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Abstract
Background Silicon nanoparticles (SiO2-NPs) play a crucial role in plants mitigating abiotic stress. However, the 
regulatory mechanism of SiO2-NPs in response to multiple stress remains unclear. The objectives of this study were to 
reveal the regulatory mechanism of SiO2-NPs on the growth and photosynthesis in cotton seedlings under salt and 
low-temperature dual stress. It will provide a theoretical basis for perfecting the mechanism of crop resistance and 
developing the technology of cotton seedling preservation and stable yield in arid and high salt areas.

Results The results showed that the salt and low-temperature dual stress markedly decreased the plant height, 
leaf area, and aboveground biomass of cotton seedlings by 9.58%, 15.76%, and 39.80%, respectively. While SiO2-NPs 
alleviated the damage of the dual stress to cotton seedling growth. In addition to reduced intercellular CO2 
concentration, SiO2-NPs significantly improved the photosynthetic rate, stomatal conductance, and transpiration 
rate of cotton seedling leaves. Additionally, stomatal length, stomatal width, and stomatal density increased 
with the increase in SiO2-NPs concentration. Notably, SiO2-NPs not only enhanced chlorophyll a, chlorophyll 
b, and total chlorophyll content, but also slowed the decrease of maximum photochemical efficiency, actual 
photochemical efficiency, photochemical quenching of variable chlorophyll, and the increase in non-photochemical 
quenching. Moreover, SiO2-NPs enhanced the activities of ribulose-1,5-bisphosphate carboxylase/oxygenase and 
phosphoenolpyruvate carboxylase, improved leaf water potential, and decreased abscisic acid and malondialdehyde 
content. All the parameters obtained the optimal effects at a SiO2-NPs concentration of 100 mg L− 1, and significantly 
increased the plant height, leaf area, and aboveground biomass by 7.68%, 5.37%, and 43.00%, respectively. 
Furthermore, significant correlation relationships were observed between photosynthetic rate and stomatal 
conductance, stomatal length, stomatal width, stomatal density, chlorophyll content, maximum photochemical 
efficiency, actual photochemical efficiency, photochemical quenching of variable chlorophyll, and Rubisco activity.

Conclusion The results suggested that the SiO2-NPs improved the growth and photosynthesis of cotton seedlings 
might mainly result from regulating the stomatal state, improving the light energy utilization efficiency and electron 
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Introduction
Soil salinization has become an important global issue 
regarding resources and ecological environments [1]. 
Additionally, it is one of the main factors limiting crop 
growth, development, and the increase in stable yield, 
which poses a severe threat to global food security [2, 3]. 
Soil salinization is getting worse worldwide, and about 
50% of the total agricultural land is expected to be cov-
ered by saline soils by 2050 due to climate change and 
irrational water use for agriculture [4]. Meanwhile, with 
the gradual increase of the global greenhouse effect, 
extreme temperature events such as cold waves occur 
frequently [5], and the probability of crops suffering 
from low-temperature stress becomes more and more 
severe in the 21st century [6]. Salt and low-temperature 
stress lead to shared or specific damage to plants, includ-
ing osmotic stress, oxidative stress, nutritional disor-
ders, reduced activities of various functional enzymes, 
alteration of photosynthetic and metabolic processes, 
and genotoxicity [7, 8]. Differently, salt stress results in 
a toxic concentration of Na+ and Cl− [9]. Moreover, over 
accumulation of reactive oxygen species (ROS) nega-
tively affects cell membrane integrity and permeability, 
ion transport, hormone balance, respiration, oxidation/
reduction, DNA and protein synthesis [10, 11]. Together, 
these subsequently affect the crops growth, development, 
and yield.

Plants have developed a range of resistant mechanisms 
to counter salt and low temperature stress. For exam-
ple, many kinds of osmolytes such as betaines, sorbitol, 
trehalose, and proline are produced to sustain cellular 
structures and diminish ROS-induced oxidative injuries 
[12]. Antioxidant systems such as superoxide dismutase 
enzymes (SOD), peroxidase enzyme (POD), and cata-
lase (CAT) are activated to scavenge ROS [13]. Abscisic 
acid (ABA) content is upregulated, affecting the stomatal 
closure and reducing water loss [14]. Moreover, a tran-
sient increase in cytosolic calcium (Ca2+) level induces 
a change in aquaporin abundance/activity allowing the 
maintenance of the water balance and photosynthesis 
adjustment [15, 16].

Cotton is an important strategic reserve material in 
China, and Xinjiang is the main producing area [17, 
18], but the growth and yield formation of cotton in 
this region is seriously threatened by soil salinization 
[19]. Meanwhile, the area frequently suffers from unpre-
dictable climates such as cold and low-temperature 
stress during the cotton seedling stage, especially in the 

southern region of Xinjiang. The metabolic and physio-
logical processes of cotton seedlings are strongly affected 
by the combination of salt stress and low temperature, 
which leads to serious damage to cotton growth, yield, 
and quality.

