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Abstract

Mechanosensitive (MS) ion channels provide efficient molecular mechanism for transducing mechanical forces

into intracellular ion fluxes in all kingdoms of life. The mechanosensitive channel of small conductance (MscS)

was one of the best-studied MS channels and its homologs (MSL, MscS-like) were widely distributed in cell-walled
organisms. However, the origin, evolution and expansion of MSL proteins in plants are still not clear. Here, we identi-
fied more than 2100 MSL proteins from 176 plants and conducted a broad-scale phylogenetic analysis. The phy-
logenetic tree showed that plant MSL proteins were divided into three groups (I, Il and Ill) prior to the emergence

of chlorophytae algae, consistent with their specific subcellular localization. MSL proteins were distributed unevenly
into each of plant species, and four parallel expansion was identified in angiosperms. In Brassicaceae, most MSL dupli-
cates were derived by whole-genome duplication (WGD)/segmental duplications. Finally, a hypothetical evolutionary
model of MSL proteins in plants was proposed based on phylogeny. Our studies illustrate the evolutionary history

of the MSL proteins and provide a guide for future functional diversity analyses of these proteins in plants.
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Introduction

All living organisms are subjected to various external and
internal mechanical stresses, including gravity, touch,
sound and osmotic shock. How mechanical forces are
sensed by cells is a long-standing question in biology. One
of the most universal mechanisms for cells to respond
to mechanical stimuli is the use of mechanosensitive
(MS) ion channels [1]. MS channels are transmembrane
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proteins that exist in all kingdoms of life. The primary
function of MS channels is to provide a conductive pore
in response to mechanical stimulation, allowing ions to
flow across the membrane down their electrochemical
gradient [2].

Many types of MS ion channels have been identified
in different organisms, including mechanosensitive ion
channel of small conductance (MscS) [3, 4], mechanosen-
sitive ion channel of large conductance (MscL) [5], two
pore potassium (TPK) [6], Midl-complementing activ-
ity (MCA) [7], and piezo [8]. Different MS channels dis-
played highly divergent in conductance, ion selectivity,
and/or sensitivity to the direction of activation pressure.
MscS is a nonselective stretch-activated channel which is
gated by membrane tension [9, 10]. Escherichia coli has
six MscS paralogs: archetypal MscS (yggB), potassium-
dependent MscK (kefA), MscM (YjeP), YbdG, YbiO and
Ynal [11, 12]. These bacteria MscS channels have different
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activation thresholds and channel conductance, protect-
ing cells from osmotic stress by providing a conduit for
the release of osmolytes from the bacterium [13-15].
MscS family members are highly divergent in their
topology and domain structure. The crystal structure of
E. coli archetypal MscS (PDB: 20AU — EcMscS, PDB) was
resolved [16], and it was characterized by three N-terminal
transmembrane (TM) helices followed by a large hydro-
philic cytoplasmic domain. The key feature of the EcMscS
structure is the pore lining TM helix, TM3, which forms a
hydrophobic channel pore and shows the highest homol-
ogy in MscS-like channels [4, 17]. TM3 comprises two
regions, TM3a and TM3b, which are separated by a distinc-
tive kink at residue G113. A comparison of the open-state
versus closed-state structures of EcMscS showed that gat-
ing involves swinging a tension-sensitive paddle made up of
the TM1/TM2 helices and twisting TM3a at G113 [18, 19].
MscS homologs are widely dispersed in bacterial, archaeal,
fungal and plant genomes, but not in animal genomes. In
Arabidopsis, ten MscS homologs were identified, named
as MscS-like proteins (MSLs) [20]. The Arabidopsis MSLs
were divided into three phylogenetic groups, consist
with their different subcellular localization and topology
[21]. Group I (AtMSL1) and group II MSLs (AtMSL2 and
AtMSL3) were localized in the inner membrane of mito-
chondria and chloroplast, respectively [20, 22, 23]. Group
III MSLs (AtMSL4-10) were localized in the plasma or
endoplasmic reticulum (ER) membrane [20, 21, 24]. Both
group I and group II MSLs contained five TM helices, while
group III MSLs contained six TM helices. The distinct cel-
lular localizations implicate diverse physiological functions
of plant MSLs. Loss of AtMSLI increased mitochondrial
oxidation under abiotic stresses, indicating that AtMSL1 is
crucial for regulating mitochondrial redox status under abi-
otic stress [25]. AtMSL2 and AtMSL3 colocalize with the
plastid division protein AtMinE and function redundantly
in maintaining plastid shape, size and division [22, 26, 27].
AtMSLS is specially expressed in pollen, and plays essen-
tial roles in pollen hydration and pollen tube growth during
fertilization [28, 29]. Both loss of function and overexpres-
sion of AtMSL8 lead to reduced pollen germination and low
fertility. AtMSL10 is expressed in root and form a hetero-
meric channel with AtMSL9 [23, 30]. Both loss of function
and overexpression of AtMSLIO lead to growth retarda-
tion and ectopic cell death [31]. AtMSL10 is also involved
in the wound-triggered early signal transduction and plays
a positive regulatory role in biosynthesis of jasmonic acid
[32]. Moreover, the MSLs were identified and analyzed in
Oryza sativa, Aegilops tauschii, Hordeum vulgare, Sorghum
bicolor, Triticum aestivum, Triticum urartu, Zea mays, Pha-
seolus vulgaris, and Cicer arietinum, respectively [33-38].
The majority of MSL genes in these plants were expressed
in various tissue/organs. In rice, most MSL genes were
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significantly expressed in reproductive stages [33]. In maize,
four MSL genes were expressed in all the tissues develop-
ment stages, and one maize MSL gene specifically expressed
in reproductive tissues [37]. The differential expression pat-
terns of MSLs indicating their functions in different tissues
and organs.

