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Why different sugarcane cultivars show 
different resistant abilities to smut?
Comparisons of endophytic microbial compositions and metabolic functions in stems of 
sugarcane cultivars with different abilities to resist smut

Siyu Chen1†, Zhongliang Chen2†, Xinru Lin1, Xinyan Zhou1, Shangdong Yang1* and Hongwei Tan2* 

Abstract 

To elucidate the mechanisms underlying the resistance to smut of different sugarcane cultivars, endophytic bac-
terial and fungal compositions, functions and metabolites in the stems of the sugarcane cultivars were analyzed 
using high-throughput sequencing techniques and nontargeted metabolomics. The results showed that the levels 
of ethylene, salicylic acid and jasmonic acid in sugarcane varieties that were not sensitive to smut were all higher 
than those in sensitive sugarcane varieties. Moreover, endophytic fungi, such as Ramichloridium, Alternaria, Sarocla-
dium, Epicoccum, and Exophiala species, could be considered antagonistic to sugarcane smut. Additionally, the highly 
active arginine and proline metabolism, pentose phosphate pathway, phenylpropanoid biosynthesis, and tyrosine 
metabolism in sugarcane varieties that were not sensitive to smut indicated that these pathways contribute to resist-
ance to smut. All of the above results suggested that the relatively highly abundant antagonistic microbes and highly 
active metabolic functions of endophytes in non-smut-sensitive sugarcane cultivars were important for their relatively 
high resistance to smut.
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Introduction
Sugarcane smut is caused by Sporisorium scitamineum. 
It was first observed [1] in Natal, South Africa, in 1877. 
In 2007, smut became a global disease, affecting all sug-
arcane-producing countries and regions worldwide [2]. 

Sugarcane smut leads to systemic infection of the stem 
and changes in stem growth, leading to the production 
of cysts or whips [3]. Moreover, this fungus produces bil-
lions of winter spores, which affect plant tissues.

Sugarcane smut can spread rapidly through spores 
carried in the atmosphere [4]. In particular, susceptible 
crops that are severely infected are prone to produce 
many winter spores, which places high infection pressure 
on surrounding crops and is one of the important factors 
affecting the disease level in sugarcane planting areas [5]. 
Severe smut infection usually not only reduces the sugar 
recovery rate [6] but also decreases the purity and quality 
index of sucrose, leading to serious economic losses [7]. 
As resistant cane varieties could minimize the infectiv-
ity of pathogens [8], using resistant varieties is the most 
effective way to control diseases [9]. Studies have shown 
that cultivars sensitive to head smut are more likely to 
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produce large numbers of winter spores than insensitive 
cultivars and produce the spores earlier, and glycosides in 
bud scales are also related to the smut resistance of some 
varieties [10].

Most plants are colonized by endophytes [11, 12], and 
interactions between plants and microorganisms involve 
complex metabolic pathways, resulting in unique char-
acteristics of endophytes [13]. Plant-related microor-
ganisms can provide valuable nutrients or protective 
metabolites for the host, improving its adaptive advan-
tage against pathogens [14]. For example, endophytic 
microorganisms can produce antibiotics, plant hor-
mones, iron carriers, and solubilize phosphorus to pro-
mote plant growth [15, 16]. Additionally, endophytes can 
be used as biological control agents for systemic plant 
diseases Cook, 1993 [17]. Jayakumar et al. [18] and Gao 
et al. [19] found that endophytic microorganisms can be 
used as biological control agents for preventing smut. 
Among them, endophytic fungi can reduce the risk of 
smut infection [20, 21]. In addition, endophytes can also 
promote plant growth by regulating plant hormones or 
assisting plants in resisting external factors such as path-
ogens [22, 23]. The plant hormone signaling pathways 
associated with auxin, abscisic acid, salicylic acid and 
ethylene-related genes are relatively highly sensitive to 
smut [24]. Meanwhile, changes in microbial composition 
also lead to changes in microbial metabolic functions 
[25, 26]. For example, smut-resistant cane varieties were 
found to contain higher levels of total and free phenols 
and lower levels of total sugars and free amino acids [27].

Despite the long-standing and growing interest in the 
use of fungal and bacterial antagonists and in combat-
ing infectious plant diseases, little research has been 
conducted thus far on the nonchemical control of sug-
arcane smut [28]. Therefore, in this study, the differ-
ences in endophytic microbial communities, metabolites 
and metabolic functions in the stems of different smut-
resistant sugarcane cultivars were analyzed., i.e., (1) dif-
ferences in endophytic fungal and bacterial community 
structures among different sugarcane cultivars suscep-
tible to smut and (2) characteristics of metabolites and 
metabolic function of endophytic microorganisms in dif-
ferent smut-resistant sugarcane cultivars. This study will 
help elucidate the role of changes in endophytes and their 
metabolic functions in the smut susceptibility of different 
sugarcane varieties.