Photosynthesis provides materials and energy for plant 
growth, development, and yield formation [20, 21], and 
it is one of the physiological processes that are signifi-
cantly affected by salt and low-temperature stress [22, 
23]. Osmotic stress and excessive accumulation of ROS 
caused by salt and low temperature stress inhibited pho-
tosynthesis via stomatal factors and non-stomatal factors 
[24]. The former is mainly the result of reducing stomatal 
aperture or stomatal density or irregular distribution of 
stomatal spaces, which leads to a decrease in CO2 con-
centration entering the leaves [25]. Among non-stomatal 
factors, salt and low temperature stresses accelerate the 
degradation of photosynthetic pigment and the destruc-
tion of the chloroplast structure and interfere with CO2 
fixation enzymes such as phosphoenolpyruvate car-
boxylase (PEPC) and ribulose diphosphate carboxylase 
(Rubisco) [26], which result in an excessive production 
of ROS in photosynthetic tissues. Moreover, an increase 
in the non-photochemical quenching (NPQ) to reduce 
damage to the photosynthetic apparatus, and a decrease 
in the actual photochemical efficiency of photosystem II 
(ΦPSII), maximal photochemical efficiency of photosys-
tem (Fv/Fm), and photochemical quenching of variable 
chlorophyll (qP) indicate the light energy utilization is 
restricted and electron transport chain of photosynthesis 
is damaged [27]. Eventually, it leads to the inhibition of 
plant growth and development. Therefore, it is impera-
tive to develop technical measures to alleviate stress 
damage and enhance the photosynthesis of cotton seed-
lings under salt and low temperature dual stress, and it 
is of great significance for ensuring healthy and robust 
growth of cotton seedlings and achieving stable cotton 
yield.

Silicon is a beneficial element for plant growth and 
development and has a significant role in mitigating abi-
otic stresses such as salt, drought, and low-temperature 
stress [28, 29]. With the rapid development of nanotech-
nology, the scope of its application in plants and agricul-
ture is expanding. Nanoscale silicon particles (SiO2-NPs) 
not only possess superior magnetoelectric, mechanical, 
and thermodynamic properties compared to ordinary 
silicon, but also have a smaller particle size, larger surface 
area, energy, and binding capacity [30, 31], which results 

transport activity of PSII reaction center, and inducing the increase of Rubisco activity to enhance carbon assimilation 
under the salt and low-temperature dual stress.
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in their ease of absorption and participation in the physi-
ological metabolism of plants to alleviate the harm of abi-
otic stress on plant growth [32–34]. Previous studies have 
demonstrated that exogenous application of SiO2-NPs 
could alleviate the damage of abiotic stress by increasing 
osmotic regulatory substances, reducing electrolyte leak-
age and malondialdehyde content, scavenging the toxic 
effects of ROS, decreasing excessive uptake of Na+ and 
other approaches, which caused an increase in leaf water 
content, stomatal conductance, chlorophyll content, PSII 
activity and photosynthetic enzyme activity. Ultimately, 
it resulted in the improvement of the photosynthesis and 
growth of crops [35–37]. However, the regulatory effects 
of SiO2-NPs on photosynthesis processes is focused 
on a single salt or low-temperature stress in previous 
research [33, 36], the regulatory effects on photosynthe-
sis processes under salt and low-temperature dual stress 
have not been sufficiently elucidated and need further 
evaluation.

Therefore, this study focused on cotton seedlings and 
investigated the responses of the growth, leaf water 
potential, gas exchange parameters, stomatal char-
acteristics, chlorophyll content, chlorophyll fluores-
cence characteristics, photosynthetic enzyme activities, 
abscisic acid and malonaldehyde content to SiO2-NPs 
under salt and low-temperature dual stress. We hypoth-
esized that: (I) Salt and low-temperature dual stress lim-
ited the growth and photosynthesis of cotton seedlings. 
(II) SiO2-NPs improved the photosynthesis and growth 
through the changing of stomatal state, light energy uti-
lization efficiency and electron transport activity of PSII, 
and photosynthetic enzymes activity under salt and low-
temperature dual stress. The objectives of this study were 
to reveal the regulatory mechanism of SiO2-NPs on the 
growth and photosynthesis in cotton seedlings under salt 
and low-temperature dual stress. It will provide a theo-
retical basis for perfecting the mechanism of crop resis-
tance and exploring new technology for cotton seedling 
preservation and stable yield in arid and high salt areas.

Materials and methods
Experimental design
The experiment was conducted in a phytotron in the 
Xinxiang Experimental Station of the Chinese Acad-
emy of Agricultural Sciences (35.09°N, 113.48°E). The 
phytotron was controlled with a relative humidity of 
50–60% and a light period of 12  h (08:00–20:00). The 
light intensity was maintained at 600 µmol m− 2 s− 1. Salt 
and low-temperature dual stress was applied with a salt 
concentration of 150 mM and temperature of 15 ℃/10 
℃ (day/night). Four concentrations of SiO2-NPs (Beike 
Nano Technology Co., LTD, Suzhou, China) were set at 
0  mg L− 1 (distilled water), 50  mg L− 1, 100  mg L− 1 and 
200 mg L− 1, signed as T1, T2, T3, and T4, respectively. 

No salt, normal temperature and sprayed distilled water 
were used as control (CK).

Full and uniformly sized seeds of Gossypium hirsutum 
L., cultivar Xinluzhong-37 (Talimu River Seed Industry 
Co., LTD, Xinjiang, China), were disinfected and sown in 
PVC pots (6  cm diameter, 24  cm height) with drainage 
holes at the bottom. Each pot was filled with 290 g sub-
strate (Pindstrup Mosebrug A/S, Denmark), three seeds 
were sown in each pot for germination and growth in the 
phytotron under 25  °C/20°C (day/night) temperature, 
and each treatment replicated 12 times. Once the cot-
ton seedlings had fully expanded to two cotyledons, they 
were thinned to one plant per pot. When the seedlings 
grew to the first leaf stage, they were irrigated with 80 
mL of Hoagland solution every 7 days. Further, when the 
seedlings grew to the second leaf with one bud stage, they 
were transferred to the low-temperature phytotron and 
irrigated with the salt solution on the 1st, 4th, and 9th day. 
Simultaneously, different concentrations of SiO2-NPs 
were sprayed on the same day as irrigating with the salt 
solution on the cotton leaves at a rate of 10 mL per plant. 
On the 10th day, the latest fully expanded leaves were 
sampled for measurements.