The MscS homologs were discovered in Bacteria, sug-
gesting that MscS existed in the early stages of evolution.
However, its identification and functional analyses in plants
are still limited. In order to explore the origin, characteriza-
tion and diversification of plant MSLs, we sought to build
a comprehensive phylogeny of plant MSLs. 2123 MSL pro-
teins were identified from 176 plants. Based on the phylo-
genetic tree, we explored the origin and divergence of the
plant MSL proteins. Three MSL groups (I, II and III) were
identified in plants, and the divergence of these three MSL
groups can be traced back to chlorophytae algae. In addi-
tion, a wide phylogenetic architecture of angiosperm MSLs
were constructed, and the MSLs in angiosperms were fur-
ther classified to 4 clades: MSL1, MSL2/3, MSL4-8 and
MLS9/10. Finally, we discussed the possible evolutionary
relationships of the MSL proteins in plants.

Results

MSL proteins were identified in all lineages of plant

By employing the Hidden Markov Models (HMM) algo-
rithm and BLASTP search, we constructed a comprehen-
sive phylogeny of MSL proteins in genome-sequenced
plants by identifying MSL proteins in genomes of 2 chloro-
phytic algaes, 6 charophytes, 5 bryophytes, 2 ferns, 5 gym-
nosperms and 156 angiosperms (Supplementary Table 1).
The retrieved proteins were checked with SMART and
PFAM, and the candidates containing the MS_channel
domain were regarded as ‘true’ MSLs. In total, 2123 MSL
proteins were retrieved from 176 plant species (Table 1).
The copy number of MSL proteins varies among differ-
ent plant lineages, ranging on average from 5.5 copies in
chlorophyta, 4.7 in bryophytes, 9.0 in ferns, 6.0 in gym-
nosperms, to 12.7 angiosperms (Table 1, Supplementary
Table 2). These data suggest that the MSL proteins were
expanded in angiosperms. Among the angiosperms exam-
ined, more MSL proteins were identified in dicots than
that in monocots, with an average of 9.2 in Poaceae, 12.5
in Brassicaceae, 12.0 in Leguminosae and 11.1 in Rosaceae
(Table 1, Supplementary Table 2). These results indicate
that MSL proteins were expanded in dicots.