Material and methods
Field site description and experimental designs
The experiment was conducted at the Experimental Base 
of the Sugarcane Research Institute, Guangxi Academy 
of Agricultural Sciences, Longan County (107°598″E and 
23°637″N), Guangxi, China. Three insensitive sugarcane 

cultivars, GT29 (a), GT43 (b) and GT52 (c), and three 
smut-susceptible sugarcane cultivars, GT42 (d), GT49 
(e) and ROC22 (f ), were used in this paper for analysis 
(Fig. 1). Each sugarcane cultivar was examined in twenty-
five repeats. All the seedlings above were grown and 
managed under identical conditions.

Samples were collected after the sugarcane plants 
entered the elongation period, and 6 plant samples with 
consistent growth were randomly collected and mixed 
into biological replicates. Each variety was examined in 
triplicate. The collected samples were placed in a sealed 
sterile bag, labeled and sent back to the laboratory. A soft 
brush was used to rinse and wipe the stem samples with 
sterile water for 2 min to remove impurities on the sur-
face of the stems, and then the samples were washed with 
75% ethanol for 1 min and 1% NaClO solution for 3 min. 
Finally, all stems were washed with sterile water for 
0.5 min, dried using sterile paper and stored in a -80 °C 
freezer until DNA extraction.

Moreover, the soil properties at the experimental 
site were as follows: pH 5.68, organic matter content 
8.92 g·kg−1, total nitrogen content 0.55 g·kg−1, total phos-
phorus content 0.67 g·kg−1, and total potassium content 
7.51  g·kg−1. The levels of alkaline dissolved nitrogen, 
available phosphorus and potassium were 15.27 mg·kg−1, 
0.67 mg·kg−1, and 82.8 mg·kg−1, respectively.

Test methods
Analysis of endophytic microbial diversity
Total DNA extraction from the stem samples followed by 
PCR amplification and sequence determination was per-
formed by Shanghai Majorbio Biopharm Technology Co., 
Ltd. High-throughput sequencing was performed using 
the MiSeq platform.

Total DNA extraction was performed according to the 
instructions of the FastDNA® Spin Kit for Endophytic 
(MP Biomedicals, U.S.), and DNA concentration and 
purity were measured using a NanoDrop 2000 spectro-
photometer (Thermo Fisher Scientific, U.S.). PCR ampli-
fication was performed on an ABI GeneAmp® 9700 with 
the specific primers and sequence types shown in Table 1.

Illumina MiSeq sequencing was performed as fol-
lows: PCR products from the same sample were puri-
fied using the AxyPrep DNA Gel Extraction Kit (Axygen 
Biosciences, Union City, CA, USA) and mixed, followed 
by detection on and recovery from a 2% agarose gel. The 
recovered products were quantified using a Quantus™ 
Fluorometer (Promega, USA). Library construction was 
carried out using the NEXTFLEX® Rapid DNA-Seq Kit.

The PCR amplification process for the 16S rRNA gene 
was as follows: initial denaturation at 95  °C for 3 min, 
followed by three cycles of denaturation at 95  °C for 
30 s, annealing at 55 °C for 30 s, and extension at 72 °C 



Page 3 of 16Chen et al. BMC Plant Biology          (2023) 23:427  

for 45 s, a single extension at 72 °C for 10 min, and ter-
mination at 4  °C. DNA gel extraction kits from AXY 
(Axygen Biosciences, Union City, California, USA) 
were used according to the manufacturer’s instructions 
to extract and purify PCR products from a 2% agarose 
gel and quantify them by a quantum fluorimeter (Pro-
mega, USA). Sequence data processing involved the 
following steps: original 16S rRNA gene sequencing 
read demultiplexing, quality filtering with fastp version 
0.20.0, and merging with Flash version 1.2.7, using the 
maximum mismatch rate for the overlapping region in 

Fast P0.20.0. Uparse 7.1 was used for clustering opera-
tional taxonomic units (OTUs) at a similarity of 97%, 
and chimeric sequences were identified and deleted. 
RDP Classifier version 2.2 was used to classify and ana-
lyze the 16S rRNA sequences; the confidence threshold 
was 0.7, and the classification of each representative 
OTU sequence was analyzed [29].

Sequencing was performed using Illumina’s MiS-
eqPE250 and MiSeqPE300 platforms (Shanghai Major-
bio Bio-pharm Technology Co., Ltd.). Raw data were 
uploaded to the NCBI database for comparison.