Measurements
Plant height, leaf area, and aboveground biomass
Plant height was defined by the distance from the soil 
surface to the highest point of the cotton plant. Leaf area 
was measured using a portable LI-3000 C leaf area meter 
(Li-Cor Inc., Lincoln, NE, USA). Three cotton plants 
were sampled and the roots’ integrity was ensured as 
much as possible. The plants were thoroughly rinsed and 
then placed in an oven initially set to 105 ℃ for 30 min to 
terminate the metabolic activity. Subsequently, the oven 
was adjusted to 75 ℃, and the plants were dried for 24 h. 
Finally, the dry weight of the plants was determined using 
a precision balance accurate to one part in ten thousand.

Leaf water potential
The leaf samples were taken between 08:00–09:00 a.m. 
and stored in self-sealing bags and placed in foam-insu-
lated boxes with ice packs for measurement. Leaf water 
potential (LWP) was determined using a WP4C (Deca-
gon, Pullman, WA, USA), dewpoint water potential 
meter [23].

Gas exchange parameters
Gas exchange parameters were measured using the Li-
COR 6400XT photosynthesis measurement system (Li-
COR Inc., Lincoln, NE, USA) with a red and blue light 
source in the leaf chamber. The photosynthetically active 
radiation (PAR) was adjusted at 1000 µmol m− 2 s− 1, and 
the reference CO2 concentration was set at 400 µmol 
mol− 1. Photosynthetic rate (Pn), stomatal conductance 
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(gs), intercellular CO2 concentration (Ci), and transpi-
ration rate (Tr) of cotton seedlings with fully expanded 
leaves were measured between 09:00–11:00 a.m.

Chlorophyll content
The contents of chlorophyll a, chlorophyll b, and total 
chlorophyll were measured using the spectrophotometri-
cally method [38]. For the sample preparation a leaf disc 
was cut, and the chlorophyll was extracted with 80% ace-
tone, the filtrate was measured by spectrophotometer at 
663 nm and 645 nm. Chlorophyll content was calculated 
using the following formula:

 Chlorophyll a (Chl a) = (12.7 × D663 − 2.69 × D645) (1)

 Chlorophyll b (Chl b) = (22.9 × D645 − 4.64 × D663) (2)

 Total Chlorophyll (Chl t) = 20.2 × D645 + 8.02 × D663 (3)

Chlorophyll fluorescence parameters
Chlorophyll fluorescence parameters were simultane-
ously measured on the same day as measuring leaf gas 
exchange parameters using the ultra-portable modu-
lated chlorophyll fluorometer (MINI-PAM-II, WALZ, 
Germany). The leaves were adapted to darkness over-
night to measure the initial (Fo), maximum (Fm), variable 
(Fv), and steady-state fluorescence (Fs). Additionally, the 
parameters of maximum (F’m) and minimum fluores-
cence (F’o) under light adaptation were determined. The 
fluorescence parameters were calculated as follows [39]:

 Fv/Fm = (Fm − Fo) /Fm  (4)

 ΦPSII = (F ′m − Fs) /F ′m  (5)

 qP = (F ′m − Fs) / (F ′m − F ′o)  (6)

 NPQ = (Fm − F ′m) /F ′m  (7)

where Fv/Fm is the maximum photochemical efficiency, 
ΦPSII is the actual photochemical efficiency, qP is the 
photochemical quenching of variable chlorophyll, and 
NPQ is the non-photochemical quenching.

Stomatal characteristics
Stomatal samples were collected using the imprint 
method and prepared as temporary slides. The stoma-
tal structure was observed and photographed under the 
Teelen xsp 360a (Teelen Inc., Shanghai, China) micro-
scope with a 40 × objective. The stomatal density (SD) 
was the number of stomata distributed per unit leaf area, 
which was recorded under the 10x objective [40]. The 
stomatal length (SL) and width (SW) were measured 

separately using ImageJ software (National Institutes of 
Health, Bethesda, MD, USA).

Photosynthesis enzymes and abscisic acid
Cotton leaf samples were frozen immediately in liquid 
nitrogen for 30  s after collection. The frozen samples 
were stored in a refrigerator at -80 ℃ for the determina-
tion of abscisic acid (ABA) content and the activities of 
photosynthetic enzymes including phosphoenolpyruvate 
carboxylase (PEPC) and ribulose diphosphate carboxyl-
ase (Rubisco).

ABA was extracted using an isopropanol/water/hydro-
chloric acid solution [41]. Acid was added to the extract 
to improve the solubility of the hormone in an organic 
solvent and to inactivate some enzymes in the tissue. 
The samples were concentrated using a dichlorometh-
ane extraction followed by nitrogen gas blowing. A high-
performance liquid chromatography system (ACHROM 
S3000, Acchrom Tech, Beijing, China) was used to mea-
sure the ABA content. Compass-C18 (4.6 mm × 250 mm, 
5  μm) chromatographic column was used. The mobile 
phase was prepared by mixing 600 mL of ultrapure 
water with 6 mL of acetic acid and then adding 400 mL 
of methanol. The injection volume was 10 µL, the flow 
rate was 0.8 mL min− 1, the column temperature was 35 
℃ and the total run time was 40 min. The UV detection 
wavelength was set at 254 nm.

