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Abstract
Background Justicia L. is the largest genus in Acanthaceae Juss. and widely distributed in tropical and subtropical 
regions of the world. Previous phylogenetic studies have proposed a general phylogenetic framework for Justicia 
based on several molecular markers. However, their studies were mainly focused on resolution of phylogenetic issues 
of Justicia in Africa, Australia and South America due to limited sampling from Asia. Additionally, although Justicia 
plants are of high medical and ornamental values, little research on its genetics was reported. Therefore, to improve 
the understanding of its genomic structure and relationships among Asian Justicia plants, we sequenced complete 
chloroplast (cp.) genomes of 12 Asian plants and combined with the previously published cp. genome of Justicia 
leptostachya Hemsl. for further comparative genomics and phylogenetic analyses.

Results All the cp. genomes exhibit a typical quadripartite structure without genomic rearrangement and gene loss. 
Their sizes range from 148,374 to 151,739 bp, including a large single copy (LSC, 81,434–83,676 bp), a small single 
copy (SSC, 16,833–17,507 bp) and two inverted repeats (IR, 24,947–25,549 bp). GC contents range from 38.1 to 38.4%. 
All the plastomes contain 114 genes, including 80 protein-coding genes, 30 tRNAs and 4 rRNAs. IR variation and 
repetitive sequences analyses both indicated that Justicia grossa C. B. Clarke is different from other Justicia species 
because its lengths of ndhF and ycf1 in IRs are shorter than others and it is richest in SSRs and dispersed repeats. The 
ycf1 gene was identified as the candidate DNA barcode for the genus Justicia. Our phylogenetic results showed that 
Justicia is a polyphyletic group, which is consistent with previous studies. Among them, J. grossa belongs to subtribe 
Tetramerinae of tribe Justicieae while the other Justicia members belong to subtribe Justiciinae. Therefore, based on 
morphological and molecular evidence, J. grossa should be undoubtedly recognized as a new genus. Interestingly, 
the evolutionary history of Justicia was discovered to be congruent with the morphology evolution.

Conclusion Our study not only elucidates basic features of Justicia whole plastomes, but also sheds light on 
interspecific relationships of Asian Justicia plants for the first time.
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Introduction
Justicia L. is the largest and most taxonomically complex 
genus in the tribe Justicieae of Acanthaceae [1–8]. It com-
prises approximately 700 species widely distributed in the 
tropical and subtropical regions of the world [9, 10]. This 
genus is characterized by the 2-lipped corolla with the 
bilobed upper lip and trilobed lower lip, two bithecous 
stamens, usually one theca above the other and the lower 
one with a spur at the base [1, 5, 11, 12]. With approxi-
mately 150 species, the tropical and subtropical regions 
of Asia are one of the diversity centers of the genus [3, 
5, 7, 13–18]. In Asia, many Justicia plants are widely cul-
tivated for ornamental or medical values [3, 19–21]. For 
example, Justicia adhatoda L., Justicia betonica L., Jus-
ticia grossa C.B. Clarke and Justicia latiflora Hemsl. are 
commonly cultivated for ornamental in the gardens [21]. 
And J. adhatoda, Justicia gendarussa N. J. Burman and 
Justicia procumbens L. also have high medicinal value 
[20, 22, 23]. However, despite high economical values of 
Justicia plants, few reports on its genomics were available 
[24]. Therefore, to improve our understanding on plas-
tid genomes of these economically important plants and 
provide useful genetic information for conservation and 
breeding of them in the future, it is necessary to carry out 
relevant genetic research.

In addition, due to extensive geographic distributions 
and high biological diversity, the infrageneric classifica-
tion of Justicia has been controversial for a long time [1, 
25–30]. Up to now, there are two divergent approaches 
in the generic delimitation of Justicia. One is to divide 
Justicia into several small segregated genera [25, 26, 
31–33], and another is to adopt a broad sense of Justicia 
by dividing into several sections [1, 5, 27–30, 34–39]. In 
the former, Bremekamp separated Justicia s.l. into dozens 
of genera and published several new genera [26, 31, 32, 
40–42]. His treatment was followed by some authors [33, 
43–49]. In contrast, Graham [1] adopted a broad concept 
of the genus and reduced more than 70 names to the syn-
onymies of Justicia and divided the genus into nine sec-
tions and seven subsections. Her treatment was widely 
accepted in the recently published flora works [3, 5, 39, 
50–55].

However, recent phylogenetic studies indicated that 
Justicia s.l. is a polyphyletic group with its members 
randomly nested within other genera in tribe Justicieae 
[9–12], suggesting that previous classification of Justicia 
is problematic. Then, Kiel et al. [9] proposed to divide 
Justicieae into ten informal clades, of which nine for Old 
Word (OW) species and one for New Old (NW) species. 
Although their suggestion on the classification of Justici-
eae has been most comprehensive until now, molecular 
data of Justicia in their studies were mainly based on 
samples collected from Africa, Australia and America, 
but few from Asia. For example, some Asian genera 

separated from Justicia, e.g., Calymmostachya Bremek. 
[32], Mananthes Bremek. [26], Plegmatolemma Bremek. 
[32], were not involved in their analysis. Thus, more 
genetic resources of Justicia in Asia need to be supple-
mented for completion of the evolutionary history of Jus-
ticia in the future.

The genus Justicia from Asia has never been revised 
except for the regional revisionary works for some coun-
tries including China [3, 33], Bangladesh [56], Pakistan 
[57], Sri Lanka [58], etc. China is one of the diversity cen-
ters of Justicia in Asia. The most comprehensive works of 
Justicia from China were done by Hu and her colleagues 
[3, 33]. Hu [33] recognized 44 species in seven genera in 
Chinse edition of Flora Reipublicae Popularis Sinica to 
follow the narrow sense of generic delimitation proposed 
by Bremekamp [26, 31, 32]. But, nine years later, Hu et 
al. [3] adopted the broad sense of generic circumscrip-
tion proposed by Graham [1] and recorded 43 species in 
English edition of Flora of China. Later, Deng et al. [11] 
found that Justicia microdonta W.W. Sm. is quite differ-
ent from other Justicia plants by having two staminodes 
and two fertile stamens with both anther-thecae spurred 
at base, and might be a member of subtribe Graptophyl-
linae. Therefore, they established a new genus Wuacan-
thus Y.F. Deng et al. for this species. It is implied that the 
relationships among the remaining Asian species of Jus-
ticia s. l. are still poorly understood, and thus the further 
studies on the phylogenetic research among Asian plants 
is necessary.

The complete cp. genome is characterized by haploid 
inheritance, relatively small genome and low substitu-
tion rates compared with mitochondrial and nuclear 
genomes, and thus widely used in recent studies of plant 
phylogeny, phylogeography and population genetics 
[59–65]. Its molecular structure is highly conservative 
in most angiosperms, with a double-stranded circular 
structure divided into four regions, including a large sin-
gle copy (LSC) region, a small single copy (SSC) region 
and a pair of inverted repeats (IRs) [66, 67]. It is typically 
107–218 kb in genomic size in most land plants, encod-
ing about 100–130 unique genes, mostly containing 
about 70–80 protein-coding genes, 28–32 tRNAs and 4 
rRNAs [68, 69]. Besides, recent advances in sequencing 
technology and bioinformatic analysis tools have made 
the acquisition of complete cp. genomes both convenient 
and cost-effective [70]. Therefore, based on whole cp. 
genome data, more information sites could be accessible. 
Thus, our obtained variable sites from whole plastomes 
are sufficient than previous molecular markers in re-eval-
uation of the evolutionary histories of some difficult taxa, 
including some major clades in angiosperms, such as 
basal lamiid [71] and monocot [72], and other taxa below 
order, such as Orchidaceae Juss. [63], Ulmaceae Mirb. 
[73], subtribe Melocanninae Benth. (Poaceae Barnhart) 
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[62], Horsfieldia Willd. (Menispermaceae Juss.) [74] and 
Oreocnide Miq. (Urticaceae Juss.) [75]. Additionally, evo-
lutionary rates of coding and non-coding regions of the 
plastomes are incongruous, suggesting great applicability 
to screen potential DNA barcodes at various taxonomic 
levels [76–78]. Therefore, there is no doubt that whole 
plastid genomes may provide critical insights into his-
torically difficult relationships at different taxonomic lev-
els. Moreover, some IR expansion and contraction events 
[79], genomic rearrangement [80], gene loss and pseu-
dogenization [81, 82] have also attracted much attention 
due to their particularities. Thus, the whole cp. genome is 
definitely an efficient tool for species identification at the 
genomic level [83–87].

