.6% were solanaceous-specific, and 13.3% were S. 
lycopersicum-specific. Moreover, we found unique unan-
notated miRNAs (46.4%) that belonged to 22 known 
families (miRNA isoforms) and 2 unannotated miRNAs 
that belong to the new sly-miR1-5p family (Table 2, Data-
set S11) [75, 76]. The sly-miR166 family was the one with 
the highest number of expressed miRNAs in our dataset 
(Fig. S8, Dataset S11).

The comparison of the miRNA expression between 
infected and mock samples let us identify the differen-
tially expressed miRNAs (DEmiRNAs) during TYLCV 
infection. We could not detect any DEmiRNAs at 2 dpi 

or even at the onset of the symptoms at 7 dpi, when the 
transcriptional changes in tomato have already  started 
(Fig. 1A). At 14 dpi, once the relative levels of viral DNA 
reached a plateau and around 7% of the tomato genes 
were deregulated (Fig.  1B), only 5 miRNAs were dif-
ferentially expressed. However, at 21 dpi there was an 
increase in the number of DEmiRNAs and we identified 
32 miRNAs whose expression was deregulated with a 
similar number of miRNAs induced and repressed (15 
and 17, respectively) (Fig.  5, Dataset S11). The com-
parison among the DEmiRNAs between 14 and 21 dpi 
showed that one out of the five was repressed just at 
14 dpi (sly-miR530), two did not change their behavior 
(sly-miR167 and sly-miR9474), and the other two (sly-
miR9471 and sly-miR10532) were deregulated in the 
opposite direction at both time points (Fig. 5). Regard-
ing the nature of these DEmiRNAs, a detailed analysis  
using miRNA databases and published results showed 
that the tomato miRNAs deregulated upon the infec-
tion targeted mainly genes encoding: (i) transcription 
factors (sly-miR156, sly-miR159-3p, sly-miR166-3p, 
sly-miR171, sly-miR319-3p, miR396-5p); (ii) transcripts  
involved in auxin response (sly-miR160, sly-miR167, sly-
miR393); (iii) transcripts from actors of the gene silencing  
machinery (sly-miR168, sly-miR403) and (iv) immune 
receptors, RLKs and NLRs (sly-miR390, sly-miRNA396- 
3p, sly-miRNA396-5p, sly-miRNA482, sly-miRNA6023, 
sly-miRNA6024, sly-miRNA6026, sly-miRNA6027-3p).

Table 2 Classification of tomato miRNAs identified in the sRNA‑
seq dataset

a  novel-sly-miR1-5p

Unique Families

Annotated miRNA
 Conserved 38 14

 Solanaceae‑specific 13 10

 S. lycopersicum‑specific 18 17

Unannotated miRNA
 Known family 64 22

 New family 2 1a

Fig. 5 Tomato miRNA expression changes during TYLCV infection. miRNA expression changes (|log2FC|, absolute value of the  log2FC) 
in TYLCV‑infected samples compared with mock‑infected at 14 and 21 dpi. Upregulated miRNAs are shown in red and downregulated ones in blue
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Posttranscriptional regulation of the miRNA target genes 
during TYLCV infection
To assess the impact of the deregulation of tomato miR-
NAs on the accumulation of their target transcripts, 
we compared the expression levels of the  DEmiR-
NAs and their predicted targets [77, 78]. The number 
of predicted target genes for the deregulated miRNAs 
extended to 83 at 14 dpi and to 684 at 21 dpi (Fig. 6A). 
We checked the expression levels of those predicted 
target genes in our mRNA transcriptome dataset and 
at 21 dpi, only 25% of the pairs showed the expected 
inverse canonical relationship for a miRNA and its tar-
get (Fig. 6A and 6B). In 27% of the pairs, miRNAs and 
the target transcripts were deregulated in the same 
direction (both induced or repressed) and in almost 
half of the pairs (48%) there were no changes in the 
expression of the target genes, although their matching 
miRNAs were deregulated (Fig.  6A and 6B). This non-
canonical pattern of the miRNA-target pairs was also 
detected at 14 dpi (Fig.  6A) and indicated that upon 
TYLCV infection, transcriptional regulation was the 
most important level of regulation and that miRNAs  
mainly modulates the abundance of transcripts [79–81].  
Functional enrichment analysis (GO) of the genes 
whose transcripts were targets of the DEmiRNAs at 21 
dpi, showed that the categories related to plant defense 
response and morphogenesis/development were over-
represented (Fig. S9A). Similarly, MapMan enriched 
terms were the ones containing biotic stress receptors 
(NLRs, among others) and receptor kinases involved in 
signaling, which included RLKs and RLPs (Fig. S9B), 
indicating that upon infection, defense response genes 
were the most abundant targets for the DEmiRNAs.

To validate the miRNA-target pairs predicted from our 
datasets, we took advantage of the degradome sequenc-
ing data generated from leaves of the same tomato vari-
ety (Moneymaker) infected with a closely related TYLCV 
isolate (TYLCV-[CN:SH2], [82]). Four degradome data-
sets were analyzed with the CleaveLand4 tool [83] using 
our tomato sRNA-seq and transcriptome sequences. 
When comparing the levels of expression from the 
DEmiRNAs and their target transcripts, we found a simi-
lar pattern to that previously described above in Fig.  6: 
the canonical pattern for the expression of the miRNAs 
and their targets was found in just 39% of the pairs 
(Fig. S10A and S10B, Dataset S12).