Fig. 1 Appearance and morphological characteristics of different susceptible sugarcane cultivars

Table 1 Sequence type and primer sequences

Sequence type Primer name Primer sequence Length Sequencing platform

Bacterial 16SrRNA 799F 5′-AACMGGA TTA GAT ACC CKG-3′ 593 bp MiseqPE250

1192R 5′-ACG GGC GGT GTG TRC-3′
799F 5′-AACMGGA TTA GAT ACC CKG-3′ 394 bp

1193R 5′-ACG TCA TCC CCA CCT TCC -3′
ITS ITS1F 5′-CTT GGT CAT TTA GAG GAA GTAA-3′ 350 bp MiSeq PE300

ITS2F 5′-GCT GCG TTC TTC ATC GAT GC-3′
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Untargeted metabolomic assays and analysis
A 200 μL sample was accurately transferred to a 1.5 mL 
centrifuge tube; methanol and acetonitrile were mixed in 
a 1:1 ratio, and then 800 μL of this solution was added 
to the sample for extraction. After vortex mixing, the 
low-temperature ultrasonic extractor was set to 5  °C, 
and ultrasonic extraction was performed at 40  kHz for 
30 min. After extraction was completed, the sample was 
placed in a freezer at -20 °C for 30 min and centrifuged at 
4 °C for 15 min. After centrifugation, the supernatant was 
absorbed and dried with nitrogen. A mixture of acetoni-
trile and water at 1:1 was used as the compound solution; 
120 μL was absorbed and redissolved, and then vortex 
mixing was performed. After low-temperature ultrasonic 
extraction, the sample was centrifuged at 4 °C for 10 min, 
and the supernatant was absorbed and transferred to an 
injection vial with intubation. Ultrahigh-performance 
liquid chromatography tandem Fourier transform mass 
spectrometry was performed on an UHPLC-QExactive 
system (Thermo Fisher Scientific, USA) system for LC‒
MS detection. In addition, 20 μL of supernatant was 
removed from each sample and used as a quality control 
sample. The chromatographic conditions were as follows: 
the chromatography column used was an ACQUITY 
UPLCHSST3 (100 mm × 2.1 mm, i.d.1.8 μm; Waters, Mil-
ford, USA); mobile phase A was 95% water + 5% acetoni-
trile + 0.1% formic acid, and mobile phase B was 47.5% 
acetonitrile + 47.5% isopropanol + 5% water + 0.1% formic 
acid. The flow rate was set to 0.40 ml/min, the injection 
volume was 2 μL, and the column temperature was 40 
℃. The Majorbio cloud platform (https:// cloud. major bio. 
com) was used for multivariate analysis.

Statistical analyses
The data were statistically analyzed using Excel 2019 and 
Statistical Product and Service Solutions (SPSS) Statis-
tics 21, and the results are shown as the means with their 
standard deviations (mean ± SD). Online data analysis 
was performed using the free online Majorbio Cloud 
Platform (http:// www. major bio. com) of Majorbio Bio-
Pharm Technology Co., Ltd. (Shanghai, China). Meta-
bolic group data were analyzed using KEGG (www. kegg. 

jp/ kegg/ kegg1. html) developed by Kanehisa Laboratories 
[30–32].

Results
The Ace and Chao1 indices, which describe endophytic 
bacterial and fungal richness, and the Shannon and 
Simpson indices, which describe the endophytic bacte-
rial and fungal diversity, were not significantly different 
between the IS and SS sugarcane cultivars (Table 2).

To evaluate the extent of the similarity of endophytic 
bacterial communities between insensitive and sus-
ceptible sugarcane cultivars, unweighted principal 
coordinate analysis (PCoA) and partial least squares dis-
criminant analysis (PLS-DA) were performed (Fig. 2a-d). 
The results showed that the composition of endophytic 
bacteria and fungi in IS and SS sugarcane varieties was 
quite similar, but there were significant differences in 
community structure. Additionally, at the genus level and 
OTU level, the total number and unique number of bac-
teria and fungi in sugarcane stems of the IS variety were 
higher than those in stems of the SS variety (Fig. 2e-h).

The number of dominant endophytic bacterial phyla 
(i.e., relative abundances greater than 1%) in both insen-
sitive and sensitive sugarcane cultivars was 3.

The compositions of endophytic dominant bacteria in 
the stems of IS and SS cultivars at the phylum level were 
similar; however, their proportions were different. First, 
Proteobacteria (82.74%), Actinobacteriota (15.32%) and 
others (1.94%) were the dominant endophytic bacterial 
phyla of IS. In contrast, Proteobacteria (75.44%), Actino-
bacteriota (21.42%) and others (3.13%) were the domi-
nant endophytic bacterial phyla of SS (Fig. 3a).

The number of dominant endophytic bacterial genera 
(i.e., relative abundances greater than 1%) in IS and SS 
was 4 and 6, respectively. Quadrisphaera (13.54%) and 
Variovorax (1.15%) were the unique dominant endo-
phytic bacterial genera in the stems of SS. In contrast, 
IS has no unique dominant endophytic bacterial genera. 
Meanwhile, compared with SS, the proportions of Delftia 
(76.50%), Leifsonia (13.58%), and unclassified_o__Burk-
holderiales (1.75%) in IS increased markedly (Fig. 3c).