In our study, a total of 12 Justicia complete cp. genomes 
were newly sequenced and assembled, then combined 
with the previously published cp. genome J. leptostachya 
for further genome comparison analyses. This study aims 
to (i) understand basic features of Justicia plastomes, 
including genomic size, organization and gene compo-
sitions, (ii) find interspecific variation at the genomic 
structure level, (iii) identify some hypervariable regions 
and special repetitive sequences for species identifica-
tion, and (iv) improve our understanding of phyloge-
netic relationships of these Asian Justicia plants, which 
is also useful to provide baseline information for further 
completion of the evolutionary history of Justicia in the 
future.

Results
Basic characteristics of Justicia complete chloroplast 
genomes and nrDNAs
A total of 3,774,489–22,941,320 unique reads were 
recruited from about 2 Gb clean reads for plastome 
de novo assemblies (Table S1). The average base-cov-
erages of Justicia cp. genomes vary from 96X to 521X 
with 150  bp read length for each sample. The 13 Justi-
cia cp. genomes sizes vary from 148,374 bp (J. latiflora) 
to 151,739 bp (Justicia quadrifaria (Nees) T. Anderson) 
and their overall GC content range from 38.1 to 38.4% 
(Table 1). All the cp. genomes exhibit the identical typical 
quadripartite structure, comprising of a large single copy 
region (LSC) from 81,434 bp to 83,676 bp, a small single 
copy region (SSC) from 16,833 bp to 17,507 bp and a pair 
of IR regions (IRa/IRb) from 24,947 bp to 25,549 bp.

Gene number, order and directions are consistent in 
the 13 Justicia cp. genomes (Fig. 1A). All the cp. genomes 
share 114 unique genes, containing 80 protein-coding 
genes, 30 tRNAs and 4 rRNAs (Table  1). According to 
its location, 62 are located in LSC region, 12 are in SSC 
region and 6 are in IR regions. As for gene categories, 61 
genes are relevant to the gene expression, and 43 genes 
are associated with photosynthesis (Table  2). Accord-
ing to the sizes of all the protein-coding genes (Table 
S3), ycf2 is the longest from 6723  bp (J. gendarussa) to 
6780  bp (J. grossa, J. demissa N. H. Xia & Y. F. Deng, J. 
mollissima (Nees) Y. F. Deng & T. F. Daniel and J. pro-
cumbens), while petN is the shortest with 90  bp identi-
cal in all the plastomes. Of the 80 unique protein-coding 

Table 1 General characteristics of 13 Asian Justicia complete chloroplast genomes
J. adhatoda J. betonica J. demissa J. gendarussa J. grossa J. latiflora J. leptostachya

Accession number MN848249 MN848244 MN885664 MN848252 MN848251 MN848246 MK389502

Total size (bp) 149,503 151,005 150,208 149,735 150,469 148,374 149,227

LSC length (bp) 82,600 82,809 82,326 82,373 82,536 81,434 82,114

SSC length (bp) 17,009 17,182 16,970 17,218 17,507 16,866 16,975

IR length (bp) 24,947 25,507 25,456 25,072 25,213 25,037 25,069

Number of Genes 114 114 114 114 114 114 114

Number of PCGs 80 80 80 80 80 80 80

Number of tRNAs 30 30 30 30 30 30 30

Number of rRNAs 4 4 4 4 4 4 4

Overall GC (%) 38.3 38.3 38.4 38.3 38.4 38.1 38.2

 J. lianshanica J. mollissima J. patentiflora J. procumbens J. quadrifaria J. vagabunda
Accession number MN885665 MN848247 MN848248 MN848245 MN848243 MN848250

Total size (bp) 148,574 150,513 149,018 150,471 151,739 151,247

LSC length (bp) 81,776 82,811 82,031 82,426 83,676 83,343

SSC length (bp) 16,868 17,010 16,833 16,947 16,999 17,040

IR length (bp) 24,965 25,346 25,077 25,549 25,532 25,432

Number of Genes 114 114 114 114 114 114

Number of PCGs 80 80 80 80 80 80

Number of tRNAs 30 30 30 30 30 30

Number of rRNAs 4 4 4 4 4 4

Overall GC (%) 38.1 38.2 38.1 38.3 38.2 38.3
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Fig. 1 The plastid genome map (A) and nrDNA structure (B) for the 13 Justicia species. The genes drawn on the outside of the circle are transcribed 
clockwise, while those inside of the circle are transcribed counter clockwise. Genes belonging to different functional groups are color coded. Small single 
copy (SSC), large single copy (LSC), and inverted repeats (IRa, IRb) are indicated directly
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Table 2 Gene contents in the chloroplast genomes of 13 Justicia species
Genes category Groups of genes Name of genes
Self-replication Ribosomal RNAs rrn4.5(×2), rrn5(×2), rrn16(×2), rrn23(×2)

Transfer RNAs trnA-UGC*(×2), trnC-GCA, trnD-GUC, trnE-UUC, trnF-GAA, trnfM-CAU, trnG-GCC, 
trnG-UCC*, trnH-GUG, trnI-CAU(×2), trnI-GAU*(×2), trnK-UUU*, trnL-CAA(×2), trnL-
UAA*, trnL-UAG, trnM-CAU, trnN-GUU(×2), trnP-UGG, trnQ-UUG, trnR-ACG(×2), trnR-
UCU, trnS-GCU, trnS-GGA, trnS-UGA, trnT-GGU, trnT-UGU, trnV-GAC(×2), trnV-UAC*, 
trnW-CCA, trnY-GUA

Large ribosmal subunits rpl2*, rpl14, rpl16*, rpl20, rpl22, rpl23(×2), rpl32, rpl33, rpl36

Small ribosmal subunits rps2, rps3, rps4, rps7(×2), rps8, rps11, rps12**(×2)a, rps14, rps15, rps16*, rps18, rps19

DNA-dependent RNA polymerase rpoA, rpoB, rpoC1*, rpoC2

Phytosynthesis Subunits of photosystem I psaA, psaB, psaC, psaI, psaJ

Subunits of Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL, psbM, psbN, psbT, psbZ

Subunits of NADH dehydrogenase ndhA*, ndhB*(×2), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI, ndhJ, ndhK

Subunits of ATP synthase atpA, atpB, atpE, atpF*, atpH, atpI

Subunits of cytochrome petA, petB*, petD*, petG, petL, petN

Large subunit of Rubisco rbcL

Other genes Maturase matK

Protease clpP**

Subunit of acetyl-CoA accD

Envelope membrane protein cemA

C-type cytochrome synthesis gene ccsA

Translation initiation factor infA

Function uncertain Conserved open reading frames ycf1, ycf2, ycf3**, ycf4, ycf15(×2)
*gene containing one intron, **gene containing two introns, atrans-splinting gene, (×2) shows genes have two copies

Fig. 2 Relative synonymous codon usage (RSCU) in all protein-coding genes of the 13 plastomes. The histogram from the left-hand side of each amino 
acid shows codon usage value within Justicia (From left to right: J. quadrifaria, J. betonica, J. lianshanica, J. mollissima, J. patentiflora, J. adhatoda, J. vagabun-
da, J. grossa, J. gendarussa, J. leptostachya, J. procumbens, J. latiflora and J. demissa). Codons encoding 20 amino acids and the stop codon are displayed in 
rectangular shapes of different colors

 



Page 6 of 25Niu et al. BMC Plant Biology          (2023) 23:564 

genes, 57 are identical in length among different species, 
while 23 are variable as such. In addition, 15 genes con-
tain one intron (Table S4), including atpF, ndhA, ndhB, 
petB, petD, rpl2, rpl16, rpoC1, rps12, rps16, trnA-UGC, 
trnG-UCC, trnI-GAU, trnK-UUU, trnL-UAA, trnV-UAC, 
clpP and ycf3, while two genes (clpP and ycf3) have two 
introns. Among them, ndhA, rpl2, rpoC1, rps16 and ycf3 
genes vary in size at the interspecific level.

Additionally, some particular genes in Justicia 
plastomes were also identified in our study. First, six 
genes were determined as partially overlapped genes, 
including trnK-UUU/matK, atpB/atpE and psbC/psbD. 
Secondly, rps12 gene was identified as a trans-splicing 
gene with 5’ exon located in LSC and 3’ exon duplicated 
and distributed in two IR regions. Thirdly, the gene ycf15 
in J. adhatoda cp genome was found to be about half 
(63 bp) the length of the others (132 bp).