Comparative expression among phasiRNAs, their predicted 
target genes and PHAS loci during TYLCV infection
Some 22- or 21-nt miRNAs can act as triggers for the 
biogenesis of phased secondary small interfering RNAs 
(phasiRNAs) by targeting specific phasiRNA precursor 
transcripts produced from PHAS loci [84]. Using pha-
siRNA and PHAS prediction pipeline, we found more 
than 12,000 phasiRNAs derived from 799 PHAS loci 
(Dataset S11 and Dataset S13). To investigate the changes 
in the phasiRNA levels we compared their expression 
between virus and mock samples and identified the pha-
siRNAs that were differentially expressed (DEphasiR-
NAs) during the infection. Like the DEmiRNAs, very 
few DEphasiRNAs were detected at the beginning of the 
infection (none at 2 dpi and 3 at 7 dpi). The number of 
DEphasiRNAs increased later in the infection from 31 to 
300 at 14 and 21 dpi, respectively (Fig. 7A, Dataset S14). 
The number of predicted target genes for the deregulated 
phasiRNAs at 21 dpi reached more than two thousand 

Fig. 6 Expression levels of the DEmiRNAs and their predicted target genes in TYLCV‑infected tomato plants. A Classification of the putative 
miRNA‑target pairs at 14 and 21 dpi based on their expression levels. UP: upregulation, DW: downregulation, nc (no change): target gene 
is not differentially expressed. B Expression level  (log2FC for the ratio TYLCV/mock) at 21 dpi of the DEmiRNAs (x axis) and their target genes (y axis)
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genes (2697) (Fig.  7B). Similarly, as observed for the 
miRNA-target pairs (Fig. 6), the correlation between the 
expression levels of the deregulated phasiRNAs and their 
predicted target genes was weak (Fig. 7B and 7C). Func-
tional enrichment of the putative target genes for the 
DEphasiRNAs showed an overrepresentation of terms 
related to defense response (including biotic stress recep-
tors, NLRs, and several families of RLKs), gene silencing, 
cell cycle, cell wall biogenesis and vacuolar acidifica-
tion and localization (vesicle trafficking) (Fig. S11A and 
S11B). Using the afore mentioned degradome data from 
tomato plants infected with TYLCV [82], we found that 
at 21 dpi, 102 of the DEphasiRNAs could target the 
degradation of 120 tomato transcripts, and the inverse 
correlation between the expression of the deregulated 
phasiRNAs and their target genes was observed only in 
approximately 40% of the pairs (Fig. S12).

We selected the PHAS loci whose transcripts were 
putative target genes of 21- and 22-nt miRNAs and 
whose phasiRNAs were deregulated during infection. 
To integrate their interactions in a more visual and com-
prehensive manner, we built a network that showed the 

expression profiles of the initial miRNA triggers, the 
PHAS loci and the DEphasiRNAs at 14 dpi (Fig. S13) and 
21 dpi (Fig. 8). The number of miRNA/PHAS loci interac-
tions in the network increased at 21 dpi, although some 
of them were already established at 14 dpi (thick black 
lines in Fig.  8 and Fig. S13). The network showed that 
at 21 dpi, 24 miRNAs targeted 38 PHAS loci that were 
essentially plant immunity genes such as RLKs, RLPs 
and NLRs (CNLs and TNLs) (Fig.  8, Table  3). Among 
the miRNA controlling the production of NLR-derived 
phasiRNAs deregulated by TYLCV, we found members 
of the miR482/2118 conserved superfamily, as well as 
Solanaceae specific ones such as sly-miR6026 and sly-
miR6027 [85–87]. The network highlighted a high level of 
interlinking produced by miRNAs that target many loci 
(e.g., sly-miR482 and sly-miR6024), and PHAS loci whose 
transcripts could be targeted by miRNAs from different 
families (Fig. 8). It is important to point out that some of 
the miRNA-PHAS loci interactions proposed in the net-
work were also detected using the tomato degradome 
dataset from TYLCV-infected tomato plants [82] (green 
dots in Fig. 8 and Fig. S13).

Fig. 7 Expression levels of the DEphasiRNAs and their predicted target genes in TYLCV‑infected tomato plants. A Stacked bar charts 
showing the number of DEphasiRNAs comparing TYLCV‑infected versus mock samples at 14 and 21 dpi, indicating the upregulated (UP, red) 
and downregulated (DOWN, blue) phasiRNAs. B Number of putative phasiRNA‑target pairs at 14 and 21 dpi based on the miRNA and the target 
genes expression levels. UP: upregulation, DW: downregulation, nc (no change): target gene is not differentially expressed. C Expression level 
 (log2FC for the ratio TYLCV/mock) at 21 dpi of the DEphasiRNAs (x axis) and their target genes (y axis)
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DNA methylation landscape of the tomato genome 
upon TYLCV infection
To evaluate the impact on the plant methylome dur-
ing geminiviral infection, we performed whole genome 
bisulfite sequencing (WGBS) on two biological replicates 
from mock and TYLCV-infected tomato plants used to 
analyze the transcriptome and sRNA profile at 14 dpi 
(Dataset S1). On average, 132 million 100-bp paired-end 

reads per sample (ranging between, 128–137 million) 
were obtained, which in total contained more than 395 
million uniquely mapped reads to the tomato genome, 
with an average coverage of 23.6 × and a mean conver-
sion rate based on the cytosine methylation levels in the 
chloroplast genome for the four samples of 99.74% (Data-
set S15). The WGBS reads from infected samples were 
also mapped to the TYLCV genome and the characteri-
zation of the virus methylome at 14 dpi, was previously 
described [55].

More than 60% of the tomato genome consists of 
heavily methylated transposable elements that are 
concentrated in the pericentromeric heterochromatin 
regions [1]. Distribution of the 5-methylcytosine levels 
in the three sequence contexts (CG, CHG, CHH, where 
H = A, C or T) across the tomato genome in mock 
and TYLCV-infected plants, revealed no significant 
genome-wide changes in DNA methylation levels upon 
the infection (Fig. 9A, Fig. S14). We could detect some 
differences between infected and mock plants, in the 
CG and CHG methylation levels at the TSS and PAS of 
genes but with some variation between biological rep-
licates that did not allow us to arrive to a robust con-
clusion (Fig.  9B). Specific analysis of the methylation 
levels at genes and TEs/repeats for each methylation 