The number of dominant endophytic fungal phyla (i.e., 
relative abundances greater than 1%) in both insensitive 

Table 2 Endophytic bacterial and fungal diversity in insensitive (IS) and sensitive (SS) sugarcane cultivars

Data in the table are means ± SDs. Values followed by different lowercase letters indicate significant differences between endophytic bacteria in insensitive sugarcane 
(IS) and sensitive sugarcane (SS) cultivars (p < 0.05)

Treatment Treatment Shannon Simpson Ace Chao1 Coverage

Endophytic bacteria IS 0.93 ± 0.36a 0.70 ± 0.16a 386.90 ± 216.25a 371.08 ± 206a 0.99

SS 1.24 ± 0.87a 0.59 ± 0.26a 340.26 ± 109.32a 326.13 ± 122.68a 1.00

Endophytic fungi IS 2.78 ± 0.56a 0.18 ± 0.11a 156.09 ± 35.26a 160.35 ± 42.33a 1.00

SS 2.54 ± 0.43a 0.17 ± 0.09a 141.16 ± 55.28a 142.63 ± 56.67a 1.00

https://cloud.majorbio.com
https://cloud.majorbio.com
http://www.majorbio.com
http://www.kegg.jp/kegg/kegg1.html
http://www.kegg.jp/kegg/kegg1.html
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and susceptible sugarcane cultivars was 3. Meanwhile, 
although the compositions of the dominant fungal phyla 
did not significantly change between IS and SS, there was 
a difference in relative abundance. In particular, the pro-
portion of Ascomycota (86.05%) in IS increased signifi-
cantly (Fig. 3b).

Furthermore, the number of dominant endophytic 
fungal genera (i.e., relative abundances greater than 
1%) in IS and SS cultivars was 13 and 14, respectively. 

Alternaria (6.26%), Geastrumia (2.77%), Sarocladium 
(1.44%), Epicoccum (1.27%) and Exophiala (1.12%) were 
the unique dominant endophytic fungal genera in the 
stems of IS cultivars. In contrast, unclassified_c__Sor-
dariomycetes (1.03%), unclassified_o__Agaricales 
(1.53%), Curvularia (1.38%), Gibberella (1.92%), and 
unclassified_o__Capnodiales (2.32%) were the unique 
dominant endophytic fungal genera in the stems of SS 
cultivars (Fig. 3d).

Fig. 2 a PCoA of endophytic bacterial communities. b PLS-DA score plot of endophytic bacterial communities. c PCoA of endophytic fungal 
communities. d PLS-DA score plot of endophytic fungal communities. e Venn diagram analyses of endophytic bacteria at the genus level. f Venn 
diagram analyses of endophytic bacteria at the OTU level. g Venn diagram analyses of endophytic fungi at the genus level. g Venn diagram analyses 
of endophytic fungi at the OTU level. IS — insensitive sugarcane; SS — susceptible sugarcane



Page 6 of 16Chen et al. BMC Plant Biology          (2023) 23:427 

Fig. 3 a Compositions of endophytic bacterial communities at the phylum level. b Compositions of endophytic fungal communities at the phylum 
level. c Compositions of endophytic bacterial communities at the genus level. d Compositions of endophytic bacterial communities at the genus 
level. LEfSe analysis of significantly differentially abundant bacteria (e) and fungi (f) between insensitive (IS) and sensitive (SS) sugarcane cultivars
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A nonparametric factorial Kruskal–Wallis (KW) 
rank sum test and LEfSe analysis (LDA threshold of 2) 
were carried out to analyze the significant differences 
and the main contributing biomarker classes between 
insensitive and susceptible sugarcane cultivars.

As shown in Fig.  3e, the compositions of the endo-
phytic bacterial communities differed significantly 
in only the insensitive sugarcane cultivars. Flavobac-
teriales (order) and Desulfuromonadia (class) were 
enriched in the insensitive sugarcane cultivars only. As 
shown in Fig.  3f, the compositions of the endophytic 
fungal communities were significantly different in 
stems between IS and SS cultivars. For example, Saro-
cladium (genus), Monocillium (genus), Talaromyces 
(genus), Aspergillaceae (from family to genus), Cera-
tobasidium (genus), and Cutaneotrichosporon (genus) 
were enriched in the stems of IS cultivars. In con-
trast, Tremella (genus) was enriched in the stems of SS 
cultivars.

Based on the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) database, 23 functional types of endo-
phytic bacteria were detected between IS and SS accord-
ing to Clusters of Orthologous Groups (COG) functional 
classification. Although the functional types of stem 
endophytic bacteria were very similar between IS and SS, 
the 8 functional types of IS were stronger than those of 
SS. At the same time, the activity of 7 metabolic pathways 
in SS was higher than that in IS (Fig. 4a).

