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Abstract
Phosphorus (P) imbalances are a recurring issue in cultivated soils with pastures across diverse regions. In addition 
to P deficiency, the prevalence of excess P in soil has escalated, resulting in damage to pasture yield. In response 
to this reality, there is a need for well-considered strategies, such as the application of silicon (Si), a known 
element for alleviating plant stress. However, the influence of Si on the morphogenetic and chemical attributes 
of forage grasses grown in various soils remains uncertain. Consequently, this study aimed to assess the impact 
of P deficiency and excess on morphogenetic and chemical parameters, as well as digestibility, in Zuri guinea 
grass cultivated in Oxisol and Entisol soils. It also sought to determine whether fertigation with nanosilica could 
mitigate the detrimental effects of these nutritional stresses. Results revealed that P deficiency led to a reduction 
in tiller numbers and grass protein content, along with an increase in lignin content. Conversely, P excess resulted 
in higher proportions of dead material and lignin, a reduced mass leaf: stem ratio in plants, and a decrease in dry 
matter (DM) yield. Fertigation with Si improved tillering and protein content in deficient plants. In the case of P 
excess, Si reduced tiller mortality and lignin content, increased the mass leaf:stem ratio, and enhanced DM yield. 
This approach also increased yields in plants with sufficient P levels without affecting grass digestibility. Thus, Si 
utilization holds promise for enhancing the growth and chemical characteristics of forage grasses under P stress 
and optimizing yield in well-nourished, adapted plants, promoting more sustainable pasture yields.
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Background
Yield in pastoral ecosystems worldwide is susceptible to 
phosphorus (P) limitation, particularly in tropical regions 
where deficiencies are prevalent [1]. In these regions, 
extensive weathering, and the high phosphate adsorption 
capacity of soils diminish nutrient availability, particu-
larly in clayey soils [2]. This necessitates phosphate fertil-
ization to sustainably boost forage yield [3]. Conversely, 
in intensive agriculture, the frequent application of high 
doses of phosphorus (P) fertilizers, whether conven-
tional or organic, can result in excessive P accumulation 
within plants, surpassing the quantities exported from 
the fields [4]. This leads to nutritional imbalances and an 
overabundance of P within plant tissues [5, 6]. The risk of 
P excess is further exacerbated in soils with a sandy tex-
ture (clay content < 15%), where phosphate availability is 
heightened due to relatively low element adsorption in 
the soil [2].

Within plants, the cellular balance of inorganic phos-
phate (Pi) plays a fundamental role in converting nutri-
ents such as carbon (C) and nitrogen (N) into biomass, 
as P serves vital metabolic and structural functions [5, 7]. 
Phosphorus imbalances compromise plant physiological 
processes [8], consequently affecting the morphogenic 
processes that determine forage growth. For instance, 
disruptions in P levels within the plant can diminish leaf 
and stem appearance and elongation [9, 10], as well as 
plant tillering [11–13], ultimately reducing forage yield 
and pasture sustainability.

The repercussions of P imbalances within plants extend 
beyond growth rates and biomass yield to influence for-
age quality. Forage grasses encompass carbohydrates, 
proteins, lipids, fibers, lignin, minerals, and vitamins, 
all of which significantly impact herd productivity [14]. 
Nutritional imbalances can alter these components, 
potentially affecting the nutritional value of the pasture 
[15, 16]. However, further research is needed to compre-
hensively understand these effects.

Given the global prevalence of P imbalances in plants 
[1, 4], there is an urgent need for strategies to mitigate 
these losses. Research efforts have been directed toward 
finding more efficient and sustainable methods for phos-
phate nutrition in forage plants [17]. One emerging 
option for addressing these imbalances involves silicon 
(Si), with initial reports suggesting promise in mitigat-
ing nutritional deficiencies [18]. However, these studies 
have primarily focused on soilless hydroponic cultiva-
tion [19, 20], leaving the role of Si in the morphogenetic 
responses of grasses under P deficiency when cultivated 
in soil unexplored. Moreover, the effects of excess P on 
grasses remain largely unknown, including its impact on 
plant morphogenesis, necessitating further investigation. 
It is conceivable that Si may also contribute to alleviat-
ing excess P, given its known benefits to this plant group 

(Poaceae) when subjected to other nutritional stresses 
[21, 22].

It is important to note that the potential benefits of 
Si in stress mitigation hinge on the plant’s high uptake 
of the element, which, in turn, depends on the source 
used. Recent advancements in nanotechnology have 
introduced the option of nanoparticulate silicon [23], 
which holds the potential to enhance Si uptake due to 
the monomeric size of SiO2 particles that remain stable 
in solution [24, 25]. Consequently, there is an expectation 
that employing this Si source may offer promising pros-
pects for mitigating nutritional stress, warranting further 
investigation.

To shed light on the effects of P imbalances in for-
age grasses and the potential benefits of Si in alleviating 
these stresses, it is crucial to address the following ques-
tions: (i) How does damage resulting from P deficiency 
and excess affect the morphogenesis of Megathyrsus 
maximus cv. Zuri grass and impede P yield? (ii) Does it 
influence chemical parameters and the digestibility of 
plant biomass? (iii) Is nanosilica fertilization an efficient 
strategy? In other words, does it enhance Si uptake by the 
plant, thereby mitigating the damage caused by P defi-
ciency and excess through improvements in plant mor-
phogenesis and forage quality when cultivated in both 
clayey and sandy soils?

If these hypotheses are substantiated, it will mark the 
first comprehensive understanding of how this forage 
grass species responds to morphogenic changes when 
subjected to P deficiency or excess and how this affects 
forage quality. Furthermore, it may indicate the util-
ity of employing nanoparticulate Si in forage cultivation 
to ameliorate issues related to P deficiency or excess in 
soils of varying textures, thereby bolstering the sustain-
able cultivation of this species in regions grappling with 
P imbalances.

Methods
Experimental design and cultivation environment
Two experiments were conducted with Megathyrsus 
maximus cv. Zuri, cultivated in Oxisol (Experiment 1) 
and Entisol (Quartzipsamment) (Experiment 2) [26] 
under greenhouse conditions. These experiments were 
carried out at São Paulo State University, Jaboticabal, Bra-
zil, spanning from October 2021 to April 2022. Through-
out this period, six defoliation intervals were imposed, 
corresponding to six growth cycles. Cultivation occurred 
under full natural light conditions. Inside the greenhouse, 
the average maximum air temperature reached 47 ± 5 °C, 
while the average minimum temperature was 22 ± 5  °C, 
with an average relative humidity of 50 ± 10%.