Fig. 8 Tomato miRNA‑PHAS loci‑phasiRNA network upon TYLCV infection at 21 dpi. Network representation of the miRNAs (21 and 22‑nt, 
rhombus) that trigger the formation of DEphasiRNAs (squares) from their target PHAS loci transcripts (rectangles) at 21 dpi. Each geometrical form 
is surrounded by a colored line that indicates their differential expression pattern: red for induced, blue for repressed and gray when they are 
not differentially expressed. The miRNA isoform that triggers each PHAS loci is indicated in Dataset S7. The different types of PHAS loci are marked 
by colors and indicated in the figure legend. The black edges connect a miRNA and a targeting PHAS locus, the thick ones indicate that the pair 
was also observed at 14 dpi (Fig. S13). miRNA‑PHAS locus pairs that have also been identified using the degradome analysis are marked with a green 
circle

Table 3 Tomato PHAS loci that produced DEphasiRNAs at 14 
and 21 dpi and their miRNA triggers

RLP Receptor‑Like Proteins, RLK Receptor‑Like Kinases, CNL Coiled‑coil 
N‑terminal Nucleotide‑binding Leucine‑rich repeat receptor, TNL Toll/
interleukin‑1 N‑terminal Nucleotide‑binding Leucine‑rich repeat receptor, NBS 
Nucleotide Binding Site, LRR Leucine Rich Repeat, Misc Miscellaneous

dpi miRNA PHAS loci DEphasiRNA

14 11 3 RLP
4 CNL
1 TNL
1 Misc

78

21 24 5 RLP
1 RLK
21 CNL
2 TNL
2 NBS‑LRR
7 Misc

209
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context, revealed that no substantial changes occurred 
at the promoters of genes or at TEs/repeats upon 
TYLCV infection (Fig.  9B). However, the expression 
of the main genes that control DNA methylation were 
generally slightly induced in TYLCV-infected plants 
(DNA methyltransferases, DNA demethylases, pro-
teins involved in RNA-dependent DNA methylation 
(RdDM), and chromatin factors such as histone modi-
fying enzymes and chromatin remodeling complexes) 
(Table 4).

To identify regions in the tomato genome embracing 
changes in DNA methylation upon TYLCV infection, we 

determined the differentially methylated regions (DMRs). 
We found 1811 DMRs in the three DNA methylation con-
texts that were associated with hyper- or hypomethylation. 
The CG context showed the greatest amount of DMRs 
(860) and the CHH context the smallest (294) (Fig.  9C). 
The number of the DMRs was comparable in genes (635) 
and TEs/repeats (658), and the ratio between hyper- and 
hypomethylated DMRs was higher in genes (0.96) than in 
TEs/repeats (0.73) (Fig. 9D). As DNA methylation in plants 
could be established by RdDM, we identified the genomic 
regions to which tomato 24-nt siRNAs were mapped and 
determined changes in their accumulation upon TYLCV 

GenesA B

C D

TEs

Fig. 9 Tomato epigenome landscape upon TYLCV infection. A Density plot of 5‑methylcytosine in different contexts (CG, CHG and CHH) 
across tomato chromosomes for TYLCV‑infected and mock samples. Chromosomes names are indicated on the outer rims. B Methylation 
rate in genes and TEs/repeats in the two biological replicates (R1 and R2) from mock and infected plants. Transcriptional start site (TSS) 
and polyadenylation sites (PAS) are indicated. C Total number and % of DMRs(TYLCV/mock) on each methylation context (CG, CHG and CHH). D 
Number of hypo‑methylated and hyper‑methylated regions in genes and TEs/repeats
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infection. No genome-wide correlation was found between 
the DMRs and the changes in the accumulation of siRNAs 
for the 24-nt siRNA enriched loci (data not shown, same 
result for 21- and 22-nt siRNA enriched loci).

DNA methylation is a common epigenetic mark that 
is associated with the inactivation of transcription and 
therefore changes in DNA methylation can influence 
gene expression [88, 89]. To integrate the information 
of the tomato transcriptome and methylome obtained 
during TYLCV infection, we checked whether there 
was correlation between the loci encompassing DMRs 
(hyper- or hypomethylated regions) and their expression 
level. A total of 635 of the DMRs were mapped in 597 

genes, and 6.2% of them were differentially expressed 
(37 DEGs) (Table  5). Among the 16 hypermethylated 
genes, the percentage of induced (81%) versus repressed 
(19%) genes (Table  5) was very similar to the propor-
tion of the entire induced and repressed genes during 
TYLCV infection (78% and 22%, respectively) (Fig. 1B). 
On the other hand, from the hypomethylated regions 
that overlapped with DEGs (21), 9% were downregulated 
and 91% (19 genes) were induced, suggesting that the 
reduced methylation at these genes could be regulating 
their induction. Interestingly, 4 from those 19 induced 
and hypomethylated genes were involved in defense 
response.

Table 4 Differentially expressed tomato genes involved in transcriptional gene silencing during TYLCV infection
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Discussion
In this study, we performed an integrative analysis to 
decipher plant gene regulation at different levels in 
response to the viral infection using a relevant agronomic 
system: tomato and the geminivirus TYLCV. To address 
this objective, we set up an experimental design to deter-
mine the changes in the mRNA and sRNA transcrip-
tome at significant steps of the infection process: before 
the viral accumulation was detected (2 dpi), when the 
amount of viral molecules was exponentially growing but 
the plants were still symptomless or showed light symp-
toms (7 dpi), and when the infection was well stablished 
with the highest levels of viral DNA accumulation and 
severe symptoms in all plants (14 and 21 dpi). The study 
was completed with the characterization of the changes 
in the host methylome upon TYLCV infection at 14 dpi. 
To evaluate the biological significance of the results, we 
must contemplate that the data correspond to a systemic 
infection from tomato apical leaves, in which the vast 
majority of the cells analyzed do not contain the virus, 
since TYLCV just replicates and accumulates in phloem-
companion cells (0.8% to 2% of the leaf cells, unpublished 
results) [90]. In this scenario, we must consider that the 
variations in host expression mainly corresponded to 
changes generated in infected and uninfected cells and 
therefore, it is likely that the specific alterations in the 
infected cells, go unnoticed. Omics approaches at a single 
cell resolution will be required to accurately characterize 
the molecular and physiological changes of plant-gemin-
ivirus interaction.