According to the codon usage bias analysis, all the 
protein-coding genes (77,985–78,681  bp) of the 13 Jus-
ticia cp. genomes, encoding 25,995–26,227 codons, 
were investigated (Fig.  2, Table S5). Our results showed 
that all Justicia species are similar in amino acid pat-
terns. Among them, Leucine is encoded by the largest 
number of codons from 2801 to 2852, while Cysteine is 
the least with 69–79. Besides, a total of 28 codons are 
directly involved in tRNA synthesis. Most amino acids 
are encoded with at least two synonymous codons except 
methionine (Met) and tryptophan (Trp). A total of 77 
protein-coding genes identified in Justicia cp. genomes 
started with an AUG codon, but rps19 and psbC start 
with GUG while ndhD contains ACG instead.

For the tandemly repeated nrDNAs, our de novo 
assembly obtained 5,819 bp (J. grossa) to 5,846 bp (J. pat-
entiflora Hemsl.) comprising 18 S (1,810–1,811 bp), 5.8 S 
(153 bp), and 26 S (3,379–3,385 bp) ribosomal RNA gene 
along with two internal transcribed spacer (ITS) I (260–
273 bp) and II (225–234 bp) in the middle (Fig. 1B).

IR contraction and expansion
In our study, IR/SC junctions of cp. genomes of the 13 
Justicia species and seven species of other genera in 
Acanthaceae were compared and visualized (Fig. 3). First, 
the gene rps19 stretches across LSC and IRb regions of 
cp. genomes of all Justicia species and Dicliptera acumi-
nata (Ruiz & Pav.) Juss., with 5′ end of the rps19 located 
in the IRbs (82–104 bp) and 3′ end located in the LSCs 
(175–203  bp). Therefore, rps19 gene creates a pseudo-
gene of the 5′ end of this gene (Ψrps19) in IRa. However, 
in Rungia pectinata (L.) Nees and Ruellia brittoniana 
Leonard, it is found that rpl22 and ycf2 gene rather than 
rps19 gene span the junction of LSC/IRb borders. Mean-
while, the gene rpl22 duplicates a pseudogene (Ψrpl22) 
in the border of LSC/IRa of R. pectinata, but ycf2 gene 
in R. brittoniana not as such. Different from others, 

genes rpl22, rps19 and ycf2 are closed to the junction of 
LSC/IRb in plastomes of Clinacanthus nutans (Burm.f.) 
Lindau, Pseuderanthemum haikangense C. Y. Wu et H. S. 
Lo, Echinacanthus lofuensis (H.Lév.) J.R.I.Wood and Stro-
bilanthes cusia (Nees) Kuntze. Secondly, the tRNA genes 
trnH-GUG and Ψrps19 are adjacent to the junctions of 
LSC/IRa in cp. genomes of Justicia and D. acuminata. 
However, the genes rps19 in P. haikangense and E. lofuen-
sis are duplicated due to this gene fully located in IRs. 
Additionally, rpl2 and ycf15 gene are adjacent to the LSC/
IRa borders of C. nutans and R. brittoniana while (Ψ) 
rps19 genes are adjacent to the same locations in others. 
Particularly, psbA was found to be a crossing gene within 
the LSC/IRa border of S. cusia. Thirdly, it is discovered 
that ycf1 genes of plastomes of most genera span SSC/
IRa border with the exception of C. nutans fully located 
in SSC region with 1,118 bp far away from the junction. 
Notably, the ycf1 gene is only 576 bp in IRa region of J. 
grossa cp. genome, but about 800  bp in all of the other 
species. Fourthly, the pseudogene Ψycf1 is a part of ycf1 
protein-coding gene copy with the 5′ end located in the 
IRb region, with the sizes of 647 bp (J. grossa) to 848 bp 
(E. lofouensis). Meanwhile, most Ψycf1 can cross SSC and 
IRb regions, but those of Justicia lianshanica (H.S.Lo) 
H.S.Lo, D. acuminata, R. brittoniana and S. cusia are 
fully located in IRb regions. Most ndhF genes are within 
the SSC/IRb borders with the exception of C. nutans fully 
located in SSC region. Notably, the length of ndhF gene 
in IRb of J. grossa plastome is shorter (35 bp) than that in 
other Justicia species (100–129 bp), but similar in length 
with R. brittoniana (37 bp) and S. cusia (44 bp).

Genome divergence comparison
To visualize hypervariable regions, multiple sequence 
alignments were implemented using the program 
mVISTA (Fig.  4). The divergence of non-coding regions 
(CNS) is greater than that of coding regions (CDS), while 
LSC and SSC regions are more variable than IR regions. 
According to global alignment, the most highly divergent 
regions in intergenic spacer are rps16-trnQ, trnS-trnG, 
atpF-atpH, rpoB-trnC, trnE-psbD, psbZ-trnfM, rps4-
trnT, trnF-ndhJ, ndhC-trnV, petA-psbJ, psbE-petL, rpl32-
trnL and rps15-ycf1, while divergent regions in coding 
regions are atpF, rpl16 and ycf1.

A sliding window was used to compare hotspots 
regions among 13 Justicia species. 693 representative 
loci were divided into two groups, which are composed 
of two clades of staggered loci (Fig.  5A and B). The 
nucleotide diversity (Pi) value enormously ranges from 
0 to 0.072, and the mean value is 0.0219. In general, Pi 
value of SC regions is significantly greater than that of 
IR regions. To exactly analyze interspecific variations, 
eight highly variable regions (Pi > 0.06) were identified, 
including trnT-trnL (Pi = 0.07944), ycf1 (Pi = 0.07521), 
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Fig. 3 Comparison of IR/SC boundary regions of the 13 Justicia species and seven species of other genera of Acanthaceae
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Fig. 4 Genome divergence plots of the 13 cp. genomes with J. leptostachya as a reference based on visualized global alignment. Grey arrows and thick 
black lines above the alignment indicate genes with their orientations and directions. Protein-coding regions (exon), non-coding regions (CNS) and un-
translated regions (UTR) are marked in red, blue and green, respectively. A cut-off of 70% identity was used for the plots, and the Y-scale represents the 
percent identity from 50–100%
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Fig. 5 Sliding window analysis of the 13 cp. genomes alignment. Window length: 600 bp; step size: 200 bp. X-axis: position of the midpoint of a window. 
Y-axis: nucleotide diversity of each window. (A) Nucleotide diversity of A-clade dataset; (B) Nucleotide diversity of B-clade dataset
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rps4-trnT (Pi = 0.07203), rps16-trnQ (Pi = 0.06823), ccsA-
ndhD (Pi = 0.06671), rpoB-trnC (Pi = 0.06387), rpl16 
(Pi = 0.06316), and rps15-ycf1 (Pi = 0.06047). According 
to their locations, six of them are located in LSC region 
while two are in SSC.

Repetitive sequences analyses
As short tandem repeats with 1–6 nucleotides units, 
SSRs are widely dispersed in Justicia plastomes. The 
number of SSRs varies unevenly in 13 Justicia cp. 
genomes (Fig.  6, Table S6). Statistically, SSRs fluctu-
ate within a range of 39–59, comprising 23–41 SSRs in 
LSC regions, 9–14 SSRs in SSC regions and 2–11 SSRs 
in IR regions (Fig.  6B). According to genomic regions, 
8–16 SSRs were identified in coding genes, 23–37 SSRs 
in intergenic spacer and 4–9 SSRs in introns (Fig.  6C). 
Most SSRs were detected in LSC and intergenic spacer 
regions, whereas few SSRs were detected in IR regions 
and introns. The most abundant SSRs (59) were identified 
in J. grossa, while the others range from 39 (J. adhatoda) 
to 51 (J. demissa). For base contents of SSRs, all the Jus-
ticia cp. genomes are made up of 90% A/T and 10% C/G 
bases (Table S6). Among them, mononucleotide is the 
most abundant units and hexanucleotide was only iden-
tified in five species including J. leptostachya, J. latiflora, 
J. quadrifaria, J. adhatoda and J. lianshanica, of which J. 
lianshanica has the largest number (5) (Table 3; Fig. 6A). 
Notably, J. grossa has the largest number of mononucleo-
tide (37) and tetranucleotide (13) repeats compared with 
other members of Justicia (Fig. 6A).