In addition, according to the EggNOG database, 10 
unique endophytic fungal COG functions were identi-
fied between IS and SS cultivars. In comparison with SS 
cultivars, IS cultivars exhibited more abundant functions 
of endophytic fungi. For example, Animal Pathogen-
Endophyte-Plant Pathogen-Wood Saprotroph (6.71%), 
Fungal Parasite-Undefined Saprotroph (1.55%), Animal 
Pathogen-Plant Pathogen-Undefined Saprotroph (1.45%), 
and Animal Pathogen-Undefined Saprotroph (1.39%) 
were the unique functional groups of IS. However, 
Orchid Mycorrhizal-Plant Pathogen-Wood Saprotroph 
(3.36%) was the only unique function of endophytic fungi 
in stems of SS. All of the above results indicated that 
the more abundant functions of endophytic fungi in the 
stems of IS cultivars could also be one of the reasons for 
their higher resistance to smut (Fig. 4b).

As shown in Fig.  5 a, b, the QC samples were well 
grouped, indicating that the bioanalytical quality and 
data quality were good. There were significant differences 
among stem exudates.

Based on the PLS-DA model, the variable importance 
in projection (VIP) score described the order of the abun-
dance of metabolites in stems between IS and SS culti-
vars. A higher VIP score could be considered an indicator 
of a higher abundance of metabolites.

For 30 most abundant metabolites, 5 metabolites were 
significantly upregulated and 25 metabolites were sig-
nificantly downregulated is the stems of IS cultivars com-
pared with SS cultivars. In particular, among the top five 
abundant metabolites, only cyrtominetin (VIP = 3.48) 
was significantly upregulated in the stems of IS cultivars 
compared to SS cultivars. In contrast, 6-({8,14-dihy-
droxy-17-methoxy-10-oxo-2-oxatricyclo[13.2.2.13,7]
icosa-1(17),3,5,7 (VIP = 3.92), 3,4,5-trihydroxy-6-{3-
hydroxy-4-[5-hydroxy-3-(3-hydroxy-3-methylbutyl)-
8,8-dimet (VIP = 3.34), (S)-edulinine (VIP = 3.25) and 
penicilloic acid (VIP = 3.21) were significantly downregu-
lated in the stems of IS cultivars compared to SS cultivars 
(Fig. 5c).

Thirty-one amino acid metabolites were identified 
from IS and SS. Among them, 15 were significantly differ-
ent between IS and SS. Among these metabolites, the lev-
els of N-acetylornithine, 3-isopropylmalate, gentisic acid, 
3-(3,4-dihydroxyphenyl)-2-oxopropanoic acid, 4-guanid-
inobutanoic acid and indole were significantly higher in 
the stems of IS cultivars than in those of SS. However, the 
levels of (S)-2-aceto-2-hydroxybutanoic acid, L-glutamic 
acid, N-epsilon-acetyl-L-lysine, vanillylmandelic acid, 
3-(2-hydroxyphenyl) propionic acid, 3-methyl pyruvic 
acid, L-dopa and L-glutamine were significantly lower in 
the stems of IS than in those of SS.

In addition, 30 species from carbohydrate metabolism 
were found in the stems of the IS and SS cultivars, 15 of 
which were found to be significantly different between 
the two. The levels of alpha-lactose, 6-phosphogluconic 
acid, deoxyribose 5-phosphate and aconitic acid were sig-
nificantly higher in the stems of IS cultivars than in those 
of SS. In contrast, the levels of propiolic acid, 2-pheny-
lethanol glucuronide, N-acetylmannosamine, 3-methyl 
pyruvic acid, beta-D-fructose 2-phosphate, levan, myo-
inositol, trehalose 6-phosphate, gluconolactone, D-glu-
carate and D-glucuronic acid were lower in the stems of 
IS cultivars than in those of SS. Moreover, 11 cofactors 
and vitamins were also identified in the stems of the IS 
and SS cultivars. Among them, the levels of niacinamide 
and trigonelline were significantly higher in the stems of 
IS than in those of SS. However, the level of maleic acid 
was significantly lower in the stems of IS than in those of 
SS (Table 3).

In addition, based on the KEGG database, all metabo-
lites derived from two smut-resistant sugarcane cultivars 
were classified into 14 secondary metabolic pathways. 
In the primary metabolic pathway, 122 metabolites were 
classified under Metabolism; 16 metabolites were clas-
sified under Environmental Information Processing; 
8 metabolites were classified under Genetic Informa-
tion Processing; and 3 metabolites were classified under 
Human Diseases (Fig. 6a).
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Topological analysis was carried out according to the 
number of metabolites contained in the metabolic path-
way. The p value was low and pathway influence factor 
was high between insensitive sugarcane and sensitive 
sugarcane, indicating that these 8 pathways changed 
markedly. Among these metabolic pathways, Arginine 
and proline metabolism, Pentose phosphate pathway, 
Phenylpropanoid biosynthesis, Tyrosine metabolism 
were significantly more abundant in insensitive sugarcane 
than in sensitive sugarcane. However, alanine, aspartate 
and glutamate metabolism, arginine biosynthesis and 

aminoacyl-tRNA biosynthesis were significantly less 
abundant than in insensitive sugarcane (Fig. 6b, c).

The correlation between endophytic microorganisms 
and the 20 most abundant metabolites was calculated 
and analyzed by using the Spearman correlation algo-
rithm and Bray–Curtis distance algorithm.