In plants with no or weak symptoms, we detected lim-
ited changes in the transcriptome, although the quanti-
fication of viral DNA by qPCR showed that TYLCV was 
actively replicating (7 dpi). From then on, the transcrip-
tomic variations detected seem to depend on the long-
lasting viral presence and not in the amount of viral DNA 
since they correlated with the increase in symptom inten-
sity seen from 7 to 21 dpi but not with the viral titer.

Limited commonalities arise when comparing the 
functional categorization of tomato deregulated genes 
with the four transcriptomic analyses performed with 
TYLCV-related viruses (TYLCSV in S. lycopersicum [36, 
38] or TYLCV in S. lycopersicum [40] or N. benthamiana 
[41]), probably due to the diverse experimental condi-
tions on each study, including the sample collection time 

points (ranging from 14 to 56 dpi). Common overrepre-
sented categories with at least one of the four mentioned 
studies, were observed for the induced genes (cellular 
response to stress, regulation of transcription, autophagy, 
intracellular transport, and abscisic acid metabolism), as 
well as for the repressed ones (terms related to photosyn-
thesis and carbohydrate metabolic processes).

To obtain a comprehensive representation of the 
transcriptional changes, we took advantage of our 
experimental design and analyzed the transcriptional 
profile of the DEGs through time. Of particular inter-
est were the two defense-related processes that were 
over-represented throughout the infection (7, 14, 
and 21 dpi) among the induced genes, RNAi and the 
immune response (Fig.  2, Fig. S4). Genes involved 
in RNAi-mediated antiviral defense, such as DCL2, 
DCL4, RDR1 and AGO2 were upregulated at the onset 
of infection (7 dpi) and showed the highest levels of 
induction at 21 dpi (Table  1). A similar behavior was 
observed for AGO7 which is associated with the pro-
duction of secondary siRNAs in Arabidopsis [15, 16]. 
Moreover, the expression level of the susceptible 
allele of the TYLCV-resistance gene, Ty-1 (RDR3.2), 
was just slightly induced at the late stages of TYLCV 
infection, as previously described [91] (Table 1). Simi-
larly, plant immune receptors such as NLRs or RLKs/
RLPs, were induced particularly at the late stages of 
TYLCV infection (Fig. 2, Fig. S4). Among them, Sw5a, 
a CNL gene present in our tomato variety, (has been 
described as a resistance source against the begomo-
virus ToLCNDV [25]. In ToLCNDV-infected tomato 
plants, Sw5a showed sixfold upregulation and seven-
fold downregulation in resistant and susceptible culti-
vars, respectively. However, in our susceptible variety, 
Sw5a was just weakly upregulated in TYLCV-infected 
plants (1.2-fold) at the same time of infection (21 dpi). 
Sw5a expression is controlled through the transcrip-
tion factor SlMYB33 (SlGAMYB1, Solyc01g009070) 
whose accumulation depends on the action of the sly-
miR159 [25]. Changes in the expression of this miRNA 
in resistant plants, lead to a rise in the accumulation of 
SlMYB33 that produce an increase in Sw5a transcrip-
tion. In susceptible plants, this miRNA is induced, 
which correlates with a reduction in the expression of 
the transcription factor and consequently of Sw5a. In 
contrast, in our TYLCV-infected susceptible plants, 
although we also observed a rise in sly-miR159 levels, 
SlMYB33 accumulation was slightly increased, which 
could account for the observed Sw5a upregulation 
(Table  6). We also observed the upregulation of sly-
miR319 which have been shown to also target SlMYB33 
[92]. The mechanism by which the presence of gemini-
viruses induces sly-miR159 accumulation in susceptible 

Table 5 DMRs that mapped at genes in TYLCV‑infected tomato 
plants at 14 dpi
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plants is not known, nor why its induction causes the 
repression of SlMYB33 in plants infected with ToLC-
NDV but not in TYLCV-infected plants.

The categories comprising extracellular immune recep-
tors (RLKs/RLPs) and some PTI downstream elements, 
such as RLCKs, were overrepresented among the genes 
upregulated during the infection, suggesting that induc-
tion of PTI receptors is part of the plant’s defence response 
to the geminiviral infection. This result opens the possibility 
that, as occurs with NIK1 [31, 93], other RLKs/RLPs could 
participate in the defense against geminiviruses [31, 93].

During TYLCV infection, there was a substantial 
induction of many of the members of the gene silencing 
machinery that appeared to primarily target the produc-
tion of virus-derived sRNAs (vsRNAs), that at 21 dpi 
represent more than 5% of the total sRNA reads [55]. 
However, this gene induction did not have a significant 
impact in the size or the distribution of the total popula-
tion of tomato sRNAs. The number of 24-nt differentially 
expressed hetsiRNAs that mapped at genes and TEs/
repeats, showed a significant increase from 14 to 21 dpi 
(around sixfold) and 245 of the hetsiRNA enriched genes 
were deregulated at 21 dpi, suggesting a transcriptional 
control of gene expression at the later stages of infection 
(Fig. S7 and Datasets S5-S10). Nevertheless, we could not 
find siRNA enriched loci that overlapped with DMRs at 
genes or TEs/repeats. On the other hand, the presence 
of the virus did induce changes in the miRNA-mediated 
gene regulation which was especially evident once the 
symptoms have developed. miRNAs are crucial regula-
tors of the plant immunity, influencing various aspects 
of defense responses against pathogens by fine-tuning 
the expression of key genes involved in immune signaling 