Diversification of MSL proteins in green plants

MSL proteins are distributed in bacterial, archaeal and plant
genomes, however, they are not found in animal genomes.
The full length of MSLs exhibit little similarity, however, the
hydrophobic pore-lining TM3 helix and upper cytoplas-
mic domain display high similarity. Using the pore-lining
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Table 1 The number of MSL proteins in green plants

Taxonomy Number of Numberof MSL  Average number
species of MSL per
species

Chlorophytes 2 11 5.50
Charophytes 6 28 467
Bryophytes 5 49 9.80

Ferns 2 18 9.00
Gymnosperms 5 30 6.00
Angiosperms 156 1971 1271
Poaceae 22 204 9.27
Brassicaceae 10 125 12.50
Leguminosae 13 156 12.00
Rosaceae 9 100 1.1

helix and the conserved cytoplasmic regions of MSLs, a
predicted evolutionary tree was constructed among repre-
sentative members of MSL homologs from bacteria, fungi,
protozoa and plants (Figure S1). The plant MSL proteins
are separated from bacteria, protozoa and fungi MSLs, and
fall into three distinct phylogenetic groups. These results
indicated that the divergence of plant MSLs occurred after
the emergence of plants. To further explore the evolu-
tionary origin of MSL proteins in green plants, we recon-
structed phylogenetic tree with MSL homologs from 16
representative viridiplantae species including green algae
Chlamydomonas reinhardtii, moss Physcomitrella patens,
fern Selaginella moellendorfii, gymnosperm Pinus lamber-
tiana, basal angiosperm Amborella trichopoda, monocots
(Oryza sativa, Zea mays), and eudicots (Arabidopsis thali-
ana, Arabidopsis lyrata, Theobroma cacao, Glycine max,
Camellia sinensis, Coffea canephora) (Fig. 1). The topology
of the phylogenetic tree clearly divided plant MSLs into
three clades (Clade I, II, III) (Fig. 1a), consistent with the
three distinct subcellular localizations predictions (Fig. 1b).
Each clade contains genes from several major lineages of
green plants, including algae, mosses, and gymnosperms,
indicating that plant MSLs originated in the ancestors of
green plants. The angiosperm clade I (MSL1) is monophyl-
etic group. In clade II (MSL2/3), MSL2 and MSL3 diverged
in eudicots, demonstrating the diversification of MSL2 and
MSL3 occurred in the ancestor of eudicots. More MSL
homologs are identified in clade III (MSL4-10). A distinc-
tion between MSL4-8 and MSL9/10 are observed in seed
plants (gymnosperms and angiosperms), suggesting that
the diversification into MSL4-8 and MSL9/10 occurred in
the ancestor of seed plants.

Phylogenetic classification of the MSL proteins

in angiosperms

To further explore the phylogenetic relationship of
MSL proteins in angiosperms, we reconstructed a wide
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phylogenetic tree with 1971 MSL proteins identified
from 155 angiosperm species (Fig. 2). The phylogenetic
tree shows that angiosperm MSLs were divided into
four major groups (MSL1, MSL2/3, MSL4-8, MSL9/10)
(Fig. 2). Many species-specific amplifications of MSL1
are identified in angiosperm, with 6, 5, 7, 13, and 7 MSL1
homologs are identified in rice, Brachypodium distachyon,
Phoenix dactylifera, Dendrobium catenatum, Nicotiana
tabacum, respectively (Fig. 2). MSL2/3 was divided into
MSL2 and MLS3 in eudicots, and most plants have more
MSL homologs corresponding to Arabidopsis MSL2 and
MLS3 (Figs. 2 and 3). MSL4-8 and MSL9/10 are lineage-
specific paralogs within Brassicaceae (Figs. 2, 4 and 5). In
addition, compared with monocots, more MSL homologs
were identified in eudicots, indicating that MSLs were
expanded in eudicot. The topological structure of the gene
tree is similar to that of species tree, indicating that these
four MSL clades originated independently.