PEPC and Rubisco were extracted by 0.1 g leave tissue 
and coarsely ground in a mortar under liquid nitrogen 
with adding 1mL extraction buffer. Soluble and insoluble 
fractions were separated by centrifugation at 8000 r at 
4 ℃ for 10 min, and the supernatant was used to deter-
mine enzyme activities. PEPC and Rubisco activities 
were determined using the colorimetric method with UV 
detection set at 340 nm [42]. Suzhou Comin Biotechnol-
ogy Co., Ltd provided the kits used for measurement.

Malondialdehyde
Approximately 0.5  g of fresh leaf was ground into a 
homogenate with 5 mL of 10% trichloroacetic acid 
solution. The mixture was centrifuged at 8000  rpm for 
10  min. 2 mL of the supernatant mixed with 2.0 mL of 
0.5% thiobarbituric acid solution were reacted in boil-
ing water for 15 min. After the mixture cooled to room 
temperature. The absorption of the mixture at 450  nm, 
532 nm, and 600 nm was measured by a UV-VIS spectro-
photometer. Malondialdehyde (MDA) content was then 
calculated using the following formula [43]:

 MDA content = 6.45 × (D532 − D600) − 0.56 × D450 (8)
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Statistical analysis
Microsoft Excel 2019 (Microsoft, Redmond, WA, USA) 
and Origin 8.5 software (Origin Lab, Northampton, MA, 
USA) were used for data processing and graph plotting, 
respectively. A one-way analysis of variance (ANOVA) 
was conducted with all data performed as mean (n = 3) 
followed by standard deviation. Further the least sig-
nificant difference (LSD) test was adopted for multiple 
comparisons (p < 0.05 and p < 0.01) using SPSS Statistics 
22 (IBM SPSS Statistics, Chicago, IL, USA) software. 
Pearson’s correlation coefficient (r) was used to test the 
correlation between variables and principal compo-
nent analysis (PCA) was used to assess the relationships 
among all parameters in CANOCO 5 (Microcomputer 
Power, Ithaca, NY, USA).

Results
Effect of SiO2-NPs on plant height, leaf area, and 
aboveground biomass of cotton seedlings under the salt 
and low-temperature dual stress
The salt and low-temperature dual stress caused an obvi-
ous decrease in the plant height, leaf area, and aboveg-
round biomass of cotton seedlings as presented in Fig. 1. 
The plant height, leaf area, and aboveground biomass 
in T1 significantly reduced (p < 0.05) by 9.58%, 15.76%, 
and 39.80% compared to CK, respectively. Conversely, 
SiO2-NPs markedly enhanced the plant height, leaf area, 
and aboveground biomass, and obtained the optimal 
effects at T3. However, there was no significant difference 
between T2 and T1.

Fig. 1 Effects of SiO2-NPs on plant height (A), leaf area (B), and aboveground biomass (C) of cotton seedlings under the salt and low temperature dual 
stress. CK represents the foliar application of 0 mg L− 1 SiO2-NPs with no stress. T1, T2, T3, and T4 represent the foliar application of 0 mg L− 1, 50 mg L− 1, 
100 mg L− 1, and 200 mg L− 1 SiO2-NPs under the salt and low-temperature dual stress, respectively. Data are mean ± standard deviation (n = 3). Different 
alphabets on top of error bars represent significant differences (p < 0.05)
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Effects of SiO2-NPs on gas exchange parameters of cotton 
seedlings under the salt and low-temperature dual stress
The salt and low-temperature dual stress significantly 
decreased the Pn, gs, Ci, and Tr of cotton seedlings com-
pared to CK (Fig.  2). However, SiO2-NPs significantly 
improved (p < 0.05) the Pn, gs, and Tr (Fig.  2A, B, and 
D) and displayed a similar trend that was first increasing 
and then decreasing. The Pn, gs, and Tr in T2, T3, and 
T4 significantly increased (p < 0.05) compared to T1, 
except for the gs, whereby no significant differences were 
observed between T2 and T1. In addition, SiO2-NPs sig-
nificantly reduced (p < 0.05) Ci and exhibited a trend of 
first decreasing and then increasing with the increase 
in SiO2-NPs concentration (Fig.  2C). The Ci in T3 was 
decreased (p < 0.05) by 7.11% compared to T1, but there 
was a statistically insignificant difference between T2, T4, 
and T1.

 Effect of SiO2-NPs on ABA content and LWP of cotton 
seedlings under the salt and low-temperature dual stress
ABA content was significantly reduced by SiO2-NPs 
under the salt and low-temperature dual stress as shown 
in Fig.  3A. With the increase in SiO2-NPs concentra-
tion, ABA content showed a trend of first decreasing 
and then increasing, and T3 obtained the highest reduc-
tion of 47.40% compared to T1. Notably, the dual stress 
caused a substantial decrease in LWP compared to CK as 
illustrated in Fig.  3B. Conversely, SiO2-NPs significantly 
decreased (p < 0.05) the reduction of LWP caused by the 
dual stress and LWP displayed a trend of first increas-
ing and then decreasing with the increase in SiO2-NPs 
concentration. The LWP in T2, T3, and T4 increased 
significantly (p < 0.05) compared to T1, and the highest 
increment that appeared in T3 was 19.66%.