The soils were collected from the surface layer of the 
uncultivated area, in the 0 to 20 cm layer, and the sam-
ples were air-dried and passed through a 6-mm mesh 
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sieve. Both experiments followed a 3 × 2 factorial design, 
encompassing three phosphorus nutritional states: defi-
cient (no P application), sufficient (200  mg dm− 3 of P) 
[27], and excessive (600 mg dm− 3 of P). These states were 
combined with the absence of silicon (Si) application (no 
Si) and the presence of Si (1.5 mM Si solution) [28]. The 
experiments were arranged in a completely randomized 
design with four replications. Each experimental unit 
consisted of a plastic pot with a volume of 7.2 L (dimen-
sions: height 32  cm, bottom base 14 × 14  cm, and top 
16 × 16  cm), filled with Oxisol or Entisol samples, each 
pot containing two plants.

Characterization of soils and application of treatments
Soil samples were collected from native forests and sub-
sequently subjected to chemical analysis following estab-
lished procedures [29]. The results for Oxisol and Entisol, 
respectively, were as follows: pH CaCl2 = 3.8 and 4.3; 
organic matter (OM) = 34 and 9.0  mg dm− 3; P in resin 
extractor = 12 and 2 mg dm− 3; K = 1.4 and 3.0; Ca = 6 and 
3.0; Mg = 2 and 1.0 mmolc dm− 3; H + Al = 85 and 16; and 
cation exchange capacity (CEC) = 94 and 20.3 mmolc 
dm− 3. Silicon contents were determined [30], yielding the 
following outcomes: 3.0 and 1.0  g dm− 3 for Oxisol and 
Entisol, respectively. Granulometric analysis, conducted 
according to [31], provided the following results for Oxi-
sol and Entisol, respectively: 51 and 94% sand, 6 and 1% 
silt, and 43 and 5% clay, with texture [32] sandy clay (Oxi-
sol) and sand (Entisol).

To address soil requirements, liming was carried out 
using limestone with a total neutralization power of 
125%, consisting of CaO (58.5%) and MgO (9%), to cor-
rect acidity and increase base saturation to 70% [29]. 
Forty days after liming, phosphorus (P) was incorporated 
into the soil at varying rates: 0, 200 [27], and 600  mg 
dm− 3 of P, administered in the form of triple superphos-
phate, corresponding to the deficiency, sufficiency, and 
excess P treatments, respectively. Additionally, 225, 50, 
5, and 0.5  mg dm− 3 of K, S, Zn, and B were applied to 
both soil types. In Entisol, an additional 5  mg dm− 3 of 
Fe was required, supplied through potassium chloride 
(52.4% K), calcium sulfate dihydrate (18% S), zinc sulfate 
heptahydrate (35% Zn), boric acid (17% H3BO3), and iron 
chelate (EDDHA) (6% Fe) sources, respectively. Nitrogen 
(300 mg dm− 3) was provided incrementally during each 
regrowth period in the form of urea (45% N), with subse-
quent irrigation.

Sowing was directly performed in the soil using seeds 
from the Zuri grass cultivar, developed by the Brazilian 
Agricultural Research Corporation and commercially 
acquired. Each pot contained two plants, which under-
went a standardization cut at 17 cm above ground level 
30 days after sowing, marking the commencement of 
the data collection phase. In the case of the treatment 

deficient in Entisol (0  mg dm− 3 of P), an additional 
4 mg dm− 3 of P was applied on the day of standardiza-
tion to facilitate minimal plant growth, whereas Oxisol 
did not necessitate such intervention for minimal plant 
development. Irrigation management was conducted to 
maintain soil water retention at 70%, monitored by daily 
pot weighing and compensating for water losses due to 
evapotranspiration [33, 34].

Silicon application occurred daily from the sowing 
date, utilizing a 1.5 mmol L− 1 Si solution [28]. Colloidal 
nanosilica served as the Si source, characterized by par-
ticle sizes ranging from 8.5 to 9.7 nm, a specific surface 
area of 300 m2 g− 1, and a pH of 10.5. The same volume of 
solution was applied across all treatments, with the daily 
volume determined based on the treatment with the low-
est water demand. On average, 102 and 69 mg dm− 3 of Si 
were administered during each forage regrowth in Oxisol 
and Entisol, respectively. In treatments without Si appli-
cation, irrigation was performed using deionized water. 
Cuts were executed when plants under P sufficiency 
reached a height of 70 cm, leaving a residual biomass of 
30 cm in height [35].

Variables analysed
Morphogenic and structural variables
Growth monitoring encompassed six regrowth cycles of 
the plants. In each regrowth phase, two tillers per pot 
were meticulously selected and distinguished with col-
ored ribbons. These tillers were examined every three 
days, focusing on the exposure of ligules, stem length, 
and the length of leaf blades in various states: expansion, 
expanded, or undergoing senescence. At the end of each 
growth cycle, the following parameters were assessed 
immediately before plant cutting: number of leaves per 
tiller, number of tillers per pot, count of live and dead 
leaves, and tiller diameter, with measurements performed 
using a digital caliper.

Following data collection, the subsequent variables 
were computed in accordance with [10]: leaf appear-
ance rate (LA, leaves per tiller per day), leaf elongation 
rate (LE, measured in millimeters per day), number of 
live leaves per tiller, stem elongation rate (SE, expressed 
in millimeters day− 1), and stem diameter (SD, measured 
in millimeters). Tillering was also evaluated, considering 
the following parameters: number of tillers per pot, til-
ler appearance rate (TA = number of new tillers per total 
tillers alive in the previous cycle)/days of regrowth, tiller 
mortality rate (TM = number of dead tillers per total til-
lers alive in the previous cycle)/number of regrowth days, 
and tiller survival rate (TS = 1-TM) [36, 37].

Yield and morphological fractions
The average dry matter (DM) yield was determined 
through six collections of biomass from the plant’s 
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grazing stratum [35]. In each collection, the morphologi-
cal components, including leaf blades, stems, and dead 
material, were isolated from the biomass and measured 
in grams of fresh weight. This material was then placed 
in paper bags and subjected to drying in an oven with 
forced air circulation (maintained at 65 ± 5 ºC) until a 
constant mass was achieved. Subsequently, the dry mat-
ter (DM) content of the leaf blades, stems, and dead 
material was determined. Finally, the percentage compo-
sition of each morphological component, the mass leaf 
blade:stem ratio, and the total DM yield (in grams per 
pot) were calculated.