The fungi of Apiotrichum, Zasmidium and Ramichlo-
ridium were the common dominant fungi in stems of 
the IS and SS cultivars, among which Apiotrichum and 
Zasmidium were significantly negatively correlated 
with ethyl syringate; Ramichloridium was significantly 

Fig. 4 Relative abundance of Clusters of Orthologous Groups (COG) and fungal functional groups (FUNGuild) based on OTUs between insensitive 
(IS) and sensitive (SS) cultivars
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negatively correlated with the metabolites 1-linoleoyl-
glycerophosphocholine, LysoPE(18:2(9Z,12Z)/0:0) and 
PE(18:2/0:0).

The fungi of Exophiala and Sarocladium were the 
unique dominant fungi of IS, between which Exophiala 
was significantly positively correlated with the metab-
olite 3,4,5-trihydroxy-6-[(3-phenylpropanoyl)oxy]
oxane-2-carboxylic acid. Sarocladium was significantly 
negatively correlated with the metabolite L-2-amino-5-
(methylthio)pentanoic acid.

The fungi of unclassified_c__Sordariomycetes and 
Gibberella were the unique dominant fungi of SS, 
between which unclassified_c__Sordariomycetes was 

significantly positively correlated with the metabolite 
Ramiprilat and negatively correlated with the metabo-
lite 2-benzylpropanedioic acid.

The fungi of Gibberella were significantly nega-
tively correlated with the metabolites L-2-amino-5-
(methylthio)pentanoic acid, Cladophialophora, and 
Apiin (Fig. 7a).

In summary, metabolomics found that there were a 
large number of metabolites in the stems of IS and SS, 
and various metabolites were correlated with the endo-
phytic fungal flora in the stems but were not related to 
the endophytic bacteria (Fig. 7b).

Fig. 5 PLS-DA analysis of metabolites. a Liquid chromatography–mass spectrometry ESI( +); b liquid chromatography–mass spectrometry ESI(-). c 
Variable importance in projection (VIP) scores of metabolites in stems between IS and SS cultivars. VIP bar chart of metabolites on the right; 
the length of the bar indicates the contribution of this metabolite to the difference between the two groups, which is not less than 1 by default. The 
larger the value is, the greater the difference between the two groups. The color bar indicates the significance of differences in metabolite levels 
between the two groups of samples. A smaller p value is indicated by a darker color. * represents p < 0.05, * * represents p < 0.01, and * * * represents 
p < 0.001
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Discussion
S. scitamineum infection could cause a strong nonspe-
cific defense response in sugarcane and leads to sig-
nificant changes in the transcription of plant hormone 
gene signals [9, 33]. Resistant varieties are character-
ized by oxidative bursts, early tissue lignification and 
upregulation of chitinase and disease resistance genes. 

The early changes in the meristem and the late upregu-
lation of the lignin pathway in susceptible varieties eas-
ily lead to whiplash development [3]. As the chemical 
substances in traditional fungicides have difficulty pen-
etrating the waxy layer of sugarcane stems, they have 
difficulty reaching the inner part of sugarcane stems to 
exert effects [34]. In contrast, biological control instead 
of traditional chemical control could overcome the 

Table 3 Metabolites with significant differences between insensitive and sensitive sugarcane cultivars

IS insensitive sugarcane, SS sensitive sugarcane, RT retention time, M/Z an experimentally observed value. ESI + , positive ion mode; ESI − , negative ion mode