In the MSL2/3 clade, MSL2 and MSL3 shared common
dicot lineages and no monocot and magnoliidae species were
included, indicating that the divergence between MSL2 and
MSL3 occurred before the emergence of dicots and after
the monocots/magnoliidae/dicots divergence (Fig. 3). In the
MSL4/5/6/7/8 (MSL4-8) clade, two sub-branches were iden-
tified in dicots: Dicots-Group I and Dicots-Group II (Fig. 4).
MSL4/5/6/7/8 of all Brassicaceae plants were clustered in Dicots-
Group I, and Brassicales MSLs were not appear in Dicots-Group
IL In addition, MSL4-8 in Brassicaceae experienced at least three
expansion events, resulting in 5 copies of MSL in each species
(Fig. 4). In the MSL9/10 clade, three sub-branches were identi-
fied in dicots: Dicots-Group I, Dicots-Group II and Dicots-
Group III (Fig. 5). MSL9/10 of all Brassicaceae plants were
clustered in Dicots-Group L, and Brassicaceae MSLs were lost in
Dicots-Group II and III. The differentiation between MSL9 and
MSL10 is due to Brassicaceae-specific duplication (Fig. 6).

Gene structure, conserved motif and phylogenetic analysis
of MSLs in Brassicaceae

MSLs were expanded in Brassicaceae. To explore the
expansion of MSLs in Brassicaceae, we constructed a phy-
logenetic tree using Database III, which includes 10 Bras-
sicaceae plants and 1 Brassicales plant (Carica papaya)
(Fig. 6). The phylogenetic tree showed that MSL4-8 and
MSL9/10 are expanded in Brassicaceae, consistent with
the former phylogenetic analysis (Fig. 6). The number of
exon/intron in Brassicaceae MSLs was analyzed (Fig. 6).
In Group I, most MSLs (4/7) have 5 introns. In Group II,
most MSLs (12/15) have 12 introns. In Group III, more
than two thirds of MSLs (51/64) contained 4 introns.
Therefore, MSL members belong to different groups
displayed different exon/intron structures, while MSL
members belong to the same group showed similar exon/
intron distribution (Supplementary Table 3).
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Fig. 1 Phylogenetic relationships and subcellular localizations of MSL proteins. a An phylogenetic tree of MSL proteins using Bayesian method

in green plants. 187 MSL proteins from 3 chlorophytes, 13 charophytes, 5 bryophytes, 1 lycophyte, 2 ferns, 5 gymnosperms and 4 angiosperms were
included in phylogeny. b Predicted subcellular localization and topology of MSL proteins from Arabidopsis thaliana (modify from Hamilton et al.,
2015 and Li et al,, 2020) [21, 39]. Topologies were drawn according to predictions on WolLF PSORT (https://wolfpsort.hgcjp). The regions of highest

homology to E.Coli MscS TM3 were shown in red

The conserved motif was predicted by the MEME tool
(Fig. 6). MSL members belonging to Group I only have 1
(motif 3) or 2 motifs (motif 3, and motif 6). Most MSL mem-
bers in Group II and Group III have 6 motifs. However, the
motif locations are different between Group II and Group
III MSLs. Both gene structure and protein motif results
showed that MSL genes in the same group had similar gene
structure and motif composition, indicating that there have

similar functions. In addition, MSL genes between different
groups display significant difference in both gene structure
and motif composition, indicating the different functions.