P and Si contents
P and Si contents in DM of the grazing stratum were 
determined. To determine P, the sample was subjected 
to nitric-perchloric digestion, with a spectrophotometer 
reading at 420 nm [38]. Si extraction was carried out by 
alkaline digestion in hydrogen peroxide at 120ºC [39], 
and determined by spectrophotometer reading at 410 nm 
after colorimetric reaction with ammonium molybdate 
[30]. P and Si contents were expressed in g kg− 1.

Chemical composition of forage
The processed material underwent milling using a Wil-
ley-type mill, enabling the determination of percentages 
for neutral detergent fiber (NDF), acid detergent fiber 
(ADF), and lignin in the dry mass [40, 41]. This data was 
used to calculate hemicellulose (the difference between 
NDF and ADF) and cellulose (the difference between 
ADF and lignin) contents. Additionally, the percent-
ages of mineral matter (MM), non-fiber carbohydrates 
(NFCs), and crude protein (PB% = N content x 6.25, 
with N determined using a LECO Truspec CHNS ana-
lyzer) (AOAC, 2012) were computed. In vitro dry matter 
digestibility (IVDM) was also assessed [42]. The following 
equation was employed to estimate total digestible nutri-
ents (TDN%): TDN (%) = Deg + (1.25*EE) – MM, where 
Deg represents degradability, 1.25 is the correction fac-
tor, EE signifies ether extract, and MM denotes mineral 
matter.

Statistical analyses
The data were subjected to assessments of normality, 
homogeneity, and the independence of residuals [43, 44]. 
Subsequently, analysis of variance was conducted using 
the F test (with p < 0.05). In cases where significant differ-
ences among means were detected, Tukey’s post hoc test 
(p < 0.05) was employed for comparisons. These statistical 
analyses were carried out using the SPEED Stat version 
2.8 software [45].

Results
Phosphorus and silicon contents
A significant interaction PxSi (p < 0.05) was observed 
for P and Si contents in plants. In the absence of Si, the 
deficiency and excess of P in the soil in relation to the 
adequate state caused a decrease and increase in the P 
content of the plant, respectively, which occurred in both 
soils (Fig. 1a, b), without changes in the levels of Si inde-
pendent of the P state (Fig. 1c, d).

In the presence of Si, the P content was reduced in 
plants under excess P in both soils, and decreased in 
plants under adequate P status in Entisol, but there was 
no change in the P content of deficient plants when 
they received Si (Fig.  1a, b). Furthermore, the Si con-
tent increased in plants across all P states in both soils 
when they received nanosilica fertilization (Fig.  1c, d). 
The Si content was higher in plants deficient in P in Oxi-
sol (Fig.  1c) and in P deficiency and excess in Entisol 
(Fig. 1d).

Morphogenic and structural characteristics
A significant interaction PxSi (p < 0.05) was observed for 
most of the studied morphogenetic and structural vari-
ables (Fig. 2a-j), except for leaf elongation in Oxisol and 
stem diameter and leaf appearance rate in Entisol. In 
Oxisol, P deficiency compared to the adequate state led 
to an increase in leaf appearance rate and the number 
of live leaves per tiller (Figs.  1e and 2a). It also resulted 
in increased stem elongation and diameter compared to 
plants under P sufficiency (Fig. 2 g and 1i). Additionally, 
phosphorus deficiency reduced the tiller mortality rate in 
the Oxisol (Fig. 2c). In Entisol, P deficiency decreased the 
tiller appearance rate (Fig. 1b), and the number of tillers 
per pot in the forage, both in Oxisol (55%) and Entisol 
(35%) (Fig. 3a-h).

In contrast, compared to P sufficiency, excess P 
increased the rate of leaf appearance and leaf elonga-
tion while decreasing the number of live leaves per til-
ler in both soils (Fig. 2a-f ). Stem elongation increased in 
plants under P excess in Oxisol. However, stem diameter 
decreased in both soils (Fig.  3  g-j). Excess P also raised 
the tiller appearance rate in both soils, leading to higher 
tiller numbers. Nevertheless, it also increased the tiller 
mortality rate in Oxisol and Entisol (Fig. 3a-h).

A significant interaction between P and Si was 
observed for the variables leaf appearance, number of 
leaves per tiller, and stem elongation in both soils, and 
leaf elongation in Entisol and stem diameter in Oxisol 
(Fig. 2a-j). In Oxisol, under P deficiency, the presence of 
Si, compared to its absence, resulted in a decrease in the 
number of live leaves per tiller (Fig. 2e) and an increase 
in the tiller appearance rate, which did not occur in Enti-
sol (Fig. 3a, b). In Entisol, Si application to forage under 
P deficiency increased leaf appearance and elongation 
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rates, decreased stem elongation, and increased stem 
diameter (Fig. 2b, d, h, j).

Under excess P application in Oxisol, the presence of 
Si, compared to its non-application, led to a decrease in 
the leaf appearance rate and stem elongation (Fig. 2a, g). 
Furthermore, it increased the number of live leaves per 
tiller and stem diameter (Fig. 2e, i). In Entisol with excess 
P, plants that received Si showed a decrease in appear-
ance and leaf elongation rates, as well as stem elongation 
(Fig. 2b, c, g), and an increase in the number of live leaves 
and stem diameter (Fig. 2f, i).

In both soils, Si fertilization in plants under excess P 
resulted in a decrease in the tiller mortality rate and an 
increase in the number of tillers per pot, along with an 
increase in the tiller survival rate in Entisol (Fig. 3a-h). In 
P sufficiency in Oxisol, the presence of Si increased the 
number of live leaves per tiller (Fig. 2e) and the number 
of tillers per pot (Fig.  3  g). Meanwhile, in Entisol, the 
plants with sufficient P showed a decrease in leaf and 
stem elongation rates (Fig. 2d, g).

Morphological composition and dry matter production
A significant interaction PxSi (p < 0.05) was observed for 
the morphological variables, specifically the percentage 
of the leaf blade and dead material in both soils, and for 
the stem percentage in Entisol, but not for dry matter 
yield (Fig. 4a-j).