Metabolite IS/SS Lon (M/Z) RT (min) p value Positive/
negative

Amino acid metabolism

 (S)-2-aceto-2-hydroxybutanoic acid 0.76 164.09 5.76 < 0.05 ESI + 

 L-glutamic acid 0.41 130.05 0.50 < 0.05 ESI + 

 N-epsilon-acetyl-L-lysine 0.71 189.12 1.20 < 0.05 ESI + 

 N-acetylornithine 1.06 157.10 8.70 < 0.05 ESI + 

 Vanillylmandelic acid 0.43 181.05 3.20 < 0.05 ESI + 

 3-(2-Hydroxyphenyl)propionic acid 0.52 167.07 3.00 < 0.05 ESI + 

 3-Isopropylmalate 1.71 218.10 1.40 < 0.05 ESI + 

 4-Guanidinobutanoic acid 2.78 146.09 1.21 < 0.05 ESI + 

 3-Methyl pyruvic acid 0.71 103.04 0.91 < 0.05 ESI + 

 L-dopa 0.47 458.15 0.83 < 0.05 ESI + 

 Indole 1.16 118.07 3.45 < 0.05 ESI + 

 L-glutamine 0.48 145.06 0.72 < 0.05 ESI-

 Gentisic acid 1.09 153.02 2.99 < 0.05 ESI-

 3-(3,4-Dihydroxyphenyl)-2-oxopropanoic acid 4.53 437.08 2.78 < 0.05 ESI-

Carbohydrate metabolism

 Alpha-lactose 1.11 360.15 0.88 < 0.05 ESI + 

 6-Phosphogluconic acid 1.89 314.99 0.52 < 0.05 ESI + 

 Propiolic acid 0.76 71.01 0.87 < 0.05 ESI + 

 2-Phenylethanol glucuronide 0.22 619.20 5.04 < 0.05 ESI + 

 N-acetylmannosamine 0.64 186.08 2.39 < 0.05 ESI + 

 3-Methyl pyruvic acid 0.67 103.04 0.91 < 0.05 ESI + 

 Beta-D-Fructose 2-phosphate 0.10 261.04 0.81 < 0.05 ESI + 

 Levan 0.96 522.20 0.57 < 0.05 ESI + 

 Deoxyribose 5-phosphate 2.17 250.97 0.72 < 0.05 ESI-

 Myo-inositol 0.84 179.06 0.87 < 0.05 ESI-

 Trehalose 6-phosphate 0.21 421.07 0.76 < 0.05 ESI-

 Gluconolactone 0.58 223.05 0.53 < 0.05 ESI-

 D-glucarate 0.42 209.03 0.52 < 0.05 ESI-

 Aconitic acid 1.28 173.01 2.36 < 0.05 ESI-

 D-glucuronic acid 0.71 193.03 0.53 < 0.05 ESI-

Metabolism of other amino acids

 Propiolic acid 0.81 71.01 0.87 < 0.05 ESI + 

 L-tyrosine 0.93 180.07 2.10 < 0.05 ESI-

Metabolism of cofactors and vitamins

 Niacinamide 2.56 123.06 1.10 < 0.05 ESI + 

 Trigonelline 3.37 176.01 0.67 < 0.05 ESI + 

 Maleic acid 0.64 115.007 0.50 < 0.05 ESI-
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Fig. 6 a KEGG metabolic pathways of metabolites in stems of IS and SS cultivars. b Metabolic pathway enrichment analysis of differentially 
abundant metabolites. c Changes in metabolites in different metabolic pathways by KEGG enrichment analysis between insensitive (IS) 
and sensitive (SS) sugarcane cultivars
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Fig. 7 Correlation between metabolites and bacterial (a) and fungal (b) communities between IS and SS cultivars Heatmaps were used to analyze 
the Spearman correlation coefficient (rho value) and P value of metabolites and flora. Significant differences are indicated as follows: *0.01 < p < 0.05, 
**0.001 < p < 0.01, *** p < 0.001. The clustering at the top and left of the graph shows the metabolites of bacterial groups and the results 
of hierarchical clustering based on Euclidean distance, respectively
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limitations of the effectiveness of chemical fungicides 
against sugarcane smut [35].

Meanwhile, S. scitamineum infection affects sugarcane 
resistance-related metabolic pathways, such as plant‒
pathogen interaction, plant hormone signal transduc-
tion, phenylalanine metabolism, peroxisome, flavonoid 
biosynthesis, phenylpropane biosynthesis and ribosome. 
Moreover, in susceptible plants, a slow response and 
weak defense signals induce the spread of pathogens 
throughout the plant and damage the plant. The main 
difference between resistant and susceptible plants is 
how long the host can recognize pathogen invasion and 
respond to invasion [36–40].

Endophytic microorganisms are ubiquitous in plants 
and can promote plant growth and enhance plant stress 
resistance [41, 42]. The disease resistance of plants is an 
important factor driving changes in endophytic microbial 
communities [43, 44]. Endophytic microorganisms can 
induce plant self-defense mechanisms, reduce pathogen 
deposition and increase plant growth and adaptability 
[45, 46]. The self-defense function of plants can also be 
realized by chemicals produced by endophytic fungi [47].

Endophytes play an active role in plant disease resist-
ance and growth. In our experiment, we found that 
Leifsonia and unclassified_o_Burkholderiales were the 
dominant bacterial genera, and Ramichloridium was the 
dominant fungal genus, of IS cultivars; their abundances 
were all higher in IS cultivars than in SS cultivars. Mean-
while, Alternaria, Sarocladium, Epicoccum and Exophi-
ala were the dominant fungal genera of IS. Moreover, 
based on the LEfSe analysis, a significant contribution of 
Talaromyces in stems of IS varieties was also observed. 
Many studies have proven that Leifsonia species possess 
bacteriostatic activity [48, 49] and can encode anti-host 
reactive oxygen species, such as iron peroxidase and argi-
nase [50]. Burkholderiales species have strong inhibitory 
activity against the sugarcane smut pathogen [35]. Addi-
tionally, endophytic fungi, such as Sarocladium [51], Epi-
coccum [52, 53], Exophiala [54, 55], Apiotrichum [56], 
and Phaeosphaeriopsis [57] species, can protect hosts 
from pathogen attacks. Furthermore, Talaromyces can 
enhance plant resistance [58], and Ramichloridium can 
promote plant growth [59]. Additionally, salicylic acid 
[60, 61], ethylene [62] and jasmonic acid [61] all par-
ticipate in signaling pathways related to sugarcane smut 
infection. Resistant cultivars were shown to contain more 
salicylic acid [63], jasmonic acid [37] and ethylene [64] 
than sensitive cultivars. Alternaria can induce ethylene 
release [65] and increase salicylic acid content [66], while 
Sarocladium can promote jasmonic acid accumulation 
[67]. These findings are all consistent with our results.