A total of 22–57 dispersed repeats were also defined 
in the 13 cp. genomes, including forward, palindromic, 
reverse and complement repeats (Fig. 7A). Among them, 
palindromic repeats are the richest in all the Justicia cp. 
genomes. Besides, the maximum number of dispersed 
repeats were detected in J. grossa (56) compared with 
others. In terms of repeat length, most dispersed repeats 
concentrate on lengths of 20–25  bp, with the exception 
of three species having dispersed repeats of over 50 bp, 
including J. gendarussa (1), J. mollissima (1) and J. grossa 
(3) (Fig. 7B).

Phylogenetic analysis
The whole cp. genome data matrix consisting of 62 
sequences is 188,699  bp in total length. It is character-
ized by sequence divergence with 56,714 variable sites, 
including 38,522 parsimony informative sites and 18,192 
singleton variable sites. The ITS data matrix made up of 
63 sequences is 988 bp in total length. It is characterized 
by sequence divergence with 457 variable sites, including 
312 parsimony informative sites and 145 singleton vari-
able sites.

Because the reconstructed ML tree and BI tree share 
the same topology, we only showed the ML phylogram 

with bootstrap (BS) and posterior probability (PP) values 
labeled near each node (Fig. 8). Our phylogenetic results 
indicated that phylogenetic relationships of the 13 Justi-
cia species based on three datasets (WCG, PCG and ITS) 
exhibit identical tree topologies (Fig. 8, Fig. S1–S4).

According to our phylogenetic results, a robust phylo-
genetic framework for four subfamilies of Acanthaceae 
is as follows: (Nelsonioideae(Acanthoideae(Thunbergioi
deae + Avicennioideae))). Additionally, the stable frame-
work of most tribes of Acanthaceae with the exception of 
Neuracantheae and Whitfieldieae is also exhibited, that 
is (Nelsonieae((Acanthaceae((Andrographideae + Bar-
lerieae) (Justicieae + Ruellieae))) (Thunbergieae + Avicen-
nicae))) (Fig. 8). Importantly, all the nodes of subfamilies 
and tribes are strongly supported (BS = 100, PP = 1.0) in 
our study.

Additionally, our results also strongly support (BS = 100, 
PP = 1.0) that Justicia is a polyphyletic group and suggest 
to divide all sampled Justicia species in the present study 
into three informal clades—Clade I, II and III (Fig. 8). In 
Clade I, J. grossa (the type of Justicia sect. Grossa) is the 
earliest diverging species sister to the monospecific genus 
Clinacanthus. And both of them belong to subtribe Tet-
ramerinae of tribe Justicieae. However, Clade II and III 
consist of all the remaining Justicia species and three 
other genera, which belong to subtribe Justiciinae of tribe 
Justicieae. Clade II includes a single sampled species of 
Rungia Nees and six sampled species of Justicia, includ-
ing J. gendarussa, J. ventricosa, J. lianshanica, J. latiflora, J. 
patentiflora and J. leptostachya. Within this clade, Rungia 
is the earliest diverging genus. Then, J. gendarussa and J. 
ventricosa form a sister subclade with the remaining four 
species (BS = 100, PP = 1.0). Clade III is sister to Clade II 
with strong support values (BS = 100, PP = 1.0). This clade 
contains Peristrophe japonica (Thunb.) Bremek., five 
sampled species of Dicliptera Juss. and nine sampled spe-
cies of Justicia. Within Clade III, J. adhatoda and J. bet-
onica are prior diverging species and form two separate 
subclades. Then, the African species J. flava forms a sub-
clade with four other Asian Justicia species, including J. 
quadrifaria, J. demissa, J. procumbens and J. mollissima 
(BS = 100, PP = 1.0). However, Justicia vagabunda Benoist 
is distantly related to other members of Justicia but sister 
to Dicliptera and Peristrophe Nees with strong support 
values (BS = 100, PP = 1.0).

Discussion
Basic features and genomic variation of Justicia cp. 
genomes
The complete cp. genome often tracks back maternal 
line inheritance in contrast to the nuclear genome [88]. 
Therefore, due to its highly conserved structure, lim-
ited sequence length and countable genes, it is widely 
used in recent studies of genetic variation, genomic 
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Fig. 6 Distribution of SSRs in the chloroplast genomes of 13 Justicia species. (A) Number of different SSRs types; (B) SSRs distribution in LSC, SSC and IR 
regions; (C) SSRs distribution between genes, intergenic spacer and introns
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Type J. adhatoda/J. betonica/J. demissa/J. gendarussa/
J. grossa/J. latiflora/J. leptostachya/J. lianshanica/
J. mollissima/J. patentiflora/J. procumbens/
J. quadrifaria/J. vagabunda