such as genes encoding for ETI receptors (NLRs), tran-
scription factors, and components of defense signaling 
pathways [94]. Throughout TYLCV infection, we identi-
fied 33 miRNA families whose expression was deregu-
lated with a similar number of miRNAs induced and 
repressed at 21 dpi (Fig.  5). Although, as with mRNAs, 
the number of deregulated miRNAs increased with time 
during the infection, changes in miRNAs expression 
seemed to occur later than the deregulation of protein-
coding genes (Fig. S15). These results suggested that the 
changes in the expression of the host miRNAs did not 
directly depend on the amount of viral DNA, viral tran-
scripts or vsRNAs which maintained similar levels at 
14 and 21 dpi (Fig. S2) [55]. Among the DEmiRNAs we 
found sly-miR6026, which targets the CLN resistant gene 
Tm 22 as well as DCL2, which in turn is responsible for 
synthesizing the 22-nt sly-miR6026 [95, 96]. Reduction 
of sly-miR6026 expression using a target mimic RNA, 
increases DCL2 expression and enhances resistance to 
potato virus X and TMV in tomato [96]. During TYLCV 
infection, sly-miR6026 was repressed, while the accu-
mulation of Tm 22 and DCL2 was induced. Although 
this canonical inverse relationship between a miRNA 
and its target transcript correlated with that expected 
for a miRNA-mediated control of gene expression, the 
non-canonical pattern was widely observed when the 
general overview of the miRNA-target pairs was consid-
ered (Fig. 6). There are several possible explanations for 
this observation. First, considering that the analysis has 
been performed using a “in silico” prediction of miRNA-
target pairs, the inverse relation between the levels of 
expression of the miRNA and its “real” target gene could 
be masked. However, this lack of correlation was also 

Table 6 Differentially expressed miRNAs and their tragets involved in geminivirus‑tomato interaction [47, 25, 46]
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observed when the published degradome for TYLCV-
infected tomato plants [82] was used to predict the tar-
get genes in our infected plants (Fig. S10). Second, we 
should consider that the miRNA and their putative target 
transcripts could be expressed in different tissues/cells 
and therefore, no correlation in the expression of both is 
expected. Third, the transcription factor-mediated induc-
tion of the target gene could hide the regulatory effect of 
a certain miRNA. Finally, we could not rule out the pos-
sibility that as it has been described in Arabidopsis, moss 
and rice, some miRNAs could be transcriptionally con-
trolling the expression of their target [97, 98].

Three studies using massive sequencing approaches 
have identified tomato miRNAs and their target genes 
deregulated during ToLCNDV infection [25, 46, 47]. 
Although we found that some of these miRNA-target 
pairs were also deregulated upon TYLCV infection, the 
trend of the changes, induction/repression, were in all 
cases, except for sly-miRNA166c-SlyHomeoBox (SlyHB), 
different to the ones previously described (Table  6). 
These observations suggested that the deregulation of the 
expression of the miRNA-target pairs was dependent on 
the host-geminivirus interaction.

Although the deregulation of mRNA and miRNA dur-
ing geminivirus infection has been documented, there is 
no data on the impact of geminiviral infection on pha-
siRNA accumulation. Previous studies have shown that 
plant sensing of a pathogen causes the downregulation 
of the miRNAs that control the production of phasiR-
NAs from NLR genes and that changes in the levels of 
these miRNAs, alter resistance against virulent patho-
gens, including viruses [95, 99–101]. How miRNA/NLR/
phasiRNA regulation impacts the pathogen-host inter-
action is not clearly understood. Two hypotheses have 
been proposed: (i) control of NLRs by miRNAs/phasiR-
NAs could serve as a link between the pattern recogni-
tion receptors and NLR-mediated responses, increasing 
the availability of NLRs when a pathogen is detected; (ii) 
considering the detrimental effects of NLR expression, 
miRNA/phasiRNA downregulation of NLRs could func-
tion as a feed-back system to reduce the potential fit-
ness losses when the pathogen is no longer a danger [87, 
100]. During TYLCV infection we detected an increase 
in the number of DEphasiRNAs over time (Fig. 7) which 
followed a similar dynamic to the DEmiRNAs (Fig. 
S15). Overall, there was a generalized induction in the 
accumulation of DEphasiRNAs derived from NLRs 
and RLKs at 21 dpi, suggesting that the transcripts of 
these genes were being cleaved by their miRNAs. Most 
DEphasiRNAs derived from NLRs were triggered by 
three miRNAs: miR482b, miR482c and miR6024 (which 
triggered among other CNLs, Tm 22). However, when 
considering the relationship between the expression of 

the miRNAs, PHAS loci and phasiRNA accumulation 
upon TYLCV infection, a complex scenario emerged. 
The relation in the level of expression of this triplet, was 
very heterogeneous, even if only miRNA-target interac-
tions confirmed by experimental results or degradome 
analysis were considered. For example, the expression of 
sly-miR482c/482b and their target-derived phasiRNAs 
were mostly induced, while the expression of the PHAS 
loci could be induced or repressed (Fig. 8). Similar dis-
crepancies in the expression among sly-miR482/2118 
and its NLR targets have been described in tomato 
plants, in spite that the reduction in the miRNA accu-
mulation confers resistance to bacterial and oomycete 
pathogens [101].

The control of gene expression mediated by miRNA/
phasiRNA also affect other relevant loci such as AGO1 
which encodes an RNA slicer that selectively recruits 
miRNAs and siRNAs, and is targeted for degradation 
by silencing suppressor F-box-containing proteins from 
RNA viruses [102,  103]. Transcripts targeted by an 
AGO1/22-nt sRNA complex can attract components of 
the PTGS amplification machinery allowing their trans-
formation into dsRNAs, leading to the production of sec-
ondary siRNAs and their subsequent loading onto AGO1 
proteins, which maximizes the elimination of viral RNAs 
from the plant cell [84]. Upon TYLCV infection, the 
expression of both sly-miRNA168 and its target AGO1, 
were induced, while the AGO1-derived phasiRNAs were 
reduced. This result suggested that despite of the coex-
pression of AGO1 and miRNA168, previously described 
in Arabidopsis [104], the posttranscriptional control of 
sly-miRNA168 on AGO1 was impaired during TYLCV 
infection.