When compared to P sufficiency, M. maximus plants 
grown in Oxisol under P deficiency exhibited an increase 
in the green leaf blade (19%) and stem (100%) percent-
ages, along with a decrease in the leaf:stem ratio (49%) 
and dead material (100%). This led to a notable 39% 
decrease in DM yield (Fig.  4a, c, e, g, i). Similarly, in 
Entisol, when compared to P-sufficient plants, those 
subjected to P deficiency showed an increase in the leaf 
blade (9%) and a decrease in dead material, resulting in 
a 20% reduction in DM yield (Fig. 4b, d, f, h, j). However, 
the presence of Si had no significant effect on the mor-
phological variables and DM yield in plants under P defi-
ciency in the studied soils.

Cultivation under excess P without Si, in contrast to P 
sufficiency, resulted in a decrease in the green leaf blade 
(19% and 27%) and an increase in dead material (45% and 

Fig. 1 Phosphorus content and silicon content of Zuri guinea grass cultivated under different phosphorus levels of deficiency (- P), adequacy (P), and 
excess (+ P) in Oxisol (A, C) and Entisol (B, D) in absence (-Si) and presence of silicon (+ Si, 1.5 mmol L− 1). Ns, *, ** refer to F test not significant, significant at 
5 and 1%, respectively. Nutritional states are compared in uppercase letters, and the effect of Si in lowercase letters (Tukey test, p < 0.05). Bars correspond 
to the standard error of the experiment mean
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Fig. 2 Leaf appearance rate (LA), leaf elongation rate (LE), number of live leaves per tiller (LL), stem elongation rate (SE), and stem diameter (SD) of Zuri 
guinea grass under different phosphorus levels deficiency (-P), sufficiency (P), and excess (+ P) in Oxisol (A, C, E, G, and I) and Entisol (B, D, F, H, and J) in 
the absence (-Si) and presence of silicon (+ Si, 1.5 mmol L− 1). Ns, *, ** denote the F test results as not significant and significant at 5 and 1%, respectively. 
Nutritional states are compared using uppercase letters, and the effect of Si is compared in lowercase letters (Tukey test, p < 0.05). Bars represent to the 
standard error of the experiment mean
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Fig. 3 Tiller appearance rate (TA), tiller mortality rate (TM), tiller survival rate (TS), and number of tillers per pot of Zuri guinea grass under different phos-
phorus levels: deficiency (-P), sufficiency (P), and excess (+ P) in Oxisol (A, C, E, and G) and Entisol (B, D, F, and H) in the absence (-Si) and presence of sili-
con (+ Si, 1.5 mmol L− 1). Ns, *, ** denote the F test results as not significant and significant at 5 and 1%, respectively. Nutritional states are compared using 
uppercase letters, and the effect of Si is indicated with lowercase letters (Tukey test, p < 0.05). Bars represent the standard error of the experiment mean
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71%) in Oxisol and Entisol, respectively. It did not signifi-
cantly influence the stem fraction of the plants but did 
increase the leaf:stem ratio in both soils (Fig.  4a-h). In 
Entisol, excess P led to a 14% reduction in final DM yield, 
which was not observed in Oxisol (Fig. 5i, j).

M. maximus plants under P excess that received SiO2 
nanoparticulate experienced an increase in the leaf blade 
(29% and 26%) and the mass leaf:stem ratio, as well as a 
decrease in dead material (84% and 67%) in Oxisol and 
Entisol, respectively (Fig.  4a-f ). Furthermore, in plants 
with P sufficiency and Si supplementation compared to 
those without Si, there was an increase in the leaf blade 
(16% and 7%) and the mass leaf:stem ratio and a decrease 
in dead material (88% and 55%) in Oxisol and Entisol, 
respectively. Fertilization with Si increased the total DM 
yield of forage in both P excess (9% and 18%) and P suf-
ficiency (8% and 5%) in Oxisol and Entisol, respectively 
(Fig. 4i, j).

Chemical composition of forage
The results concerning variables related to chemical com-
position, fiber, and DM digestibility revealed a significant 
interaction PxSi (p < 0.05), but only for the percentage of 
lignin and mineral matter in both soils, and for non-fiber 
carbohydrates in Oxisol (Figs. 5a-h and 6a-h).

Under P deficiency in Oxisol, when compared to 
plants with adequate P status, M. maximus exhibited an 
increase in the percentage of lignin, a decrease in non-
fiber carbohydrates, and an increase in mineral mat-
ter, with no significant effect on the CP content or DM 
digestibility (Figs.  5 and 6a, c, e and g). Conversely, in 
Entisol, deficiency did not significantly influence fiber 
composition or the percentage of non-fiber carbohy-
drates. However, it resulted in a 5.1% decrease in CP con-
tent and a reduction in mineral matter (Figs. 5 and 6b, d, 
f and h).

Under P excess, as compared to Oxisol sufficiency, 
the plants displayed a decrease in non-fiber carbohy-
drates and an increase in CP (15.4%) and mineral matter 
(Figs. 5g and 6a and c). In contrast, under Entisol condi-
tions, excess P led to a decrease in hemicellulose (28.5%) 
and mineral matter, coupled with an increase in lignin 
(1.1%), CP (28.6%), and DM digestibility (Figs.  5b and f 
and 6b, d and h).

With the addition of Si, plants experiencing P defi-
ciency in relation to nutrient sufficiency exhibited 
increased CP content (4.9% and 9.4% in Oxisol and Enti-
sol, respectively) and mineral matter (Fig. 6a-d), with no 
significant impact on fiber composition or digestibility. In 
cases of excess P in plants cultivated in Oxisol, Si fertil-
ization resulted in increased non-fiber carbohydrates and 
mineral matter. In Entisol, there was a decrease in lig-
nin (1.3%) and an increase in CP content (12.4%), as well 
as mineral matter. The presence of Si in conditions of P 

sufficiency, as opposed to its absence, led to a reduction 
in the percentage of lignin in both soils (1.0%). Further-
more, it increased the CP content in Oxisol (4.1%) and 
Entisol (9.7%) and elevated the mineral matter in Oxisol. 
Regardless of the P nutritional status, Si fertilization had 
no impact on TDN percentage or in digestibility.

Discussion
P imbalances and Si absorption
P deficiency and excess were clear in both soils, con-
firmed by the low and high content in the plant, respec-
tively, in relation to plants in an adequate state of the 
nutrient (Fig.  1a, b). The low levels of P available in 
weathered soils led to the occurrence of deficiency, and 
the dose applied to cause excess P increased its content 
in the plant in both soils, reaching 18.8 and 29.9 g kg− 1 in 
cultivated plants in Oxisol and Entisol, respectively. The 
same dose of P caused a greater increase in the nutrient 
content in the plant in Entisol, due to the greater avail-
ability of phosphate in this soil compared to Oxisol, 
which has a higher clay content [2]. Thus, in sandy soil 
the risk of P toxicity in plants under excessive fertiliza-
tion is greater than in clayey soil.