Location Regions

ATT 0/0/0/0/0/0/0/0/4/0/0/0/0 trnH-GUG-psbA LSC

TTC 0/0/0/4/0/0/0/0/0/0/0/0/0 trnH-GUG-psbA LSC

ATTAA 0/0/0/0/0/3/3/3/0/0/0/0/0 trnK-UUU-rps16 LSC

TATT 0/3/0/0/0/0/0/0/0/0/0/0/0 trnK-UUU-rps16 LSC

T 0/0/0/0/0/0/0/0/0/0/0/0/0/11 trnK-UUU-rps16 LSC

C 0/0/10/10/0/0/0/0/11/0/0/0/0 trnK-UUU-rps16 LSC

TTGAAA 3/0/0/0/0/0/0/0/0/0/0/0/0 rps16 intron LSC

ATTG 3/0/3/3/3/0/0/0/3/0/3/3/3 rps16 intron LSC

TTTC 0/0/0/0/0/0/0/0/0/0/0/0/3 rps16 intron LSC

A 0/0/0/12/14/11/0/11/10/0/0/0/0 rps16-trnQ-UUG LSC

AAT 0/0/0/0/0/0/0/0/0/0/5/0/0 psbK-psbI LSC

AT 0/0/8/6/6/7/7/7/0/9/7/0/0 psbK-psbI LSC

T 13/10/10/10/0/10/0/0/0/0/0/0/0 psbK-psbI LSC

A 0/0/10/10/13/0/0/0/0/0/0/16/0 psbI-trnS-GCU LSC

T 11/12/0/0/0/10/10/0/0/0/0/15/0 trnR-UCU-atpA LSC

A 12/14/0/10/12/10/13/11/0/12/0/0/0 atpF intron LSC

T 11/10/0/0/10/0/0/0/0/0/0/0/0 atpF-atpH LSC

A 0/0/0/0/10/0/0/0/0/0/0/0/0 atpF-atpH LSC

A 0/16/0/0/0/0/0/0/0/0/0/12/15 atpH-atpI LSC

A 12/0/11/12/12/16/13/10/13/11/11/11 rps2-rpoC2 LSC

AATTCA 0/0/0/0/0/0/0/0/0/0/0/3/0 rpoC2 LSC

T 0/0/0/0/0/0/0/0/0/10/0/0/0 rpoC2 LSC

C 0/13/0/0/10/12/17/13/0/19/0/0/0 rpoC1 intron LSC

ATT 0/0/0/0/0/0/0/0/0/0/0/4/0 rpoB-trnC-GCA LSC

TATTAA 0/0/0/0/0/0/0/3/0/0/0/0/0 trnC-GCA-petN LSC

A 0/0/0/0/0/10/0/0/0/12/0/0/0 trnC-GCA-petN LSC

ATAG 0/3/0/3/3/0/0/0/0/0/0/0/0 petN-psbM LSC

AT 0/0/6/0/0/0/0/0/0/0/6/0/0 petN-psbM LSC

ATTT 3/0/0/0/0/0/0/0/0/0/0/0/3 psbM-trnD-GUC LSC

TTTA 0/0/0/0/0/3/3/3/0/3/0/0/0 psbM-trnD-GUC LSC

CAATA 3/3/0/0/3/3/3/0/0/3/0/3/0 trnE-UCC-trnT-GGU LSC

T 10/17/0/0/10/0/0/0/0/0/0/0/10 trnE-UCC-trnT-GGU LSC

T 11/0/10/10/0/11/10/0/0/10/13/11/0 trnT-GGU-psbD LSC

ATTA 0/0/0/0/0/3/3/0/0/3/0/0/0 trnT-GGU-psbD LSC

A 11/0/0/0/0/13/10/13/0/10/0/0/0 psbZ-trnG-GCC LSC

T 0/0/0/0/11/0/0/0/0/0/0/0/0 psbZ-trnG-GCC LSC

AT 0/0/0/0/0/0/0/0/8/0/0/0/0 ycf3-trnS-GGA LSC

A 0/0/0/0/10/0/0/0/0/0/0/0/0 ycf3-trnS-GGA LSC

TTA 0/4/0/0/0/0/0/0/0/0/0/0/0 trnS-GGA-rps4 LSC

TTTC 0/3/0/0/0/0/0/0/0/0/0/0/0 rps4-trnT-UGU LSC

ATAG 0/0/0/4/0/0/0/0/0/0/0/0/0 rps4-trnT-UGU LSC

AT 0/0/0/0/0/6/7/6/0/0/0/7/0 rps4-trnT-UGU LSC

TTTC 0/0/0/0/0/3/3/3/0/3/0/0/0 trnT-UGU-trnL-UAA LSC

AT 6/0/6/0/6/7/6/7/6/6/6/6/0 trnT-UGU-trnL-UAA LSC

TA 0/0/0/6/0/0/0/0/0/0/8/0/7 trnT-UGU-trnL-UAA LSC

GTTG 0/0/0/0/0/3/3/3/0/3/0/0/0 trnF-GAA-ndhJ LSC

ATT 0/0/0/4/0/0/0/0/0/0/0/0/0 trnF-GAA-ndhJ LSC

T 0/0/12/0/15/0/0/0/0/0/0/0/0 trnF-GAA-ndhJ LSC

TTA 0/0/0/0/0/0/0/0/4/0/0/0/0 ndhC-trnV-UAC LSC

T 14/10/10/10/17/10/10/0/0/14/0/10/10 ndhC-trnV-UAC LSC

ATA 0/0/4/4/5/4/4/0/0/4/4/0/0 atpB-rbcL LSC

Table 3 The polymorphic SSRs among 13 Justicia chloroplast genomes
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evolution and phylogeny [59–65, 87–90]. In our study, 
the 13 Justicia cp. genomes exhibit a typical quadripar-
tite structure, with two distinct single-copy regions sep-
arated by two inverted repeat (IR) regions (Fig.  1). All 
the cp. genomes are similar in genomic structure, gene 
composition and order (Tables  1 and 2; Fig.  3), which 
is consistent with other genera in Acanthaceae [91, 92]. 
Despite the overall conservation in structure, Justi-
cia whole plastomes vary from 148,374  bp (J. latiflora) 
to 151,739  bp (J. quadrifaria) in size, falling within the 

middle range (120–218 kb) of land plants [66]. Compared 
with those of previously reported genera in Acanthaceae, 
Justicia plastid genomes are generally smaller than Bar-
leria L. (151,977–152,324  bp) [93, 94], Echinacanthus 
Nees (152,384–152,672  bp) [91], Aphelandra knappiae 
Wassh. (152,457  bp) [95], P. haikangense (152,849  bp) 
[96] and Thunbergia erecta Nees (152,202  bp) [97], but 
larger than Strobilanthes Blume (144,012–145,110  bp) 
[98–100]. Additionally, some Justicia plants also have 
similar genome sizes with its closely related genera 

Type J. adhatoda/J. betonica/J. demissa/J. gendarussa/
J. grossa/J. latiflora/J. leptostachya/J. lianshanica/
J. mollissima/J. patentiflora/J. procumbens/
J. quadrifaria/J. vagabunda

Location Regions

T 0/0/0/0/11/0/0/0/0/16/16/10 atpB-rbcL LSC

A 0/0/0/0/12/0/0/11/0/0/0/0/0 rbcL-accD LSC

ATTA 0/0/0/0/0/0/0/0/0/0/4/4/0 accD-psaI LSC

TTAA 0/0/0/0/0/0/3/3/0/3/0/0/0 accD-psaI LSC

T 0/12/11/11/0/10/0/0/12/0/12/12/11 psaI-ycf4 LSC

GAAA 0/0/0/0/3/0/0/0/0/0/0/0/0 ycf4-cemA LSC

ATA 0/0/4/0/0/0/0/0/4/0/4/4/0 psbE-petL LSC

A 0/0/0/0/0/0/0/0/0/0/0/0/11 psbE-petL LSC

T 0/0/0/0/0/0/0/0/0/0/0/16/0 psaJ-rpl33 LSC

T 0/0/0/12/14/19/10/12/0/12/0/0/0 rpl20-rps12 LSC

TTTC 0/0/0/3/3/3/3/3/0/3/0/0/0 clpP intron LSC

AT 0/0/0/0/0/6/8/6/0/6/0/0/0 clpP intron LSC

T 0/0/10/0/0/0/0/0/0/0/0/0/12 clpP intron LSC

T 10/0/12/0/11/0/10/0/0/15/11/0/0 petB intron LSC

TTTA 0/0/0/0/3/0/0/0/0/0/0/0/0 petB-petD LSC

T 0/0/0/0/16/0/0/0/0/0/0/0/10 rpoA LSC

AAAT 3/0/0/0/0/0/0/0/0/0/0/0/0 rpl16 intron LSC

TTTC 0/3/0/0/0/0/0/0/0/0/0/0/0 rpl16 intron LSC

AATA 0/0/0/3/0/0/0/0/0/0/0/0/0 rpl16 intron LSC

TTA 0/0/0/0/0/0/0/0/0/0/0/0/4 rpl16 intron LSC

T 0/10/0/0/12/0/0/0/0/0/0/0/10 rpl16 intron LSC

AATAAG 0/0/0/0/0/0/0/3/0/0/0/0/0 rps12-trnV-GAC IR

T 0/0/0/0/10/0/0/0/0/0/0/0/0 rps12-trnV-GAC IR

TTTAA 0/0/0/3/0/3/3/3/0/3/0/0/0 trnR-ACG-trnN-GUU IR

ATT 4/0/0/0/0/0/0/0/0/0/0/0/0 trnR-ACG-trnN-GUU IR

T 13/18/15/0/10/0/0/0/16/0/15/11/11 trnR-ACG-trnN-GUU IR

T 0/10/0/0/15/0/0/0/0/0/0/0/0 ndhF SSC

T 0/0/0/0/11/0/0/0/0/0/0/0/0 rpl32-trnL-UAG SSC

AATA 3/3/3/3/0/3/3/3/3/3/3/3/3 ndhD SSC

A 10/10/0/0/10/10/11/0/10/0/0/12 ndhD-psaC SSC

A 0/0/0/10/0/0/14/0/11/0/0/0/0 ndhG SSC

AATC 3/3/3/0/3/0/0/0/3/0/3/0/3 rps15-ycf1 SSC

TTTG 0/0/0/0/0/0/0/0/3/0/0/3/0 rps15-ycf1 SSC

T 0/14/0/0/0/0/0/0/0/0/0/0/0 rps15-ycf1 SSC

AATT 3/0/3/3/3/3/3/3/3/3/3/3/3 ycf1 SSC

TTTC 0/0/0/0/3/0/0/0/0/0/0/0/0 ycf1 SSC

TTA 0/0/0/0/0/4/4/4/0/4/0/0/0 ycf1 SSC

TCT 8/5/6/4/10/6/5/6/6/6/5/6/6 ycf1 SSC

T 13/13/16/12/16/12/12/12/13/12/16/16/13 ycf1 SSC

Table 3 (continued) 
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(Fig. 8). For example, the cp. genome size of J. gendarussa 
(149,735 bp) is close to that of R. pectinata (149,627 bp) 
[101], and the genome sizes of three species belonging 
to Justicia sect. Rostellaria (J. demissa, J. mollissima and 
J. procumbens) (~ 150  kb) are similar to that of Diclip-
tera [92]. It is indicated that the length of the cp. genome 
sequence is quite variable among different species within 
Justicia. Additionally, the LSC length extends quite large 
from 81,434 bp (J. latiflora) to 83,676 bp (J. quadrifaria), 
however, the IR length is less variable between 24,947 bp 
(J. adhatoda) to 25,549 bp (J. procumbens). The most con-
siderable length of SSC region was recorded in J. grossa 
(17,507  bp), while the others are between 16,790  bp (J. 
lianshanica) to 17,218  bp (J. gendarussa) (Table  2). It is 
implied that greater sequence length divergence was 
observed in LSC and SSC, while fewer sequence differ-
ences were found in the two IR regions.