To the best of our knowledge, this study represents 
the first analysis of the changes in the tomato methy-
lome during a geminivirus infection. Tomato genome 
has approximately 900-megabase (Mb) and genome-
wide DNA methylation analyses have revealed that it is 
extensively methylated and more than 60% of its genome 
consists of methylated repeats and transposable ele-
ments [1, 71]. In tomato leaves, the overall methylation 
level is around 22% and CG and CHG methylation shows 
the highest level (85.51% and 56.15%, respectively) while 
methylation in the CHH context is the lowest one (8.63%) 
[71]. In our study, there were no significant genome-wide 
changes in the methylome of TYLCV-infected tomato 
plants at 14 dpi (Fig. 9A, Fig. S14). Although an increase 
in DNA methylation could be detected at the promoters 
and polyadenylation sites of genes when the infected and 
mock samples were compared, additional replicates will 
be needed to statistically confirm this difference (Fig. 9B). 
On the other hand, we could detect DMRs for a small 
percentage of genes and TEs/repeats and almost half of 
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the changes upon TYLCV infection occurred at the CG 
context suggesting that they were not directly depend-
ent on 24-nt siRNAs. In fact, we did not find changes in 
the accumulation of siRNAs for the 24-nt hetsiRNAs (or 
21- and 22-nt) enriched loci that overlapped with DMRs 
at genes or TEs/repeats. We detected a slight but general 
induction of most of the main players in maintaining or 
establishing DNA methylation which could be responsi-
ble for the changes in DNA methylation levels at certain 
loci (Table  4). Previous data showed that geminivirus 
infection repressed the expression of the maintenance 
DNA methyltransferases, NbMET1 and NbCMT3, in sys-
temic infection in N. benthamiana [50] but this did not 
seem to be the case in tomato.

DNA methylation at cytosines is one of the several epi-
genetic mechanisms that eukaryotic cells use to control 
gene expression and transcriptionally silenced regions are 
typically hypermethylated. We took advantage of having 
the transcriptome and methylome data from the same 
samples and looked for DEGs whose DNA methylation 
levels have changed upon TYLCV infection. Our data indi-
cated that the majority of the genes that were hypomethylated, 
were also upregulated, suggesting that this epigenetic mark 
could be controlling the expression of at least some of these 
induced genes. Further work will be needed to determine 
the biological relevance of these findings.

Although we cannot rule out the possibility that the 
effect of geminivirus suppressors on the host methylome 
could be just restricted to certain loci, we also have to con-
sider that the impact of TYLCV infection on the tomato 
methylome could be masked due to the dilution effect that 
represents to determine the changes in the host methylome 
using a whole leaf in a phloem-limited virus. Additionally, 
considering that we have analyzed the plant methylome at 
14 dpi, it could be possible that the changes will be greater 
at later time points, after a longer exposure to the virus.

Besides DNA methylation, we cannot discard a pos-
sible effect of geminiviruses on the host epigenome 
based in the alteration of other epigenetic marks differ-
ent to DNA methylation, such as histone modifications 
or nucleosome composition. At least another epigenetic 
mark related to gene silencing such as methylation of his-
tone H3 at lysine 9 (H3K9me), has been involved in the 
response to geminivirus infection [51]. Other approaches 
such as chromatin immunoprecipitation followed by 
massive sequencing (ChIP-seq) should be performed in 
infected plants to further characterize the relevance of 
these marks on the host epigenome during viral infec-
tion. TYLCV, is seed-borne but not seed-transmitted 
and has been detected in the reproductive tissues of  
N. benthamiana and tomato [105]. If the viral presence 
in those tissues can induce epigenetic changes that could 

be transgenerationally inherited, constitutes a tantalizing 
hypothesis that needs further investigation.

The overall results from our study showed that TYLCV 
infection induced changes in tomato plants at transcrip-
tional and post-transcriptional levels, inducing among 
others, gene silencing and the plant immunity machin-
ery. In this situation, the main question is how the virus, 
despite the enormous display of defense systems, can 
complete its infection cycle. Among other more complex 
ones, the outcome of the virus-plant interaction could 
be explained by two scenarios: (i) the differential timing 
between the establishment of the defense systems and 
the virus replication and movement, disabling the tempo-
ral deployment of control measures required to efficiently 
prevent viral infection (ii) the generation of counter 
defense measures by the virus such as the expression of 
silencing suppressors and the interference with the trans-
lation signal generated by the plant’s immune system.

Conclusions
Our results show that TYLCV induces substantial tran-
scriptional changes in tomato that increase throughout 
the infection and that are dependent on the amount of 
viral DNA at the initial stages but not once the viral titer 
has reached its maximum level. Genes that belong to the 
two main defense mechanisms in plants, gene silencing and 
the immune response, are induced before the symptoms 
are established. The induction of those genes increases in 
intensity and/or in number throughout the infection. On 
the other hand, the deregulation of tomato miRNAs and 
phasiRNAs do not rely on the amount of viral DNA, viral 
transcripts or viral sRNAs and their significant induction 
or repression appear after the substantial deregulation of 
protein-coding genes. The analysis of the differentially 
expressed miRNAs, showed that they mainly target genes 
involved in auxin response, gene silencing, or genes 
encoding transcription factors and immune receptors 
(RLKs and NLRs), many of which are PHAS loci that pro-
duce deregulated phasiRNAs. Interestingly, the expected 
inverse relationship between a miRNA and its target was 
not consistent when the general overview of the miRNA-
target pairs was considered. The expression of most of 
the main genes from the DNA methylation machinery 
are slightly induced during TYLCV infection and have 
identified differentially methylated regions that could be 
involved in the transcriptional regulation of some of the 
differentially expressed genes. Taken together, this study 
provides insights into the complex interaction of TYLCV 
and tomato interaction and represents the first integrative 
and comprehensive analysis of the changes in the tomato 
mRNA transcriptome, sRNA profile, and methylome, 
during a geminivirus infection.
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Methods
Plant growth and viral inoculation
Tomato plants (Solanum lycopersicum cv. Moneymaker) 
were grown as indicated in [55] and agroinfection was 
performed as described in [106]. Briefly, Agrobacterium 
tumefaciens LBA4404 strain was used to infect three-
week-old tomato plants with a clone of the TYLCV iso-
late [ES:Alm:Pep:99] (AC: AJ489258) [106] by infiltrating 
the axillary bud between the third and fourth tomato 
leaves. As controls, we used mock–inoculated plants 
infiltrated with Agrobacterium carrying the binary vector 
and naïve non-inoculated plants.