Expansion pattern of MSLs genes

Whole genome/segment and tandem duplications con-
tribute significantly to the expansion of gene families,
and gene duplication promotes genome evolution [40].
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AtMSL2

Fig. 2 Phylogenetic classification of MSL proteins in angiosperms. The topology shows that MSLs in angiosperms can be classified into 4
sub-groups: MSL1, MSL2/3, MSL4-8, and MSL9/10. Dicots are marked in blue and monocots are marked in yellow

To explore the expansion of MSL genes, we conducted
a comprehensive synteny analysis (Fig. 7). The results
showed that the Arabidopsis MSL genes had 3 segmental
duplication events (AtMSL4/AtMSLS, AtMSL4/AtMSL?7,
AtMSL9/AtMSL10), and one tandem duplication event
(AtMSL7/AtMSLS). In addition, all these expanded MSL
genes belongs to group III of MSL (Fig. 7). Similar expan-
sion patterns were also identified in other Brassicaceae
plants, including Arabidopsis lyrate, Brassica nigra, and
Brassica oleracea (Fig. 7).

Furthermore, we performed a multicollinearity analy-
sis of MSL genes among 6 Brassicales species (Carica
papaya, Arabidopsis thaliana, Arabidopsis lyrate, Bras-
sica niqra, Brassica oleracea, and Capsella grandiflora)
to reveal the robust orthologs of these MSLs (Fig. 7). The
results showed that among Brassicaceae species, all MSL
genes were collinearity. In addition, a relatively low col-
linearity was found between Carica papaya and other
Brassicaceae species. These results indicate that the MSL
genes were conserved and have the same ancestors.

Discussion

In this study, we have performed a comprehensive evolu-
tionary analysis of the MSL gene family in green plants.
The phylogenetic insights provide valuable information
for future molecular and biological investigations of vari-
ous MSL proteins.

Phylogenetic relationship of plant MSLs

Mechanosensitive (MS) ion channels provide molecu-
lar mechanism for the cellular response to mechanical
stimuli, and are widely identified in bacteria, plants, ani-
mals and humans. Mechanosensitive channel of small
conductance (MscS) is one of the best-studied MS chan-
nels, and MscS homologs are widely dispersed among
the bacterial, fungi and plant lineages. However, MscS
homologs have not been identified in animals, indicating
that they can serve as therapeutic targets for pathogenic
bacteria, fungi and protozoa. Our search showed that
MSL proteins are widely exist in green lineage of plants
and the copy number of MSL is varies among different
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Fig. 3 A brief phylogenetic tree showing the MSL2/3 clade in angiosperms. Only selected species were included to represent each order. The
topology shows that MSL2/3 in dicots can be clearly classified into two clades, Dicot-Group-I and Dicot-Group-Il. Monocots, yellow; Dicots, blue. The

outgroup and magnoliids collapsed into a grey triangle

species. Plant MSLs were divided into three clades before
the emergence of green plants and after the plant-bac-
teria/protozoa/fungi split (Figure S1). This phylogenetic
divergence consistent with its distinct subcellular locali-
zations. Several previous studies classified plant MSLs
into two classes with limited plant species [37, 38]. In
this study, we performed a more comprehensive analy-
sis with more plant species and displayed a more accu-
rate phylogenetic relationship of plant MSLs (Figs. 1,
2 and 3). Like in higher plants, three MSL proteins were
identified and divided into three different clades in chlo-
rophyte, suggesting that MSLs may have gone through
diversification to have sophisticated localizations and

functions in unicellular algae. During evolution, the MSL
family expanded and formed four clades in seed plants.
Based on the comprehensive analysis, we propose an evo-
lutionary model for MSL in green plants (Fig. 8). Three
ancestors of MSL exist in early hydrobiontic algae. Sub-
sequently, these three MSL clades evolved independently
during the evolution in land plants. Clade I is mono-
phyletic and most plants have one homolog of MSLI.
The expansion of the MSL proteins in clade II occurred
in dicots, leading to two major branches of MSL2 and
MSL3. The expansion of the MSL proteins in clade III
occurred in seed plants, leading to two major branches
of MSL4-8 and MSL9/10. In addition, the divergence of
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MSL2/3 occurred after the monocot-dicot plant split; the
divergence of MSL4/5/6/7/8 and MSL9/10 was the lat-
est, before the emergence of Brassicaceae and after the
Cleomaceae-Brassicaceae split. Within the MSL4-8 and
MSL9/10 clades, a large expansion occurred in dicots,
resulting in the formation of 2 and 3 subclades, respec-
tively. This work provides insights that guide future
investigations of MSL function in model and non-model
organisms.