All the cp sequences consist of 114 unique genes, 
which is same as those in other genera of Acanthaceae, 
including Aphelandra R.Br., Dicliptera and Rungia [92, 
95, 101], but fewer than those of Barleria (131) [94]. The 
codon usage bias of 20 amino acids among different spe-
cies is similar (Fig. 2, Table S5), which is congruent with 
other angiosperms [65, 89]. It is revealed that most pro-
tein-coding genes are generally identical, but genes accD, 
matK, ndhI, rpl22, rpl20, rpoA, rps16, rps18, ycf1 and ycf2 
of J. grossa are obviously different from those of other 
Justicia plants in length and base variation (Table S3), 
suggesting J. grossa is different from other Justicia plants 
in plastid genes. Regarding the initiation codon of ndhD, 
ACG is commonly used as an alternative to AUG in many 
land plants, but it can still be converted to a functional 
AUG initiator codon by RNA editing [102–104], prob-
ably depending on a molecular cofactor PPR protein 
CRR4 during transcription [105]. Additionally, GUG is 

Fig. 7 Dispersed repeats of the 13 Justicia cp. genomes. (A) Number of four repeat types; (B) Frequency of long repeats by length
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also reported as an initiation codon of psbC and rps19 in 
other plants, such as Thalictrum L. (Ranunculaceae Juss.) 
[104], Garcinia L. (Clusiaceae Lindl.) [106], Populus L. 
(Salicaceae Mirb.) [107] and Betula platyphylla Suk. 
(Betulaceae Gray) [108], but these two genes cannot be 
edited back to AUG. However, recent studies suggested 

that an important translation initiation signal, known as 
Shine-Dalgarno (SD) sequence, can interact with 3’ end 
of the 16 S rRNA and facilitate translation initiation from 
the GUG [108, 109], which is responsible for expression 
of psbC and rps19 in chloroplast. The ycf15 gene is often 
duplicated in IR and annotated as the open reading frame 

Fig. 8 Phylogenetic tree reconstruction for Justicia species and other genera of Acanthaceae based on whole chloroplast genome (WCG) by using 
Maximum likelihood (ML) and Bayesian inference (BI) methods. Different Asian sections of Justicia are marked with different colors. The tribe Justicieae 
are printed in blue while the other tribes of Acanthaceae are printed in red. Only bootstrap values (BS) ≥ 70% and posterior probabilities (PP) ≥ 0.95 are 
indicated at each node
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77 (ORF77), which belongs to protein families (Pfam) 
with accession PF10705 [110, 111]. In our study, ycf15 
gene is normally expressed in most Justicia plants, but 
pseudogenized in plastome of J. adhatoda due to its pre-
mature stop codons, which was doubted to be caused by 
gene degradation during RNA transcription [112, 113]. 
Meanwhile, this gene is different among other genera 
of Acanthaceae. For instance, it expresses under posi-
tive selection in Dicliptera [92], but acts as a pseudogene 
in Echinacanthus [91], or is even lost in Barleria prion-
itis L., R. pectinata and S. cusia [93, 98, 101]. Therefore, 
it is suggested that ycf15 gene could be associated with 
plastome evolution of Acanthaceae, but its gene function 
remains to be further studied.

IR structure variation
Chloroplast genome structure is highly conserved across 
angiosperms [66, 67]. This is especially true for the IR 
regions, which is caused by low substitution rates and 
strict copy correction during repeat sequences replica-
tion [114]. The IR often ranges in size from 7 to 88  kb 
in angiosperms [115–117], with the extent of IR due 
largely to expansions and contractions at the SSC and 
LSC boundaries [114]. In our study, Justicia is different 
from other genera of Acanthaceae in three IR borders, 
i.e., LSC/IRa, LSC/IRb and SSC/IRb (Fig.  3). Compared 
with Justicia, significant IR expansion from IR to LSC 
was found in E. lofouensis and R. pectinata, and IR con-
traction with two directions of boundary shifts from IR 
to LSC and SSC was also detected in A. knappiae, C. 
nutans and S. cusia. The discrepancy of IR borders of 
plastomes within Justicia, however, only performs on 
SSC/IRa and SSC/IRb regions of J. grossa and other Jus-
ticia species. In detail, the lengths of ndhF and ycf1 in 
IRs are much shorter than those of other Justicia species, 
while the lengths of these two genes located in SSC are 
much longer than others, which is thought to undergo IR 
contraction and cause an increase length of SSC region. 
Therefore, it is indicated that J. grossa is different from 
other Justicia species at the genomic structure level.

According to the statistics of cp. genome structure 
types of Laminales [98], all the Justicia species belong 
to type II (a rps19 pseudogene at the IR/LSC border). 
However, the plastome structure of C. nutans, with ndhF 
and ycf1 boundary genes fully located in SSC, was not 
recorded before, thus it is firstly reported here. In our 
study, IR expansion and contraction events mainly con-
tribute to genomic structure and sizes as well as gene 
composition variations among different genera of Acan-
thaceae, which is congruent with other plant lineages, 
including subfamily Commelinoideae (Commelinaceae 
Mirb.) [118], Angelica L. (Apiaceae Lindl.) [119], Paphi-
opedilum Pfitzer (Orchidaceae) [79] and Balanites 
aegyptiaca (L.) Delile (Zygophyllaceae R.Br.) [120]. It is 

suggested that IR expansion and contraction events will 
provide useful references for further research on plastid 
genome rearrangement of angiosperms, with an empha-
sis on gene content and evolution of the IRs.

Potential molecular markers selection
Because the evolutionary rates of non-coding regions are 
faster than coding regions [76–78], LSC and SSC regions 
often exhibit higher sequence divergence than the IR 
regions in Justicia (Fig.  4), which is in accordance with 
other genera of Acanthaceae [91, 92, 94, 98]. Therefore, 
all of the mutational hotspots across the 13 Justicia com-
plete cp. genomes were identified in single-copy regions 
(Fig. 5), of which six were intergenic spacer (rps16-trnQ, 
rpoB-trnC, trnT-trnL, rps4-trnT, ccsA-ndhD and rps15-
ycf1), one was intron (rpl16 intron) and one was pro-
tein coding gene (ycf1). The gene ycf1 is a conservative 
homologous coding sequence with abundant variable 
sites [121–123]. Our phylogenetic topology based on 
ycf1 gene is also generally identical with the cp. genome 
tree (Fig. S5). In addition, Dong et al. [121] also proposed 
that ycf1 is the most promising plastid DNA barcode for 
land plants and plays an important role in genome evo-
lution. Meanwhile, in some previous studies [123–125], 
ycf1 gene has also been considered as an appreciated 
source to provide effective genetic information for phy-
logeny and species identification in breeding resources. 
Even one special concern for the use of ycf1 as a barcode 
is the absence of ycf1 in some taxa, such as Poaceae [121]. 
Therefore, this gene could be developed as a candidate 
DNA barcode for further phylogenetic reconstruction of 
Justicia. Compared with conserved coding regions, inter-
genic spacer and introns often show greater discrimi-
nation power at low taxonomic levels [126]. The rpl16 
intron and trnT-trnL have provided an effective molec-
ular phylogeny in other plants, e.g., Chusquea Kunth 
(Poaceae) [127], Echinochloa P.Beauv. (Poaceae) and Cas-
tanea Mill. (Fagaceae Dumort.) [128, 129]. They were also 
proved to be a good resolution for phylogeny of Justicieae 
[9, 10]. Additionally, the five other non-coding regions 
have been proposed to be candidate DNA barcodes for 
phylogenetic research in other plant lineages, such as 
subfamily Dialioideae Azani et al. (Fabaceae Lindl.) [130], 
subfamily Zingiberoideae Hassk. (Zingiberaceae Marti-
nov) [131], subfamily Allioideae Herb. (Amaryllidaceae 
J.St.-Hil.) [132], Echinacanthus (Acanthaceae) [91] and 
Tetrastigma hemsleyanum Diels & Gilg (Vitaceae Juss.) 
[133]. Therefore, it is believed that the eight mutational 
hotspots regions identified in our study could be poten-
tial molecular markers in Justicia phylogenetic studies. 
However, due to our results are only preliminary, more 
sampling and PCR amplification experiments for each 
primer of these barcodes should be carried out to test 
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whether they could be feasible in phylogenetic research 
of Justicia in the future.