Sample collection, nucleic acid extraction and relative viral 
DNA quantification
Sampling, DNA and RNA extractions and relative viral 
DNA quantification were performed as described in 
Piedra-Aguilera et al., [55]. Symptoms development was 
assessed according to the following scale: 0-No symp-
toms, 1-Slight yellowing (very mild symptoms); 2-Slight 
leaf curling and more yellowing (mild symptoms); 3- 
Strong yellowing, curling and slight cupping (moderate 
symptoms); 4- Stunting and strong curling and cupping; 
(severe symptoms); 5- Severe stunting, inhibition of plant 
growth (very severe symptoms) (Fig. S2).

Libraries construction and sequencing
RNA-seq, sRNA-seq and WGBS libraries from naïve, 
mock and TYLCV-infected plants were generated as 
described in Piedra-Aguilera et al., [55].

RNA‑seq data analysis
RNA-seq paired-end reads were mapped against the S. 
lycopersicum reference genome (SL2.5) using STAR ver-
sion 2.5.1b [107] with ENCODE parameters for long 
RNA. Genes were quantified using RSEM version 1.2.28 
[108] with default parameters and the ensembl release 
31 annotation. Differential expression analysis was per-
formed in R using the limma package [109]. Lowly 
expressed genes were filtered by retaining only genes 
with normalized read counts above 50 in at least three 
samples, followed by voom transformation, linear model 
fit, and statistics calculation for defined contrasts using 
the eBayes function. Expression heatmaps were drawn by 
calculating sample Euclidian distances between normal-
ized counts and plotted using R package heatmap. The 
differentially expressed genes (DEGs) were determined 
by comparing TYLCV-infected samples versus mock 
samples (ratio ≥ 1.5-fold or ratio ≤ 0.75-fold) with FDR 
adjusted p-values ≤ 0.05.

sRNA‑Seq data analysis
The raw sRNA sequencing data were firstly preproc-
essed to remove adapter sequences, low-quality and 
low complexity reads, and reads shorter than 18-nt 
and longer than 26-nt using cutadapt [110] and Filter 
Tool of the UEA small RNA Workbench [111]. Sub-
sequently, sRNA reads were additionally filtered to 
exclude reads matching to rRNAs, tRNAs, snRNAs, 
snoRNAs in RNACentral database [112]. To iden-
tify known tomato miRNAs, remaining preprocessed 
sRNA reads were compared to tomato miRNAs reg-
istered in the miRBase database release 22 allowing 
no mismatches [113]. To identify novel unannotated 
miRNAs and their loci of origin (MIR loci), reads 
were submitted to the two plant miRNA prediction 
tools ShortStack [114] and miR-PREFeR [115]. Pre-
dictions were performed using default parameters, 
except that no mismatches were allowed during map-
ping on reference Solanum lycopersicum genome v2.5. 
Novel miRNAs were identified if they had more than 
five raw reads in at least two sRNA libraries, and their 
sequences, and corresponding miRNA* and MIR loci 
were predicted with both miRNA prediction tools. 
Within prediction analysis, the reads that were mapped 
to more than 30 locations in the tomato genome were 
also discarded. The output of miRNA prediction tools 
also contained the predictions of already annotated 
tomato MIR loci, therefore to separate them from 
potential novel MIR loci candidates, annotated tomato 
pre-miRNA precursors from miRBase database release 
22 were mapped to reference tomato genome using 
bowtie2 [116]. Next, genome locations were extracted 
and compared with predicted MIR loci locations using 
our internally developed script [117]. If no overlap 
was detected, the predicted MIR loci were regarded 
as novel MIR loci. Novel tomato miRNAs were fur-
ther classified into known or novel miRNA families by 
clustering their predicted pre-miRNA sequences with 
sequences of known plant pre-miRNAs from miRBase 
using CD-HIT-EST with an identity threshold of 0.8 
[118]. Sequences showing similarities with annotated 
pre-miRNAs were grouped into corresponding known 
miRNA families, and sequences that did not show 
similarity with known plant miRNAs were classified 
as novel miRNA families. Additionally, miRNA vari-
ants (isomiRs) of known and novel miRNAs were iden-
tified using computational pipeline isomiRID [119]. 
Only sRNAs perfectly matching to known or novel 
tomato pre-miRNA sequences, known as templated 
isomiRs, were considered. Prediction of PHAS loci 
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and phasiRNAs was performed using unitas tool [120]. 
PHAS loci and phasiRNAs were detected by mapping 
preprocessed sRNA reads to tomato ITAG v2.4. Analy-
sis of phasing was performed in 21- and 24-nt intervals 
using default settings [121].

sRNA quantification and statistical analysis
Preprocessed reads from sRNA-seq samples were 
mapped with no mismatches to all identified known, and 
novel miRNAs, miRNA variants (isomiRs), and phasiR-
NAs using bowtie2 [116] and based on the alignments 
the abundances of miRNAs (variants) and phasiRNAs 
were counted using a custom script that was previously 
published by Križnik et al. [117]. Differential expression 
analysis of miRNAs and phasiRNAs between TYLCV-
infected and mock samples was performed using the 
limma package in R [122]. Briefly, sRNA counts with a 
baseline expression level of at least 50 reads in at least 
two of the same biological replicate samples were TMM-
normalized using edgeR package [123] and analyzed 
using the voom function [109]. To identify differentially 
expressed miRNA and phasiRNAs, the empirical Bayes 
approach was used, and the resulting p-values were 
adjusted using Benjamini and Hochberg’s (FDR) method. 
Adjusted p-values ≤ 0.05 were considered statistically sig-
nificant. Just DEmiRNAs with at least 10 CPM (counts 
per million) in any of the samples in both biological rep-
licates and FDR adjusted p-value ≤ 0.05, were considered 
for further analysis.