Fig. 2 Effects of SiO2-NPs on photosynthetic rate (Pn, A), stomatal conductance (gs, B), intracellular CO2 concentration (Ci, C), and transpiration rate (Tr, 
D) of cotton seedlings under the salt and low temperature dual stress. CK represents the foliar application of 0 mg L− 1 SiO2-NPs with no stress. T1, T2, 
T3, and T4 represent the foliar application of 0 mg L− 1, 50 mg L− 1, 100 mg L− 1, and 200 mg L− 1 SiO2-NPs under the salt and low-temperature dual stress, 
respectively. Data are mean ± standard deviation (n = 3). Different alphabets on top of error bars represent significant differences (p < 0.05)
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Effects of SiO2-NPs on stomatal characteristics of cotton 
seedlings under the salt and low-temperature dual stress
Figure  4 presents the effects of different SiO2-NPs con-
centrations on the stomatal characteristics of cotton 
seedlings under the salt and low-temperature dual stress. 
Under the condition of the dual stress without SiO2-NPs 
treatment (T1), the SL, SW, and SD were reduced by 
6.27%, 9.77%, and 20.90%, respectively. With the increase 
in SiO2-NPs concentration, the trends of SL, SW, and SD 
were presented as an increase followed by a decrease. 
The SL, SW, and SD in T3 and T4 significantly increased 
(p < 0.05) by 1.73%, 2.79%, 2.64%, and 5.13%, 10.90%, 
13.62% compared to T1, respectively. However, there was 
no significant difference between T1 and T2.

Effects of SiO2-NPs on chlorophyll content of cotton 
seedlings under the salt and low-temperature dual stress
The effects of the various treatments on chlorophyll con-
tent are shown in Fig. 5. In this experiment, the salt and 
low-temperature dual stress showed a decrease of 7.37%, 
6.48%, and 7.15% in chlorophyll a, chlorophyll b, and 
total chlorophyll content, respectively. However, treat-
ing plants with SiO2-NPs application induced an increase 
in the content of all pigments. The highest increase was 
observed in T3 which showed more efficiency than T2 
and T4, and chlorophyll a, chlorophyll b, and total chlo-
rophyll content significantly increased (p < 0.05) by 5.32%, 
6.06%, 5.50% compared to CK, respectively.

Effects of SiO2-NPs on chlorophyll fluorescence parameters 
of cotton seedlings under the salt and low-temperature 
dual stress
The responses of ΦPSII, Fv/Fm, NPQ, and qP to SiO2-NPs 
under the salt and low-temperature dual stress are 

illustrated in Fig.  6. The dual stress generally decreased 
the ΦPSII, qP, Fv/Fm, and NPQ of cotton seedlings com-
pared to CK. Contrarily, the ΦPSII, qP, and Fv/Fm were 
remarkably increased (p < 0.05) by SiO2-NPs except for 
the NPQ under the dual stress. Compared to T1, the 
ΦPSII, qP, and Fv/Fm in T3 obtained the highest incre-
ment by 16.55%, 7.88%, and 9.29%, respectively. The NPQ 
showed a trend of first decreasing and then increasing 
with the increase in SiO2-NPs concentration (Fig.  6C). 
Compared to T1, the NPQ in T3 and T4 significantly 
decreased (p < 0.05) by 9.67% and 6.92%, respectively. 
However, there was no significant difference between T1 
and T2.

Effects of SiO2-NPs on photosynthetic enzymes activities of 
cotton seedlings under the salt and low-temperature dual 
stress
PEPC and Rubisco activities showed significant differ-
ences among the different treatments due to the different 
concentrations of SiO2-NPs under the salt and low-tem-
perature dual stress (Fig.  7). The PEPC activity in T1 
was significantly reduced (p < 0.05) by 14.69% compared 
to CK, while the SiO2-NPs slightly increased the PEPC 
activity caused by the dual stress (Fig. 7A). Compared to 
T1, the PEPC activity in T2, T3, and T4 were enhanced 
by 1.33%, 4.35%, and 2.37%, respectively, but there was 
no significant difference among T1, T2, T3, and T4. The 
effect of salt and low-temperature dual stress on Rubisco 
activity is illustrated in Fig.  7B. The dual stress remark-
ably reduced (p < 0.05) the Rubisco activity by 18.66% 
compared to CK. Notably, the Rubisco activity in T3 and 
T4 were significantly improved (p < 0.05) by 15.40% and 
8.95% compared to T1, respectively. However, there was 
no significant difference between T2 and T1.

Fig. 3 Effects of SiO2-NPs on ABA content (A) and LWP (B) of cotton seedlings under the salt and low temperature dual stress. CK represents the foliar 
application of 0 mg L− 1 SiO2-NPs with no stress. T1, T2, T3, and T4 represent the foliar application of 0 mg L− 1, 50 mg L− 1, 100 mg L− 1, and 200 mg L− 1 
SiO2-NPs under the salt and low-temperature dual stress, respectively. Data are mean ± standard deviation (n = 3). Different alphabets on top of error bars 
represent significant differences (p < 0.05)
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Effects of SiO2-NPs on malondialdehyde content of cotton 
seedlings under the salt and low-temperature dual stress
Applying SiO2-NPs significantly affected the MDA con-
tent in cotton seedlings exposed to the salt and low-tem-
perature dual stress (Fig. 8). The dual stress significantly 
enhanced (p < 0.05) the MDA content by 24.43% com-
pared to CK. The application of SiO2-NPs significantly 
reduced (p < 0.05) the MDA content, and decreased 
monotonously with increasing SiO2-NPs concentration. 
The highest reduction (10.51%) was obtained in T3 com-
pared to T1.