Insights into structure and functional diversification

of MSLs

MSLs displayed diversity in structure, ion selectiv-
ity and physiological functions [21, 35, 38, 39, 41]. MSL

proteins are characterized by a varying number of N-ter-
minal transmembrane (TM) helices followed by a large
hydrophilic cytoplasmic domain comprised primarily of
3-sheets (Fig. 1) [16, 39]. Group II MSLs have an ectoplas-
mic N terminus, while group III MSLs have a large cyto-
plasmic N terminus (Fig. 1). The key feature of the MSL
proteins is the pore-lining TM helix (TM3 in EcMscS,
TM5 in AtMSLs), which is broken into two parts TM3a
(TMb5a) and TM3b (TM5b). TMb5a of AtMSLL1 is rich in
glycine and alanine residues, which is conserved in group
I MSLs and similar to EcMscS (Fig. 6) [39]. However, mul-
tiple phenylalanine residues are rich in TM5a of group III
MSLs, which is different to MSLs of group I and group II
[42]. Two non-charged residues Q112 and G113 located
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in the kink region of EcMscS and are essential for channel
conductance [16]. However, differential polar residues are
identified in the kink region of plant MSLs (Fig. 9). R326
and D327 in MSL1 group, R280 and E281 in MSL2/3
group, and G556 and N557 in MSL4-10 group, were iden-
tified and proved to be essential for channel conductance
[39, 42-44]. Differential numbers of hydrogen bonds
were formed between these differential residues, with

3, 2, 1, 1 pairs of hydrogen bonds were formed in Q-G,

R-D, R-E, and G-N respectively. These residues were pro-
posed to play important roles in modulating channel state

stabilities and transitions [39, 44]. AtMSL1 showed strong
rectification compared to AtMSL8/10, whether these
channel rectification differences were correlated with
pore-lining residues need to be tested in the future.

In addition, many group-specific residues were iden-
tified and proved to function in MSL molecular and
biological role (Fig. 9). The A324 and L329 residues are
conserved in MSL1 group and work like a switch for gat-
ing and closing of the channel [39]. However, these two
residues were not conserved in MSL group II and IIL
V273 and L277 of AtMSL2 are conserved in group II
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and are required for proper plastic localization of MSL2
[43]. F553 and 1554 residues in AtMSL10 are essential for
channel conductance and the stability of the open state of
the channel [42]. The F553 is conserved in MSL group III
and the higher plants of MSL group [, but in MSL group
IT it changed to leucine (Fig. 9). Seven phosphorylation
sites were identified in the N-terminus of AtMSL10 and
the phosphorylation regulation of these sites was critical
for its function in inducing cell death [31]. These phos-
phorylation sites were conserved in MSL10 orthologs of
Brassicaceae family, but not conserved in MSL group I
and II. Therefore, though the conserved pore-lining heli-
ces of MSLs are conserved, the essential residues vary
among different MSL groups, illustrating their differen-
tial channel activities and biological functions.

In plants, many MSL genes display different expression
patterns in different organs and under different stress
conditions. AtMSL2 and AtMSL3 colocalized in plastid
and function redundantly [22, 26, 27]. However, AtMSL3
displayed a higher expression than AtMSL2, indicating
the functional divergence between AtMSL3 and AtMSL2.
AtMSLS is specially expressed in pollen [28, 29], and

AtMSL10 and AtMSL9 are highly expressed in root [23,
30]. In rice, most MSL genes displayed specifical expres-
sion in reproductive stages [33]. In addition, many MSLs
displayed stress-responsive expression, indicating the
important role of MSLs in stress tolerance. For example,
AtMSL2 and AtMSL3 displayed high expression under
temperature and drought stresses, and AtMSLI was
increased under drought and waterlogging stresses [41].
In wheat, the majority of MSL genes were upregulated
under drought, heat and heat drought stresses. Under salt
stress, different MSL genes displayed different expres-
sion patterns, with MSL genes in group I were upregu-
lated while the majority of MSL genes in group II were
downregulated. These results indicate the different roles
of MSLs in different tissues and under different stress
conditions.