To identify differentially expressed siRNA loci (DEsiR-
NAs), cleaned sRNA reads were mapped to tomato 
genome with ShortStack [114], which also reported the 
raw counts for each siRNA loci based on read align-
ments. The raw counts were then fed to DESeq2 [124] to 
identify DEsiRNAs between TYLCV-infected and mock  
samples, with a cutoff of adjusted p-values < 0.05. Genomic  
features including gene promoters, gene bodies and TEs/
repeats overlapping with DEsiRNAs were defined with 
BEDTools [125].

sRNA target prediction
In silico identification of tomato transcripts targeted 
by sRNAs was carried out using psRNATarget [78] and 
ITAG v2.4 tomato transcriptome sequences with default  
parameters, except the maximum expectation parameter  
was set to 3.0. Results of miRNA-target (PHAS loci) 
interactions were used to reveal miRNA triggers of 
the phasiRNA [126, 127]. The miRNA-PHAS locus-
phasiRNA network was generated using Cytoscape [128] 
after selecting the PHAS loci that generated differentially 
expressed phasiRNAs (DEphasiRNAs) and identifying 
the miRNAs that triggered those PHAS loci according 
to psRNATarget.

Degradome‑seq target prediction
Four degradome datasets (GEO accession No. GSM1213988, 
GSM1213989, GSM1213990, GSM1213991) produced from 
TYLCV-infected and mock tomato leaves [82] were retrieved 
from the NCBI Gene Expression Omnibus database and ana-
lyzed with CleaveLand4 [129] using tomato sRNA sequences 
and the tomato transcriptome sequences (ITAG release 2.4). 
All identified degradation targets were classified into five cat-
egories as previously described [129]. Category “0” is defined 
as > 1 raw read at the position, with abundance at a position 
equal to the maximum on the transcript, and with only one 
maximum on the transcript. Category “I” is described  
as > 1 raw read at the position, with abundance at the posi-
tion equal to the maximum on the transcript, and more 
than one maximum position on the transcript. Category 
“II” includes > 1 raw read at the position and abundance at 
the position less than the maximum but higher than the 
median for the transcript. Category “III” comprised the 
transcripts with > 1 raw read at the position, and abun-
dance at the position equal to or less than the median for 
the transcript. Category “IV” comprised transcripts with 
one raw read at the cleavage position. Only categories with 
high confidence of cleavage (0, I, II, III) and p-value ≤ 0.05, 
were considered for biological interpretation and visual 
representation. Results of miRNA-target (PHAS loci) inter-
actions were also used to confirm miRNA triggers of the 
phasiRNA production determined in silico.

WGBS analysis
To remove potential PCR duplicates, read pairs having 
identical bases at positions of 10 to 80 in both left and right 
reads were defined as duplicated pairs and then collapsed 
into unique read pairs. The resulting reads were further pro-
cessed to remove adaptor and low-quality sequences using 
Trimmomatic [130]. The trimmed reads were then mapped 
to the tomato genome using a methylation-aware aligner 
Bismark v0.17.0 (–bowtie1 -n1) [131]. The methylation 
information was extracted from the alignments by a script 
“bismark_methylation_extractor” provided in Bismark and 
the resulted cytosine reports were separated according to 
the cytosine context, CG, CHG and CHH. These cytosine 
reports were analyzed by R package methylKit v1.1.6 [132] 
to identify differentially methylated regions (DMRs) using 
a sliding window approach (window size = 100 bp and step-
size = 50  bp). Methylation information was summarized 
in each window. Sites with too low (< 4x) or too high cov-
erage (> 99.9th percentile of coverage in each library) were 
excluded from the analysis. CG and CHG windows with 
less than 4 cytosine sites and CHH windows containing less 
than 10 cytosine sites were also excluded. DMR were finally 
determined using logistic regression and were adjusted with 
the SLIM method implemented in methylKit [133]. Win-
dows with methylation difference ≥ 25% between mock and 
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TYLCV-infected samples and FDR adjusted p-value ≤ 0.01 
were selected as DMRs and adjacent DMRs were further 
merged if they overlapped. Visualization of tomato genome-
wide methylation levels in TYLCV-infected and mock 
samples at 14 dpi (Fig. 9) was generated using Circos [134].

Gene enrichment analysis
Functional enrichment analysis by Gene Set Enrichment 
Analysis (GSEA) [56] was performed using non-filtered 
normalized read counts to search for regulated processes 
and functionally related gene groups, altered significantly 
by the viral infection (FDR adjusted p-value ≤ 0.05) using 
the tomato GoMapMan gene sets defined in the file “sly_
SL2.40_ITAG2.3_2017-03–14.gmt” [57]. The analysis of 
the functional enrichment in biological processes from 
selected DEGs and miRNA or phasiRNA target genes 
was conducted by MapMan software [135, 136] and the 
GO enrichment analysis from the PANTHER classifi-
cation system [137, 138]. For the Mapman enrichment 
analysis, we used the gene expression levels and gene sets 
based on the tomato GoMapMan ontology defined in the 
file “sly_SL2.40_ITAG2.3_2017-03–14.gmt” [57]. Ontol-
ogy terms with Wilcoxon test and Benjamini–Hochberg 
FDR adjusted p-values ≤ 0.05 were considered signifi-
cantly enriched. The functional enrichment analysis from 
the DEGs at 14 and 21 dpi was also represented for the 
immunity-related categories based on the pathway rep-
resentation performed by Mapman (Fig. S4). For the GO 
enrichment analysis, we performed the PANTHER GO-
Slim biological process analysis and the statistical over-
representation test, biological process with FDR adjusted 
p-values ≤ 0.05 were considered significantly differentially 
enriched.

Clustering analysis of the differentially expressed genes
For clustering analysis, the list of a total of 6301 unique 
genes differentially expressed in at least one compari-
son was further filtered using R [139] package maSig-
Pro (version 1.72.0.) with significance level of 0.01 and 
cut-off level at the R-squared value of 0.8, resulting in 
1770 transcripts. Clustering of these 1770 transcripts 
 (log2FC values across the four different time points) 
was conducted using SplineCluster [Nick Heard, 
Gaussian process clustering of multidimensional time 
series, https:// www. ma. imper ial. ac. uk/ ~nahea rd/ softw 
are/ splin eclus ter/ index. html]. Transcript profile figures 
and the heatmap figure were plotted using R package 
pheatmap (version 1.0.12.) [Raivo Kolde (2019). pheatmap: 
Pretty Heatmaps. https:// CRAN.R- proje ct. org/ packa ge= 
pheat map].
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