Correlation analysis and principal component analysis
The salt and low-temperature dual stress negatively 
affected the stomatal exchange parameters, while 
SiO2-NPs alleviated the reduction of Pn caused by the 
dual stress. To better understand the relationships among 
stomatal exchange parameters, stomatal characteristic 

parameters, chlorophyll content, chlorophyll fluores-
cence parameters, photosynthetic enzyme activities, 
ABA content and LWP, the PCA and Pearson correla-
tion analysis were performed (Fig.  9; Table  1). Accord-
ing to PCA, a relatively higher positive correlation was 
observed between Pn and gs, Tr, SL, SW, SD, Chl a, Chl b, 
Chl t, ΦPSII, qP, Fv/Fm, Rubisco activity and LWP, and the 
negative correlation between Pn and ABA content at the 
first component axis, which accounting for 87.04% of the 
total variation (Fig.  9). It might indicate that SiO2-NPs 
regulated the Pn of cotton seedlings by affecting the 
changes of these parameters under the dual stress. Fur-
thermore, significant correlation coefficients (p < 0.05) 
were obtained between Pn and gs, Tr, SL, SW, SD, Chl a, 
Chl b, Chl t, ΦPSII, qP, Fv/Fm, Rubisco activity, LWP, and 
ABA content, but no significant correlation coefficients 
were obtained between Pn and Ci, NPQ, and PEPC activ-
ity (Table 1).

Fig. 4 Effects of SiO2-NPs on stomatal length (A), stomatal width (B), and stomatal density (C) of cotton seedlings under the salt and low temperature 
dual stress. CK represents the foliar application of 0 mg L− 1 SiO2-NPs with no stress. T1, T2, T3, and T4 represent the foliar application of 0 mg L− 1, 50 mg L− 1, 
100 mg L− 1, and 200 mg L− 1 SiO2-NPs under the salt and low-temperature dual stress, respectively. Data are mean ± standard deviation (n = 3). Different 
alphabets on top of error bars represent significant differences (p < 0.05)
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Discussion
Photosynthesis is the basis of plant growth and strongly 
links to leaf water content because the normal water con-
tent in the leaves assists the stomata open [44]. In our 
study, the salt and low-temperature dual stress caused 
significant and severe reductions in plant height, leaf 
area, aboveground biomass, and a decrease in Pn, gs, and 
LWP. This might be because osmotic stress caused by 
salt and low-temperature dual stress greatly decreased 
the absorption of water by the root system [45], which 
reduced inter- and intracellular water levels and stoma-
tal aperture [46]. Another similar research reported that 
salt and low-temperature stress generated some chemi-
cal signals which induced stomatal closure and further 
reduced water loss [47], therefore inhabited the pho-
tosynthetic efficiency and plants growth. In the current 
study, SiO2-NPs application significantly increased the 
plant height, leaf area, aboveground biomass, Pn, gs, and 
LWP of cotton seedlings, which indicated that SiO2-NPs 

decreased the damage of osmotic stress. On the one 
hand, SiO2-NPs might induce the increase in osmotic 
regulatory substances to increase osmotic potential 
introduced by the salt and low-temperature stress [48]. 
In addition, SiO2-NPs could regulate aquaporin (AQP) 
abundance to facilitate water uptake and transport across 
cell membranes [49]. Our results showed that the growth 
of cotton seedlings increased with increasing SiO2-NPs 
concentration up to 100 mg L− 1 (T3) and then decreased 
with further increases in SiO2-NPs concentration, which 
might indicate that high SiO2-NPs concentrations had 
cytotoxicity and inhibitory effects on plant growth [50].

Stomata serve as an important channel for water and 
gas exchange between plants and the external environ-
ment [51]. Existing literature has documented that sto-
matal conductance was associated with stomata size, 
pore area and stomatal density [52], which was consistent 
with the results of our study (Table 1). A previous study 
suggested that the stomata aperture was a direct response 

Fig. 5 Effects of SiO2-NPs on chlorophyll a content (A), chlorophyll b content (B), and total chlorophyll content (C) of cotton seedlings under the salt and 
low temperature dual stress. CK represents the foliar application of 0 mg L− 1 SiO2-NPs with no stress. T1, T2, T3, and T4 represent the foliar application of 
0 mg L− 1, 50 mg L− 1, 100 mg L− 1, and 200 mg L− 1 SiO2-NPs under the salt and low-temperature dual stress, respectively. Data are mean ± standard devia-
tion (n = 3). Different alphabets on top of error bars represent significant differences (p < 0.05)
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to the leaf water status [53]. Liu et al. also found Si could 
increase Pn due to the enhancement in gs resulting from 
an improvement of the leaf water content [49]. Addi-
tionally, researchers had reported that Si-mediated the 
decrease in ABA content was one of the key approaches 
affecting photosynthesis efficiency. It might be because Si 
restricted the gene expression mediated in the ABA syn-
thesis pathway, which maintained the stomatal aperture 
to increased osmotic stress tolerance [54]. Furthermore, 
some studies have reported that gs was co-regulated by 
ABA content and LWP under adversity stresses [55, 56]. 
Similar results were observed in the current study that 
there was a high correlation between ABA content, LWP, 
and gs (Table 1).