Simple sequence repeats, SSRs, known as microsatel-
lites, are short stretches of DNA containing repetitive 
sequences of 1–6  bp in length, have been the most fre-
quently used genetic marker in species identification 
and population genetics [134], due to their co-dominant 
inheritance and high polymorphism [135]. SSRs are the 
same units with different repeat numbers located in the 
homologous regions and these regions are frequently 
used to identify variable species [92, 117, 136–138]. 
Therefore, cp. SSRs were identified in our study. As a 
result, repetitive sequences are significantly variable 
among different species (Figs.  6 and 7). Most cp. SSRs 
are located in intergenic spacer of LSC and SSC regions, 
with 61% in non-coding regions and only a small amount 
in protein-coding genes (25%) and introns (14%) (Table 
S6), which is consistent with other plants [91, 92, 139]. 
It is revealed that non-coding regions are more variable 
to screen valuable polymorphic SSRs [140–142]. Besides, 
cp. SSRs that are polymorphic within and among species 
can provide unique insights into species identification 
and their purities, particularly on those economically 
important plants [140]. Thus, a total of 91 polymorphic 
SSRs were identified here (Table 3). Due to the high simi-
larity of universal DNA barcodes (matK, rbcL) among 
Justicia species (Table S4), our selected polymorphic 
SSRs can be effective genetic markers to identify these 
species. As the most common repeat unit, mononucleo-
tide is mainly located in intergenic spacer and attributed 
to almost 90% A/T base richness (Table S6), which is in 
line with other plants [87, 141, 143]. Notably, apart from 
the highly variable hotspots region as mentioned above, 
ycf1 is also detected as the most polymorphic gene with 
five different motifs (AATT, TTTC, TTA, TCT and T) in 
the 13 Justicia species (Table 3). Based on our results, it is 
believed that this gene is the most promising molecular 
marker for species identification in Justicia in the future. 
Importantly, based on our results of repetitive sequences 
analyses, it is indicated that J. grossa is quite different 
from other Justicia species owing to its richest SSRs and 
dispersed repeats among all the Justicia species, with an 
emphasis on the number of mononucleotide and dis-
persed repeats of over 50 bp (Figs. 6 and 7).

Potential reason for the low support values of ITS tree
The tree topology based on ITS sequence is generally 
similar with those based on whole chloroplast genome 
and 77 common cpCDS datasets, but the ITS tree has 
low support values whether based on ML or Bayes algo-
rithm (BS < 70, PP < 0.95) (Fig.  8, Fig. S1–S4). In this 
case, the low support values are mainly attributed to 
the insufficiency of variable sites, though evolutionary 
rates of nuclear are faster than plastid. In our results, 

the alignment of plastid genomes has much more vari-
able sites in total (56,714) than ITS (457) (see Results 
part). Therefore, our ITS tree caused the sampling error, 
which means that in the process of substitution model 
selection, explaining too many parameters with too little 
data increases variance of estimable models [144, 145]. 
Anyway, phylogenetic analyses of too short sequences 
are more prone to result in sampling error than long 
sequences, simply because they contain less phylogenetic 
information [146].

Phylogenetic relationships of Asian Justicia plants
Recently, in the most comprehensive work of Graham [1], 
Justicia was divided into nine sections and seven subsec-
tions based on the combination of morphological charac-
ters of inflorescence, stamen, pollen, fruit and seed traits. 
In our study, we sampled 13 Justicia species from seven 
Asian Justicia sections. The phylogenetic results based on 
whole plastome, both 77 common protein-coding genes 
and ITS datasets (Fig. 8, Fig. S1–S4) suggest that Justicia 
s.l. is a polyphyletic group, which is supported in previ-
ous studies based on several molecular markers [8–12, 
147].

In our results, Justicieae can be divided into three 
clades, i.e., Clade I, II and III (Fig.  8). Clade I contains 
two species, i.e., J. grossa and C. nutans, and might be 
assigned to subtribe Tetramerinae. J. grossa is isolated 
with other species in Justicia and forms the sister group 
with C. nutans. This result is also in accordance with 
previous phylogenetic studies using several molecular 
markers [9, 11]. J. grossa belongs to sect. Grossa B. Han-
sen. Sect. Grossa comprises three species from China, 
Vietnam, Laos, Thailand, Malaysia and Myanmar, and, 
morphologically, it is quite different from other Justicia 
plants in its bithecous anther having a solid, cusp-like 
spur at the base of each theca (Fig. S6), but other Justicia 
species only spurred on the lower theca [6, 8, 9, 11, 148]. 
Meanwhile, sect. grossa is also different from Clinacan-
thus in its bithecous anthers with both spurred thecae 
while Clinacanthus has muticous monothecous anthers 
[3, 6]. Therefore, J. grossa may be recognized as a new 
undescribed genus. However, the further phylogenetic 
research is necessary to determine the position of sect. 
Grossa since only one species was sampled in our study.

With the exception of J. grossa, all of the remaining 
Asian Justicia species may be assigned to subtribe Justi-
ciinae and can be divided into two main clades, i.e., Clade 
II and III. Clade II contains J. latiflora, J. lianshanica, J. 
leptostachya, J. patentiflora and J. gendarussa together 
with Rungia. Clade III includes J. adhatoda, J. betonica, 
J. demissa, J. mollissima, J. procumbens, J. quadrifaria and 
J. vagabunda together with Dicliptera. In terms of mor-
phology, those plants of Clade II have the fruits in which 
the placenta separated from the capsule wall but remain 
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attached at the apices causing them to rise up at dehis-
cence while the fruits not as such in Clade III [1, 9].

In Clade II, J. gendarussa is clustered with J. ventricosa 
and closely related to Rungia in terminal spike and elastic 
placenta when fruit dehiscence [3, 9]. Four species (J. lati-
flora, J. lianshanica, J. leptostachya and J. patentiflora) are 
clustered together in sharing the characters of elongated 
simple or rarely branched terminal spikes, narrow bracts 
subtending the small flowers or clusters of small flowers 
(Fig. 9), as well as 2-colporate pollen grains and rugulose 
seeds [26, 149, 150].

In Clade III, J. adhatoda and J. betonica were consid-
ered to be closely related by Graham [1], but differs from 
each other mainly in the flower number at each node of 
the spike and the bract shape [1, 30]. The former has the 
spikes with one flower per node and ovate-oblong bracts 
while the latter has the spikes with two flowers per node 
and white cordate bracts with green veins (Fig.  9). The 
next diverging species is J. quadrifaria, which is distrib-
uted in Asia and Africa and is characterized by the axil-
lary cymose inflorescence, tiny subulate or triangular 
bracts and 5-partite calyx with equal segment (Fig.  9) 
[3, 5, 7, 29]. Next to diverge is the group including three 
species J. demissa, J. mollissima and J. procumbens, shar-
ing the characters of short simple terminal spikes and 
5-partite calyx with one extremely reduced segment and 
purplish red corolla (Fig.  9) [1, 3, 5]. In our analysis, J. 
vagabunda is the last diverging species and is sister to 
Dicliptera, but distantly related to other members of Jus-
ticia (Fig. 8). It differs from other sampled Justicia species 
in having axillary cymes and irregularly rounded-rugose 
tuberculate seeds. Besides, it is also easily distinguished 
from Dicliptera by its lower anther-theca spurred at base 
and the placenta not separate from the capsule wall while 
the anther and fruit not as such in the latter [3, 6, 151].

Interestingly, we discovered that the position and rachis 
internode of inflorescence of Justicia plants vary from 
terminal to axillary, spikes gradually shorten into cymes, 
seems to be a phenotype positively correlated with its 
evolutionary history. However, to fully resolve phyloge-
netic relationships of Justicia, more genetic resources and 
morphological evidence of Justicieae species from Africa, 
Australia and South America need to be combined with 
our Asian taxa for phylogenetic analyses in the future.

Conclusions
Our study sequenced 12 complete chloroplast genomes 
of Asian Justicia plants and combined with the previously 
published plastome of J. leptostachya for further com-
parative genomic analyses. The 13 Justicia cp. genomes 
are highly conserved in genome structures, organiza-
tions and gene contents. However, the gene ycf15 was 
found to be a pseudogene in J. adhatoda while normally 
expressed in others. Four IR/SC junctions of plastomes 

are generally identical within genus with the exception of 
J. grossa. Repetitive sequences are significantly variable 
at the interspecific level. A total of 91 polymorphic SSRs 
and the eight mutational hotspots were also identified. 
Among them, the gene ycf1 is the most promising plas-
tid DNA barcode for Justicia species identification and 
phylogenetic studies. Our phylogenetic results strongly 
supported that Justicia is polyphyletic and shed lights 
on the relationships among Asian Justicia plants for the 
first time. Interestingly, the evolutionary history of Justi-
cia coincides with morphology of inflorescence position 
from terminal to axillary and spikes gradually shorten 
into cymes.