Nanosilica fertigation was efficient in increasing the 
Si content in plants compared to non-application. This 
increase in Si content was more prominent in P defi-
ciency plants in both soils, and also in excess P in Entisol, 
revealing that Si is an element required by plants sub-
jected to P imbalances, in a similar way to abiotic stresses 
[46, 47]. It is pertinent to admit that Si can reduce the 
risk of P toxicity in soils under nutrient excess, given its 
action in decreased P content of plants in both soils. The 
Si mechanisms involved in this regulation still need to be 
elucidated, especially for its action as a regulator of the 
expression of P transporters [48].

Deficiency and excess of P without the use of Si in pasture 
morphogenesis and yield
While the effects of phosphorus (P) deficiency on grasses 
have been well-documented [1, 3, 49], there is relatively 
limited research focusing on the morphogenic processes 
of grasses used in pastures under P deficiency [50, 51]. 
This is a notable gap in the literature because understand-
ing how nutritional disorders of P affect these plants and 
how they respond morphogenetically to such stress is 
crucial.

In our study, we observed several strategies employed 
by M. maximus to cope with P deficiency, which was 
evident in plants cultivated in both soils studied. Com-
pared to plants under P sufficiency, those experiencing 
P deficiency increased the number of live leaves per til-
ler without decreasing leaf elongation rates. However, 
this strategy came at the cost of a significant reduction 
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Fig. 4 Percentage of leaf blade, stem, dead material, mass leaf:stem ratio, and dry matter yield of Zuri guinea grass under different phosphorus levels: 
deficiency (-P), sufficiency (P), and excess (+ P) in Oxisol (A, C, E, G, and I) and Entisol (B, D, F, H, and J) in the absence (-Si) and presence of silicon (+ Si, 1.5 
mmol L− 1). Ns, *, ** denote the F test results as not significant and significant at 5 and 1%, respectively. Nutritional states are compared using uppercase 
letters, and the effect of Si is indicated with lowercase letters (Tukey test, p < 0.05). Bars represent the standard error of the experiment mean
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Fig. 5 Percentage of hemicellulose, cellulose, lignin, and non-fiber carbohydrates (NFCs) in the dry matter of Zuri guinea grass cultivated during six 
regrowth cycles under different phosphorus levels: deficiency (-P), sufficiency (P), and excess (+ P) in Oxisol (A, C, E, and G) and Entisol (B, D, F, and H) in 
the absence (-Si) and presence of silicon (+ Si, 1.5 mmol L− 1). Ns, *, ** denote the F test results as not significant and significant at 5 and 1%, respectively. 
Nutritional states are compared using uppercase letters, and the effect of Si is indicated with lowercase letters (Tukey test, p < 0.05). Bars represent the 
standard error of the experiment mean
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Fig. 6 Percentage of crude protein (CP), mineral matter (MM), total digestible nutrients (TDNs), and in vitro dry matter digestibility (IVDMD) of Zuri guinea 
grass, cultivated during six regrowth cycles under different phosphorus levels: deficiency (-P), sufficiency (P), and excess (+ P) in Oxisol (A, C, E, and G) and 
Entisol (B, D, F, and H) in the absence (-Si) and presence of silicon (+ Si, 1.5 mmol L− 1). Ns, *, ** denote the F test results as not significant and significant at 
5 and 1%, respectively. Nutritional states are compared using uppercase letters, and the effect of Si is indicated with lowercase letters (Tukey test, p < 0.05). 
Bars represent the standard error of the experiment mean
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in tiller appearance rate and the overall number of tillers, 
resulting in diminished biomass yield.

The growth and tillering dynamics of forage grasses 
involve morphogenic processes crucial for both for-
age yield and pasture longevity [11]. Our findings shed 
light on the morphogenetic strategies employed by M. 
maximus to mitigate the effects of P deficiency in both 
clayey (Oxisol) and sandy (Entisol) soils. In Entisol, the 
morphophysiological changes in M. maximus under P 
deficiency manifested as a reduced tiller appearance rate 
due to decreased cell division and expansion. This out-
come aligns with observations made in perennial Lollium 
grasses [52].

The decrease in tillering observed under macronutri-
ent deficiency occurred in both soils. However, in Oxi-
sol, plants responded by increasing appearance rates and 
leaf elongation. This difference may be attributed to a 
more severe degree of P deficiency in the plants grown 
in Oxisol, possibly prompting a more efficient utilization 
of the available nutrient. It is known that under P defi-
ciency, plants can allocate more P to essential metabolic 
processes [53, 54]. Additionally, while each tiller has a 
genetically predetermined number of leaves [55], leaf 
elongation is a trait influenced by genotype-environment 

interactions in forage grasses [56], as we observed in rela-
tion to P.

The reduction in tillering had a severe impact on forage 
yield, a common occurrence in grasses under P deficiency 
[12, 54, 57]. The reduced yield of nutritionally deficient 
plants was anticipated, considering they were grown in 
weathered soils with low available P content (12 and 2 mg 
dm− 3 in Oxisol and Entisol, respectively). This limitation 
compromises cell division and hinders net photosynthe-
sis rates [7, 49].

Interestingly, the decrease in DM yield due to P defi-
ciency was 18% more pronounced in Oxisol than in 
Entisol. This difference may be explained by the fact that 
plants in Entisol likely utilized the small amount of added 
P (4 mg dm− 3) more efficiently to enable minimal growth, 
which accounted for only 2% of the recommended dose 
[27]. However, this was sufficient to mitigate the severity 
of P deficiency to a certain extent in Entisol, which has a 
lower phosphate adsorption capacity [2, 49, 51].