Salt and low-temperature stress cause the overproduc-
tion of ROS inside the plant cell, which alter the meta-
bolic and oxidative homeostasis of plant cells, hence 

promoting membrane lipid peroxidationlead (LPO). As 
MDA is a major product of LPO in plants, it is a key indi-
cator of the oxidative stress [57, 58]. In this experiment, 
the MDA content increased under the dual stress (Fig. 8), 
which was consistent with the findings of Liu et al. on the 
MDA contents of Bermuda grass [59]. While, SiO2-NPs 
alleviated the deleterious consequences, this mitigation 
was not only attributed to the increase in antioxidant 
enzyme activities, but also resulted from non-enzymatic 
mechanisms such as increased proline and glutathione 
contents [60, 61].

Due to the defect of biochemical properties in plants 
grown under stressful conditions, the photosynthe-
sis process and its efficiency will be affected and inhib-
ited [33, 38]. Our results support this statement as 
chlorophyll a, chlorophyll b and total chlorophyll con-
tent significantly diminished in response to the salt and 

Fig. 6 Effects of SiO2-NPs on actual photochemical efficiency of photosystem II (ΦPSII, A), photochemical quenching of variable chlorophyll (qP, B), non-
photochemical quenching (NPQ, C), and maximal photochemical efficiency of photosystem II (Fv/Fm, D) of cotton seedlings under the salt and low 
temperature dual stress. CK represents the foliar application of 0 mg L− 1 SiO2-NPs with no stress. T1, T2, T3, and T4 represent the foliar application of 0 mg 
L− 1, 50 mg L− 1, 100 mg L− 1, and 200 mg L− 1 SiO2-NPs under the salt and low-temperature dual stress, respectively. Data are mean ± standard deviation 
(n = 3). Different alphabets on top of error bars represent significant differences (p < 0.05)
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low-temperature dual stress (Fig.  5). The reduction in 
chlorophyll content could be a result of the damage to 
chloroplast structure and a restriction in their biosyn-
thesis [62]. However, SiO2-NPs ameliorate the reduc-
tion in chlorophyll content, similar results were found 
by Haghighi and Pessarakli who also reported enhanced 
chlorophyll synthesis and photosynthesis in SiO2-NPs 
treated Solanum lycopersicum seedlings [63]. In addi-
tion, one mechanism about Si protecting photosynthetic 
pigments under stressful conditions was reported that Si 

could form a binary film at the cell wall to maintain the 
structural stability of cells [64].

Chlorophyll fluorescence parameters reflect the char-
acteristics of plant absorption, transfer, dissipation and 
light energy distribution, which are marked as effec-
tive probes for investigating photosynthesis in plants 
under adversity stresses [65, 66]. Changes in chloro-
phyll fluorescence parameters accurately characterize 
the photosynthetic potential of plants and the degree of 
photosystem damage [67]. Fv/Fm and ΦPSII represent 
the efficiency of PSII in converting absorbed light energy 
into chemical energy [21], qP reflects the photosynthetic 
activity of PSII reaction center [68]. Our results demon-
strated that Fv/Fm, ΦPSII, and qP were significantly lower 
in T1 compared to CK, which might be implied that a 
marked photo-inhibition was occurred here [39]. While, 
SiO2-NPs increased ΦPSII, Fv/Fm, and qP (Fig.  6) under 
the dual stress. One reason might be that SiO2-NPs 
enhanced light absorbance, which could inhabit the chlo-
roplast ageing and improve the photosynthetic period 
of chloroplast [69]. Moreover, SiO2-NPs might enhance 
oxygen transport and the enzyme activity of carbohy-
drate metabolism to improve photosynthesis efficiency 
[70]. NPQ reflects the ability of plants to dissipate excess 
light energy in the form of heat which cannot be used for 
the transfer of photosynthetic electrons and the dam-
age degree of photosynthetic apparatus [71]. Our results 
proved that SiO2-NPs reduced NPQ under the salt and 
low-temperature dual stress, which could be explained by 
the fact that SiO2-NPs decreased the dissipation of excess 
light energy and alleviated the damage of photosynthetic 
apparatus [72].

Fig. 8 Effect of SiO2-NPs on malondialdehyde (MDA) of cotton seedlings 
under the salt and low temperature dual stress. CK represents the foliar 
application of 0 mg L− 1 SiO2-NPs with no stress. T1, T2, T3, and T4 represent 
the foliar application of 0 mg L− 1, 50 mg L− 1, 100 mg L− 1, and 200 mg 
L− 1 SiO2-NPs under the salt and low-temperature dual stress, respectively. 
Data are mean ± standard deviation (n = 3). Different alphabets on top of 
error bars represent significant differences (p < 0.05)

 