Methods

Data sources and sequence acquisition

A total of 176 species were selected and the corresponding
genome and proteome sequences were obtained from pub-
lic databases including NCBI (https://www.ncbi.nlm.nih.
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gov/), Phytozome v13. 0 (https://phytozome.jgi.doe.gov)
and Gigadb (www.gigadb.org) (Supplementary Table 1).
Two methods were used to identify MSL genes in
plants. First, HMMER search (E-value=1e—10) was
employed with the Hidden Markov Model profile of
MscS channel domain (PF00924) to search the local
Databases. Second, the amino acid sequences of Escheri-
chia coli MscS and Arabidopsis thaliana MSL members
were used to run a Basic Local Alignment Search Tool
algorithms (BLASTP) search against the protein database
with an E-value less than 107°. The putative MSLs were
further validated with online tools CDD (https://www.
ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi/) [45], HMM
(https://hmmer.org/) [46] and SMART (https://smart.
embl-heidelberg.de/) [47]. The transmembrane domain

(TM) of MSLs was predicted using TMHMM Server v
2.0 (http://www.cbs.dtu.dk/ servicess/TMHMM-2.0/).
Only sequences with PF00924 and TM domains were
retained. In total, 2113 MSL proteins were identified and
used for further analysis (Table S1).

Multiple sequence alignment, protein structure
predictions and phylogenetic analysis

Multiple sequence alignments (MSA) of MSLs were
performed with MAFFT software [48]. The putative
structures of AtMSL2-10 were predicted with I-TASSER
prediction server and AlphaFold using the AtMSL1
crystal structure as a template [39, 49]. The 3D models
were validated using ProSA [50]. The crystal structure
was visualized with open software PyMod [51].
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To explore the evolutionary origin of MSL proteins in
green plants and to elucidate the phylogenetic relation-
ship of MSLs in angiosperms, we constructed 3 phylo-
genetic trees based on taxonomy: Dataset I contains 7

non-angiosperms and 9 angiosperms, Dataset II contains
156 angiosperms, Dataset III contains 11 Brassicales spe-
cies (Table S3). The phylogenetic trees were constructed
based on the core amino acid regions corresponding to
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transmembrane domain 3 and the adjacent consensus
sequence of MSLs. The Bayesian trees were constructed
with MrBayes 3.2.1 using the fixed Whelan and Goldman
model with six Markov chains until the average standard
deviation of split frequencies was<0.05 (Dataset I tree:
600,000 generations, Dataset II tree: 700,000 generations
and Dataset IIII tree: 500,000 generations) [52]. The max-
imum likelihood (ML) phylogenetic tree was constructed
with IQ-TREE with the parameter ‘-m MFP -bb/alrt
1000’ and 1000 ultra bootstrap replicates [53].

Subcellular localization prediction, conserved motif

and gene structure analysis

The subcellular localization of MSLs was predicted
with Wolf PSORT (https://wolfpsort.hgc.jp). The exon—
intron structures were displayed through Gene Struc-
ture Display Server (GSDS) (http://gsds.cbi.pku.edu.
cn/index.php). Conserved motifs were predicted with
MEME (http://meme.nbcr.net/meme3/mme.html) [54].
6 motifs with a minimum and maximum length of 50
and 200 have been taken into account.

Synteny analysis

Homolog pairs between species and within a certain spe-
cies were identified using the all-to-all BLASTP method,
and syntenic blocks were inferred using MCScanX with the
default parameters [55]: E-value, 1e-10; BLAST hists, 5. The
syntonic map was displayed using CIRCOS with the puta-
tive duplicated genes were linked by the connection lines.
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