Plants cultivated under excess P exhibited impairments, 
possibly stemming from disrupted cellular phosphate (Pi) 
homeostasis. This imbalance affects essential P-related 
functions in plants, leading to decreased photosynthesis 
and biomass yield [5, 8]. Our study suggests, for the first 

Fig. 7 Plant phenotype and visual aspects of the leaf blades of M. maximus cv. Zuri grown under conditions of phosphorus deficiency, sufficiency, and 
toxicity, combined with the absence (-Si) or presence of Si nanoparticles (+ Si, 1.5 mmol L− 1) in Oxisol (a, c) and Entisol (b, d) at the end of the fifth re-
growth cycle
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time, that an excess of P in the soil disrupts the balance 
between C, N, and P in grasses, subsequently hinder-
ing the efficient utilization of these nutrients [58]. How-
ever, there is still a limited number of studies describing 
the effects of excess P on grasses, even in nutrient solu-
tions [59]. Thus, our study may represent one of the first 
attempts to identify morphogenic responses of forage 
grasses to excess P in different soils.

Our research provides a deeper understanding of the 
morphogenic mechanisms of M. maximus and highlights 
the plant’s response strategies when exposed to excess P 
compared to plants with adequate P levels in both soils. 
Surprisingly, we found that the forage, when subjected to 
toxic P levels, increased leaf appearance and elongation 
rates but simultaneously maintained a reduced number 
of live leaves on each tiller. Consequently, this led to an 
increase in tiller appearance and numbers, albeit with 
smaller diameters, higher tiller mortality rates, lower per-
centages of live leaf blades, higher amounts of dead mate-
rial, and ultimately reduced dry matter yield.

In contrary to P deficiency, excess P accelerates the 
growth dynamics of M. maximus. However, the higher 
tiller mortality observed in plants under excess P in both 
soils may result not only from the increased stimulus 
to cell division processes due to P excess but also from 
the synergistic effects between P and N. Under P excess, 
plants can absorb higher quantities of N, contributing 
to increased tissue renewal [60, 61]. [54] also noted that 
tissue renewal processes in Massai grass (M. maximus x 
M. infestum) are accelerated with increasing phosphorus 
doses, even in the absence of toxic P levels.

Early leaf senescence and associated losses were 
observed in plants grown under both P deficiency and 
excess. However, excess P only significantly impacted 
total DM yield in Entisol, which aligns with the higher 
phosphate availability in sandy soils [2]. Moreover, in 
soils rich in oxidic clays like Oxisol, the availability of P 
decreases with prolonged exposure to adsorption sites 
[62]. Thus, the implications of excess P in pastures are 
even more concerning when considering sandy soils, par-
tially supporting our initial hypothesis. Although both P 
imbalances altered the growth and tillering of plants in 
both soils, only the excess of P reduced the DM yield of 
Zuri grass when cultivated in sandy soil.

Deficiency and excess of P without the use of Si in the 
morphological, chemical composition and nutritional 
value of forage
Our observations indicate that P imbalances also induce 
changes in the morphogenic and structural characteris-
tics, chemical composition, and nutritional value of M. 
maximus grass. However, although P deficiency resulted 
in increased hemicellulose and decreased protein in 
plants grown in one soil type (Entisol) and increased 

lignin and mineral content, while decreasing non-fibrous 
carbohydrates in another soil type (Oxisol), these changes 
did not significantly impact the total digestible nutrients 
(TDN) and in vitro dry matter digestibility (IVDMD) of 
the grasses cultivated in both soils. The notable increase 
in lignin content in P-deficient plants grown in Oxisol is 
a known effect observed in plants exposed to abiotic and 
biotic stress as part of their natural defense mechanisms 
[63]. However, it is a costly strategy in terms of energy 
expenditure for the plant [64].

The lack of an effect of P deficiency on digestibil-
ity can be attributed to the fact that these plants main-
tained a greater number of young leaves. This occurred 
because plants in this condition typically had fewer til-
lers, which prompted an increase in leaf blade and stem 
yield in response to stress. Furthermore, plants under P 
deficiency exhibited delayed leaf senescence, which had a 
positive impact on forage digestibility.

In the case of plants subjected to P deficiency in Enti-
sol, one notable effect was the reduction in the plant’s 
crude protein (CP) content. This CP fraction includes 
protein nitrogen (true protein) and non-protein nitrogen, 
such as amino acids and amines, which are crucial for 
animal nutrition [65]. The decrease in protein levels in 
these plants was attributed to the fact that P is essential 
for ribonucleic acid (RNA), a requirement for the trans-
lation process in protein synthesis [7]. Moreover, P-defi-
cient plants experience reduced nitrogen (N) uptake, 
which is vital for protein formation [66, 67].

Another effect of P deficiency in plants grown in Oxisol 
was the increase in mineral matter content. This increase 
may have resulted from higher elemental concentrations 
in the dry matter, given that these plants exhibited less 
growth and biomass yield compared to adequately nour-
ished plants (Fig.  7a, b). Alternatively, the increase in 
mineral matter could be attributed to the uptake of resid-
ual silicon (Si) from the soil. Stressed plants often release 
exudates into the rhizosphere, promoting the dissolution 
of phytoliths within organic matter [68], thus releasing Si. 
In summary, pastures of M. maximus under P deficiency 
produced less dry matter compared to well-fertilized pas-
tures, and while they exhibited lower protein content, it 
did not negatively affect digestibility.

Another significant nutritional concern arises with 
the issue of excess P in the grass. However, the effects 
of excess P on the nutritional value of the plant had 
remained largely unexplored until our study. We 
observed that excess P initially decreased the mass 
leaf:stem ratio due to the reduced percentage of live 
leaf blades, a phenomenon previously described by [10]. 
These visual symptoms, such as chlorosis and necrotic 
spots on the leaves (Fig. 7c, d), mark the onset of P tox-
icity in this species, which eventually progresses to 
complete leaf necrosis. These symptoms result from 
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biochemical disruptions in plant tissues caused by exces-
sive P, including photosynthesis inhibition and increased 
lipid peroxidation [8], along with accelerated senescence 
and reduced photosynthetically active areas. This ulti-
mately leads to decreased dry matter accumulation [9, 
69], resulting in biomass loss, as grazing animals typically 
select green leaf blades with greater nutritional value [70, 
71].

That excess P, similar to P deficiency, resulted in a 
higher lignin content in M. maximus, serving as a strat-
egy to mitigate nutritional stress, consistent with findings 
from [72]. This underscores the variability in fiber lignin 
content associated with nutrient inputs [14]. However, 
even with increased lignin content, we visually noted that 
plants under P stress, especially those under P excess, 
did not attain a phenotype resembling well-nourished P 
plants, which typically exhibit well-developed, green leaf 
blades, characteristic of most forage grasses (Fig. 7a-d).