Additionally, it is noteworthy that J. grossa is different 
from other Justicia species in the following three aspects: 
(i) it is richest in SSRs and dispersed repeats compared 
with other Justicia species; (ii) its SC/IR boundary genes 
ndhF and ycf1 located in IRs are much shorter than other 
Justicia species, whileΨycf1 located in SSC is much lon-
ger than others; (iii) its systematic position is in subtribe 
Tetramerinae, which is distantly related to other mem-
bers of Justicia. Therefore, combined with its morphol-
ogy of bithecous anthers with both spurred thecae, J. 
grossa should be defined as a new genus. Our study may 
not only improve the understanding of plastomes of Jus-
ticia plants, but also provide more genetic information 
for further researches on the evolutionary history of Jus-
ticia in the future.

Materials and methods
Sampling, DNA extraction and sequencing
A total of 12 plants from seven Asian sections of Justi-
cia were sampled in our study, followed by classification 
system of Graham [1] and Hansen [148], including J. 
adhatoda, J. betonica, J. demissa, J. gendarussa, J. grossa, 
J. latiflora, J. lianshanica, J. mollissima, J. quadrifaria, J. 
patentiflora, J. procumbens and J. vagabunda. Fresh and 
healthy leaves of these 12 Justicia plants were collected 
in the field, with sampling information listed in Table S1. 
Leaf samples were immediately dried with silica gel for 
further DNA extraction. All the voucher specimens were 
deposited in the Herbarium of South China Botanical 
Garden, Chinese Academy of Sciences (IBSC).

Total genomic DNA was isolated using the modified 
CTAB method [152]. The extracted genomic DNA was 
sent to the Beijing Genomics Institute (BGI) for qualifi-
cation control by fluorometer (QubitFluorometer, Invi-
trogen). DNA samples of concentration up to standard 
(≥ 1 μg) were randomly sheared into fragments by Cova-
ris M220 (Covaris, Woburn, MA). Insert size of 270  bp 
DNA fragments were enriched by PCR, and the paired-
end (2 × 150  bp) libraries were constructed on the Illu-
mina HiSeq 4000 platform. Finally, about 2 Gb genome 
skimming data were generated.
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Fig. 9 Morphological characters of ten representative Asian Justicia plants. (A). J. adhatoda L.; (B). J. betonica L.; (C). J. gendarussa N. J. Burman; (D). J. grossa 
C. B. Clarke; (E). J. procumbens L.; (F). J. quadrifaria (Nees) T. Anderson; (G). J. latiflora Hemsl.; (H). J. leptostachya Heml.; (I). J. lianshanica (H. S. Lo) H. S. Lo; (J). 
J. vagabunda Benoist
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Assembly and annotation of whole plastome and nrDNA
To improve assembly accuracy and efficiency, Trimmo-
matic v 0.39 was first employed to filter out unpaired and 
low-depth reads from clean data using default param-
eters [153]. The filtered clean reads were utilized to de 
novo assemble complete cp. genomes using GetOrganelle 
v 1.6.2 pipeline [154]. To obtain complete cp. genomes 
and nrDNA sequence, six k-mer values, including 21, 45, 
65, 85, 105,125, were set for plastid contigs connection. 
Subsequently, the filtered plastid reads were transferred 
to Bandage [155] software for visualization processing. 
Two opposite plastid sequences exported from Ban-
dage were aligned with the reference sequence Androg-
raphis paniculata (GenBank accession no. KF150644), 
and one that matched the reference was screened on the 
annotation of PGA software [156] and the Annotation 
of Organellar Genomes (GeSeq) [157]. The final anno-
tations of plastomes and nrDNA sequences were manu-
ally corrected in Geneious Prime v 9.1.4 [158]. The whole 
cp. genomes and nrDNA maps were drawn by using 
OGDRAW v 1.3.1 (https://chlorobox.mpimp-golm.mpg.
de/) with default settings [159].

Genome divergences comparison and codon usage 
analyses
The complete cp. genome of J. leptostachya was com-
bined with newly assembled 12 cp. genomes in our 
study for further comparative genomic analyses. Whole 
plastomes of the 13 Justicia species and seven species 
of other genera in Acanthaceae were combined to visu-
alize IR expansion and contraction by using IRscope 
online software (https://irscope.shinyapps.io/irapp/) 
[160]. Besides, the 13 Justicia plastomes were aligned 
and globally viewed using the online mVISTA program 
[161] (https://genome.lbl.gov/vista/index.shtml) in Shuf-
fle-LAGAN mode [162], with the annotation of J. lepto-
stachya as the reference. To evaluate nucleotide diversity 
(Pi), MAFFT v 7.450 [163] was operated to align the 13 
Justicia cp. genomes. Then, Pi value was implemented 
based on a sliding window by Dnasp v 5.0 [164], with step 
size of 200 bp and window length of 800 bp. Relative syn-
onymous codon usage (RSCU) in all the protein-coding 
sequences of 13 Justicia plants were calculated using 
CodonW v 1.4.2 software with default parameters [165].

Repetitive sequences analyses
Dispersed repeats among the 13 Justicia cp. genomes 
were identified with four directions (forward, reverse, 
palindromic, and complement) using the online REPuter 
program (https://bibiserv.cebitec.uni-bielefeld.de/
reputer) [166], with the maximum computed repeats 
number of 100 and the minimal repeat size of 20  bp. 
The program MISA [167] was employed to obtain mul-
tiple short tandem repeats, including mononucleotide 

(mono-), dinucleotide (di-), trinucleotide (tri-), tetra-
nucleotide (tetra-), pentanucleotide (penta-), and hexa-
nucleotide (hexa-) SSRs, with corresponding minimum 
repeat units set as 10, 6, 3, 3, 3, 3. Tandem repeats were 
also identified using Tandem Repeats Finder v 4.09 [168].

Phylogenetic analysis
Three datasets containing whole chloroplast genome 
(WCG), plastid protein-coding genes (PCG) and internal 
transcribed spacer (ITS) were designed for phylogenetic 
analysis based on two different algorithms including 
Maximum Likelihood (ML) and Bayesian Inference (BI). 
For WCG tree, a total of 62 samples were utilized for 
phylogenetic tree reconstruction, comprising 12 newly 
sequenced Justicia cp. genomes in our study, three previ-
ously published Justicia cp. genomes and 46 cp. genomes 
of other genera belonging to Acanthaceae from GenBank. 
Sesamum indicum L. (JN637766) was selected as the out-
group species because it belongs to the family Pedalia-
ceae R.Br., which is most closely related to Acanthaceae 
based on APG IV (https://www.mobot.org/MOBOT/
research/APweb/). For PCG tree, with the exclusion of 
psbA, rpl2 and ycf15 gene due to lacking in some gen-
era, a total of 77 common protein-coding genes were 
extracted from whole plastomes by using a python script 
‘get_annotated_regions_from_gb.py’ (https://github.
com/Kinggerm/PersonalUtilities/). Gblocks v 0.91b [169] 
was further employed to trim each gene matrix. The 
parameters are set as allowing up to half of the samples 
to have missing data and at least 87 minimum sequence 
length per gene matrix. For ITS tree, a total of 63 sam-
ples were utilized for phylogenetic inference, including 
13 Justicia ITS sequences extracted from our nrDNA 
data by Geneious Prime and 50 previously published ITS 
sequences of Acanthaceae from GenBank. Strobilanthes 
cusia (Nees) Kuntze was set as the outgroup for the ITS 
tree. All the GenBank accession numbers of cp. genomes 
and ITS sequences used for our phylogenetic analyses 
were listed in Table S2.

Then, the three datasets were aligned by using MAFFT 
and the test for nucleotide substitution saturations was 
implemented in DAMBE v 7.2.133 referring to Xia’s 
method [170], with a significance threshold of Iss < Iss.c 
and p-value < 0.05. ML analyses were conducted by 
RAxML v 8.0.0 [171], with the best-fit parameter settings 
as rapid bootstrap algorithm and GTRGAMMAI model 
recommended by jModelTest v 2.1.6 [172]. The number 
of 12,345 was specified as the random seed of parsimony 
tree inference with 1000 replicates performed. BI analy-
ses were operated by using MrBayes v3.2.2 [173], with 
the best-fit model selected as SYM + G inferred from 
MrModeltest v 2.3 [174]. Rates of variations across sites 
were trimmed as gamma. For each analysis, two simul-
taneous runs of four Monte Carlo Markov Chains (three 
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heated and one cold) were run for six million genera-
tions with a random tree as the starting point and sav-
ing trees every 1000 generations. After rejecting the first 
25% burn-in samples, the optimized topology with pos-
terior probabilities (PP) > 0.95 was generated. Finally, the 
phylogenetic results were visualized with FigTree v 1.4.3 
(http://tree.bio.ed.ac.uk/software/figtree/).
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