Fig. 7 Effects of SiO2-NPs on PEPC activity (A) and Rubisco activity (B) of cotton seedlings under the salt and low temperature dual stress. CK represents 
the foliar application of 0 mg L− 1 SiO2-NPs with no stress. T1, T2, T3, and T4 represent the foliar application of 0 mg L− 1, 50 mg L− 1, 100 mg L− 1, and 200 mg 
L− 1 SiO2-NPs under the salt and low-temperature dual stress, respectively. Data are mean ± standard deviation (n = 3). Different alphabets on top of error 
bars represent significant differences (p < 0.05)
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Rubisco and PEPC are key enzymes affecting photosyn-
thesis in plants [73]. Rubisco catalyzes the carboxylation 
and oxygenation reactions of ribulose-1,5-bisphosphate 
(RuBP) and controls photosynthetic carbon metabolism 
and photorespiration in plants [74]. We found Rubisco 
activity significantly decreased when suffering from the 
salt and low-temperature dual stress, it might be because 
of the increase in chloroplast protrusion to release vesi-
cles containing Rubisco (Rubisco-containing body) which 
one of the pathways of Rubisco exclusion from chloro-
plasts [75]. However, the reduction of Rubisco activity 

declined after spraying SiO2-NPs (Fig.  7), which was 
consistent with the findings of Pereira et al. who found 
Si application increased the activity of Rubisco that was 
involved in the Si-induced regulation of photosynthesis 
[76]. PEPC is closely related to the ability of leaves to fix 
CO2 and remobilize CO2 released by respiration in C3 
plants [77]. In this study, PEPC significantly decreased 
under the salt and low-temperature dual stress, but there 
was no significant difference between different treat-
ments after spraying SiO2-NPs (Fig.  7). Meanwhile, our 
findings proved that Pn was significantly correlated with 

Fig. 9 Principal component analyses (PCA) on gas exchange parameters (green lines), stomatal characteristics parameters (red lines), chlorophyll content 
(blue lines), chlorophyll fluorescence parameters (purple lines), photosynthetic enzyme activities (gray lines), abscisic acid content (ABA, black line), and 
leaf water potential (LWP, orange line). Pn = Photosynthetic rate, gs = Stomatal conductance, Ci = Intracellular CO2 concentration, Tr = Transpiration rate, 
SL = Stomatal length, SW = Stomatal width, SD = Stomatal density, Chl a = Chlorophyll a content, Chl b = Chlorophyll a content, Chl t = Total chlorophyll 
content, ΦPSII = Actual photochemical efficiency of photosystem II, qP = Photochemical quenching of variable chlorophyll, NPQ = Non-photochemical 
quenching, Fv/Fm = Maximal photochemical efficiency of photosystem II. CK represents the foliar application of 0 mg L− 1 SiO2-NPs with no stress. T1, T2, 
T3, and T4 represent the foliar application of 0 mg L− 1, 50 mg L− 1, 100 mg L− 1, and 200 mg L− 1 SiO2-NPs under the salt and low-temperature dual stress, 
respectively. Values in bracket are percentages explained by the first two components. Data are the means (n = 3)
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Rubisco activity but not with PEPC activity (Table  1), 
which also indicated that SiO2-NPs might mainly by reg-
ulated a higher Rubisco activity under the salt and low-
temperature dual stress to promote photosynthesis.

Stomatal and non-stomatal factors influencing pho-
tosynthesis are generally decided by the relationship 
between gs and Ci [78]. Our results showed that gs and 
Ci in T1 were significantly lower than CK, which sug-
gested that the salt and low-temperature dual stress 
affected the diffusion process of CO2 by inducing stoma-
tal closure, which resulted in a significant decrease in the 
concentration of CO2 diffusing from the external envi-
ronment to the leaf through the stomata [24]. However, 
there was a significant increase in gs but not in Ci after 
spraying SiO2-NPs, which implied that the reduction of 
Pn was limited by stomatal and non-stomatal factors. In 
the current study, the positive correlations were observed 
between Pn and gs, SL, SW, SD, chlorophyll content, chlo-
rophyll fluorescence parameters (Fv/Fm, ΦPSII, qP), and 
Rubisco activity (Table 1), and T3 had the most positive 
influences on these parameters. This result might reveal 
that SiO2-NPs at the concentration of 100 mg L− 1 could 
optimally regulate stomatal opening and closing, enhance 
the photochemical efficiency and photosynthetic activity 
of PSII reaction centers and increase Rubisco activity to 
obtain the highest Pn.

Conclusion
The salt and low-temperature dual stress significantly 
reduced LWP, gs, chlorophyll content, PSII activity, pho-
tosynthetic enzyme activity, and enhanced MDA content, 
which caused the decrease in cotton seedling photosyn-
thesis and growth. While SiO2-NPs application allevi-
ated the deleterious consequences of the dual stress. The 
positive correlations were observed between Pn and gs, 
SL, SW, SD, chlorophyll content, Fv/Fm, ΦPSII, qP, and 
Rubisco activity. It indicated that SiO2-NPs enhanced 
the photosynthesis of cotton seedlings by regulating the 
stomatal state, improving the light energy utilization effi-
ciency and electron transport activity of PSII, and induc-
ing the increase of Rubisco activity to enhance the carbon 
assimilation capacity under the salt and low-temperature 
dual stress. According to our results, SiO2-NPs at the 
concentration of 100 mg L− 1 could be recommended to 
mitigate the damage in cotton seedling growth under 
the salt and low-temperature dual stress. However, there 
was only one combined treatment, and the effects of 
SiO2-NPs on the ion transport, osmotic regulation, anti-
oxidant defense, signal conduction, and gene expression 
are still unclear. Further studies are required under a wide 
range of salt and low-temperature combined treatments 
to examine the biochemical and molecular mechanism of 
SiO2-NPs, to provide deeper insights into the effects of 
SiO2-NPs on plant growth under multiple stress.
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