Although higher lignin content may affect fiber digest-
ibility by ruminants [63, 73], our study did not find any 
significant impact on dry matter digestibility despite P 
imbalances. This can be explained by the fact that the lig-
nin primarily consisted of non-core lignin, mainly com-
posed of low-molecular-weight phenolic compounds 
released from the cell wall through hydrolysis. These 
compounds are typically represented by ester-linked 
p-hydroxycinnamic acids, as opposed to core lignin, 
which features highly condensed cell wall phenylpro-
panoid polymers that resist microbial degradation in the 
rumen [74, 75].

The increase in CP content observed in plants under 
excess P in Entisol can be attributed to P’s essential role 
in protein synthesis. However, it is crucial to note that 
this may also be related to the fact that P stimulates N 
uptake [60]. Nevertheless, the higher protein content in 
plants under P excess results in nutrient loss, as these 
nutrients cannot be efficiently redistributed within the 
plant for metabolic processes or used by grazing animals 
that typically avoid consuming dead leaves.

Considering the results discussed, our study partially 
confirms the second hypothesis. While P imbalances did 
indeed alter the chemical composition of the plant, they 
did not affect forage digestibility. However, the significant 
reduction in biomass yield caused by excess P and early 
leaf senescence ultimately compromises the availability of 
high-quality pasture [70].

Benefits of Si in the morphogenesis and production of 
plants with deficiency, sufficiency, and excess P
This study has provided a comprehensive understand-
ing of the detrimental effects of P imbalances on forage, 
which significantly impact extensive cultivation areas of 
these species worldwide. Given these findings, there is 
an urgent necessity to develop strategies for mitigating 

this damage without harming the environment. The 
use of Si can be synergistic with P uptake by plants as 
silicates compete with phosphate for adsorption sites, 
which increases available phosphate in the soil [19, 76]. 
However, the effects of Si on the morphogenesis of for-
age plants, especially with the use of innovative sources 
of the element, such as nanosilica, are unknown, and it is 
opportune to further research on this topic, which moti-
vated this study.

The benefits of silicon in the morphogenesis of P-defi-
cient forage were somewhat limited, as it only increased 
the tiller appearance rate in plants grown in Oxisol and 
resulted in an increase in the appearance rate, leaf elon-
gation, and stem diameter in plants grown in Entisol. 
However, these improvements in morphogenesis induced 
by silicon under P deficiency were insufficient to signifi-
cantly enhance plant dry mass yield in the two soils stud-
ied. This may be attributed to the fact that there was no 
significant increase in the number of tillers, which repre-
sents the basic unit of grass yield [10].

In hydroponic studies, silicon has been shown to alle-
viate P deficiency in wheat and rice [77, 78]. However, 
these studies involve more rigorous control of P levels in 
the culture medium (nutrient solution), which generates 
a more severe deficiency in plants compared to soil culti-
vation. There are indications that the beneficial effects of 
silicon are more pronounced under severe stress condi-
tions [79]. Furthermore, advanced forage regrowth cycles 
may exacerbate P deficiency in the soil due to nutrient 
export in the biomass, potentially enhancing the benefits 
of silicon in plants. Nonetheless, this remains a subject 
for future research [51].

Concerning the role of silicon in plants with excess P, 
this is an uncharted territory in this species, as P excess is 
less widespread compared to P deficiency. Nevertheless, 
it is essential to initiate research in this area. Our study 
revealed that silicon triggers certain morphogenic pro-
cesses in the plant to counteract the damage caused by 
excess P in M. maximus, which was observed in plants 
cultivated in both soils. However, this was accompanied 
by a decrease in the appearance rate of new leaves due 
to the control of tissue flow within the plant. This led to 
an increase in the number of live leaves per tiller and a 
decrease in stem elongation rate, ultimately favoring 
greater tiller numbers and thicker tiller diameters. These 
improvements in plant growth and structure translated 
into an increase in plant dry mass yield in Entisol.

However, it should be noted that in plants grown in 
Oxisol with the P dosage used, it was not possible to 
induce P toxicity due to this soil’s high capacity for P 
adsorption. Therefore, since P toxicity did not manifest 
in plants grown in this soil, it was not feasible to inves-
tigate the mitigating effects of silicon in such a scenario. 
Nevertheless, the risk of P toxicity in Oxisol remains 
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relatively low, and further research using higher P doses 
(> 600 mg dm− 3 of P equivalent to 1200 kg ha− 1 of P) may 
be required, as Oxisol’s maximum P adsorption capacity 
is approximately 575 mg dm− 3 and may vary depending 
on other soil properties, such as organic matter content 
[2].

Considering these results obtained in plants culti-
vated in Entisol, it is plausible that mitigating the dam-
age caused by excess P in M. maximus may have similar 
benefits in other species [76, 80]. In a study involving 
rice plants cultivated in a nutrient solution with excess 
P, silicon was found to downregulate the gene expression 
of phosphate transporters, thereby reducing phosphate 
uptake by the plant [48]. This mechanism may be one of 
the ways silicon mitigates P excess in grasses and war-
rants further investigation.

Studies involving silicon typically focus on stress 
conditions, with the prevailing belief that silicon ben-
efits only stressed crops, offering no advantages to non-
stressed plants [79]. However, our study evaluated the 
effects of silicon on the morphogenesis of plants under 
P sufficiency, i.e., plants without stress. We observed an 
increase in the number of live leaves per tiller and the 
number of tillers in plants grown in Oxisol, as well as a 
decrease in stem elongation in plants grown in Entisol.

These positive effects of Si reflected an increase in DM 
production in M. maximus in both soils, possibly due to 
different Si mechanisms reported in grasses, such as the 
promotion of adequate nutritional homeostasis to pro-
vide an increase in the efficiency of N and P use [20, 47, 
81, 82], even in plants without stress [83]. Our results 
corroborate the fact that Si can influence the morphol-
ogy of plants [23], mainly in Si-accumulating species [84], 
and can improve the productivity of non-stressed plants 
and mitigate nutritional stress.

In conclusion, it was clear that the utility of silicon 
for M. maximus cultivation depends on the presence or 
absence of stress, the type of stress, and the soil class. Sil-
icon can offer benefits to M. maximus in regions world-
wide, whether it covers areas without nutritional stress 
in sandy or clayey soils or addresses areas with excess P, 
particularly in sandy soils, thus making it a valuable tool 
for sustainable agricultural yield [80]. Furthermore, it can 
be used in areas with excess P, especially in sandy soils, 
enabling its use in agriculture. This discovery confirms 
the important role of Si as a tool for more sustainable 
agricultural production [46].