In addition, PICRUSt functional prediction showed 
that among secondary metabolic pathways, the copy 

number of multifunctional genes in IS was significantly 
lower than that in SS. Moreover, the endophytic bacteria 
of SS had stronger signaling molecules and interactions. 
Furthermore, FUNGuild results also showed that Animal 
Pathogen-Endophyte-Plant Pathogen-Wood Saprotroph 
was the unique functional type of endophytic fungi in 
stems of IS. Therefore, the enrichment of resistant fungi 
and bacteria and higher levels of ethylene, salicylic acid 
and jasmonic acid in stems of smut-insensitive sugarcane 
cultivars are important mechanisms underlying their 
anti-smut properties.

Plant resistance is also related to metabolic pathways. 
For example, indole had an obvious effect on smut [68]; 
niacinamide also had certain antibacterial activity and 
was enriched in smut-resistant varieties [69]; gentisic 
acid had antibacterial activity [70]; and arginine had a 
significant positive effect on smut [71] and could be syn-
thesized from N-acetylornithine [72].

Additionally, our results also showed that metabolic 
pathways, such as the N-acetyl ornithine, gentisic acid, 
indole, aconitic acid and niacinamide pathways, were all 
significantly enriched in IS compared with SS cultivars. 
Meanwhile, the levels of glutamic acid increased and 
those of methionine decreased in the stems of IS com-
pared with SS cultivars. The abundances of arginine and 
proline metabolism, the pentose phosphate pathway, 
phenylpropanoid biosynthesis and tyrosine metabolism 
in smut-insensitive were significantly higher than those 
in SS. In contrast, the abundance of alanine, aspartate 
and glutamate metabolism was significantly lower in 
IS cultivars than in SS cultivars. This was similar to the 
results of previous studies. Furthermore, proline is an 
important substance in the regulation of plant physiol-
ogy; it can improve cell detoxification activity and pro-
tect plants from biological stress [68, 73]. Arginine and 
proline metabolism is beneficial to plant signal transduc-
tion and regulation under stress and can improve plant 
adaptability to the environment [74]. The methionine 
and pentose phosphate pathways also play an important 
role in antioxidant metabolism [75]. Tyrosine is the start-
ing point of phenylpropane biosynthesis in some fungi 
and bacteria [76, 77]. Additionally, phenylpropanoid bio-
synthesis is essential for plant survival, improving plant 
resistance and tolerance to biotic and abiotic stress and 
protecting plants from injury [78, 79].

Our results also showed that metabolic pathways, such 
as the N-acetyl ornithine, gentisic acid, indole, acousti-
cal acid and niacinamide pathways, were all significantly 
enriched in IS compared with SS cultivars. Meanwhile, 
the levels of glutamic acid increased and the levels of 
methionine decreased in the stems of IS compared with 
those of SS cultivars. In addition, the abundances of argi-
nine and proline metabolism, the pentose phosphate 
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pathway, phenylpropanoid biosynthesis and tyrosine 
metabolism in the smut-insensitive sugarcane cultivars 
were significantly higher than those in SS. However, in 
contrast, the abundance of alanine, aspartate and gluta-
mate metabolism in IS cultivars was significantly lower 
than that in SS. Moreover, some metabolites, such as 
flavonoids, are inhibitors of teliospore germination [80], 
and Apiin is a flavonoid [81]. Gibberella, one of the domi-
nant fungal genera enriched in stems of sugarcane cul-
tivars susceptible to smut, was significantly negatively 
correlated with Apiin. All of the above results indicated 
that the different metabolomic profiles in stems between 
smut-insensitive and smut-susceptible sugarcane culti-
vars are important reasons for their different responses 
to smut.

Conclusions
Higher abundances of endophytic bacteria and fungi, 
which produce ethylene, salicylic acid and jasmonic acid; 
the enrichment of fungi with anti-smut activity, such 
as Ramichloridium, Alternaria, Sarocladium, Epicoc-
cum and Exophiala; and higher activities of the pentose 
phosphate pathway, phenylpropanoid biosynthesis, argi-
nine and proline metabolism, and tyrosine metabolism 
in stems of smut-insensitive sugarcane cultivars are all 
speculated to be important reasons for the higher smut 
resistance of insensitive sugarcane cultivars. In contrast, 
Gibberella, a unique dominant fungal genus and one with 
strong alanine and aspartate and glutamate metabolism, 
present in stems of smut-susceptible sugarcane cultivars 
is also an important cause for the relatively low resistance 
to smut of these cultivars.
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