Benefits of Si on the morphological and chemical 
composition and nutritional value of forage
An issue of concern within the scientific community 
regarding silicon’s presence in forage is its potential 
role as an anti-nutritional element in animal feed [85]. 
Furthermore, it remains unclear whether silicon has a 

beneficial or detrimental effect on forage quality under 
various cultivation conditions, including areas with 
ample soil fertility or those with phosphorus (P) defi-
ciency or excess. This is a pressing concern because, as 
we have observed, silicon may significantly influence 
morphogenesis and plant growth. However, these advan-
tages would be futile if there were substantial losses in 
forage quality, ultimately affecting the performance of 
animals consuming such forage.

In an effort to address this question, our study dem-
onstrated that the use of nanosilica in P-deficient plants 
did not result in alterations to the morphological or fiber 
composition of M. maximus. Instead, it led to increased 
crude protein (CP) and mineral matter content. This 
increase in protein content can be attributed to silicon’s 
role in enhancing the uptake of both P [78] and nitrogen 
(N) [86], both of which are integral to protein synthesis 
in plants. This finding is of paramount importance due 
to the significance of protein for the ruminal microbiota’s 
activity [14].

The increase in mineral matter in the presence of sili-
con reflects the uptake of this beneficial element by 
stressed plants [19, 77]. Notably, utilizing silicon in 
these plants did not hinder forage digestibility, possibly 
because silicon did not induce lignification. Neverthe-
less, it is worth noting that P-deficient wheat subjected to 
silicon exhibited enhanced lignin synthesis [87], indicat-
ing that species may adopt varying strategies for mitigat-
ing stress, involving silicon in cell wall composition and/
or activating enzymes related to lignin synthesis, which 
should be elucidated in future studies.

This study unequivocally demonstrates that the intro-
duction of silicon into M. maximus, even under P defi-
ciency, does not compromise the forage’s nutritional 
value. This is a highly practical revelation, as most pas-
tures cultivated in tropical regions contend with P-defi-
cient soils [1] and could immensely benefit from the 
sustainable application of this element. In regions with 
excess P, incorporating silicon also yielded promising 
outcomes for M. maximus. This resulted in improved 
morphological composition of the plant, with reduced 
dead material and increased leaf blade fractions in both 
soil types. Additionally, it’s noteworthy that there was a 
decrease in the tiller mortality rate—a pivotal factor for 
pasture persistence [11]. Importantly, it should be high-
lighted that, in line with observations in other crops sub-
jected to excess P [88, 89], silicon supplementation in 
M. maximus grown under P excess led to reduced lignin 
content in the fiber and increased CP and mineral matter 
content, especially in plants cultivated in Entisol.

While some advantages of lignin have been reported 
for stressed plants, such as enhanced leaf architecture 
[90] and the antioxidative action of phenolic precursors 
against reactive oxygen species [91], it is not considered a 
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favorable strategy for forage plants since lignin is an anti-
nutritional component for ruminants [75]. Our study 
confirmed that in M. maximus, silicon does not promote 
lignin synthesis, even in plants exposed to excess P. This 
may be attributed to the plant’s utilization of silicon at a 
low energy cost for cell wall composition, effectively sub-
stituting lignin’s role in plant tissue support, ultimately 
leading to reduced lignin synthesis [92].

Therefore, the significant contribution of nanosílica 
fertilization to the improvement of morphological and 
chemical composition in forage grasses was evidenced, 
even under excess P. As such, our third hypothesis was 
partially confirmed, as nanosilica fertilization mitigated 
the stress associated with excess P without compromising 
forage quality. Moreover, it is evident that silicon applica-
tion in plants with sufficient P nutrition led to decreased 
lignin content, which may enhance fiber digestibility 
[63], and joins other promising results in grasses without 
nutritional stress [92]. Additionally, our study revealed 
that silicon supplementation increased protein content 
in plants with optimal P nutrition, corroborating findings 
observed in Zuri (M. maximus) and Ipyporã (Urochloa 
ruziziensis x U. brizantha) grasses following silicate fer-
tilization [28].

However, plants tend to absorb silicon in greater quan-
tities when subjected to stress [93]. Consequently, the 
decrease in forage lignin content under P sufficiency 
likely stemmed from a slight increase in silicon content. 
Similar findings were reported in rice plants and sor-
ghum without stress, indicating a negative correlation 
between silicon accumulation and lignin synthesis [88, 
89], a relationship consistent with our observations under 
P sufficiency. Further investigations into the connection 
between silicon fertilization and lignin biosynthesis in 
grasses are imperative, including studies involving prop-
erly nourished plants, as results appear to be contingent 
on the crop and growing conditions.

In conclusion, these results underscore the advan-
tages of silicon fertilization in forage grasses under P 
stress or with adequate nutrition. This practice optimizes 
the integrated soil-forage-animal system, resulting in 
the improved formation of pastures, recognized as the 
most economically efficient food source for animal yield 
according to [14]. Thus, the use of Si can help recover the 
potential productive of pastures, with a more efficient use 
of productive resources, improving the productivity and 
sustainability of pasture production.

Conclusions and future perspectives
In summary, this study provides novel insights into the 
underlying causes of growth reductions in M. maximus 
cv. Zuri when subjected to both P deficiency and excess 
P in two tropical soils. Furthermore, we elucidate the 
plant’s morphogenic and structural adaptive strategies 

to mitigate these stresses, all while maintaining forage 
quality.

Moreover, we demonstrate that the application of SiO2 
nanoparticles fosters enhanced equilibrium within the 
plant’s growth and senescence processes, mitigating bio-
mass yield loss, particularly in plants cultivated under 
excess P in sandy soil. Additionally, SiO2 nanoparticle 
fertilization increases yields under P sufficiency in soils 
with varying textures without compromising digestibility.

Future research endeavors should delve into Si-specific 
mechanisms, employing metabolomic approaches to 
better understand Si’s role in alleviating damage caused 
by P excess in grasses and optimizing yields in non-
stressed plants. This investigation should also explore Si’s 
impact on reducing plant senescence, which was nota-
bly observed in this study. Furthermore, examining Si’s 
potential in ameliorating P deficiency in forage grasses 
warrants exploration, given the observed potential to 
enhance the growth and protein content of deficient 
plants, including testing with different Si sources and 
doses, to find the economic viability of their use.
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