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Abstract 

Background Light-harvesting chlorophyll a/b binding proteins (Lhcb) play crucial roles in plant growth, development, 
and the response to abiotic stress in higher plants. Previous studies have reported that Lhcb genes were involved in the  
phytochrome regulation and responded to different light and temperature conditions in Poaceae (such as maize). However, 
the evolution and functions of Lhcb genes remains poorly characterized in important Rosaceae species.

Results In this investigation, we conducted a genome-wide analysis and identified a total of 212 Lhcb genes 
across nine Rosaceae species. Specifically, we found 23 Lhcb genes in Fragaria vesca, 20 in Prunus armeniaca, 33 
in Malus domestica ‘Gala’, 21 in Prunus persica, 33 in Rosa chinensis, 29 in Pyrus bretschneideri, 18 in Rubus occidentalis, 20 
in Prunus mume, and 15 in Prunus salicina. Phylogenetic analysis revealed that the Lhcb gene family could be classified 
into seven major subfamilies, with members of each subfamily sharing similar conserved motifs. And, the functions 
of each subfamily was predicted based on the previous reports from other species. The Lhcb proteins were highly 
conserved within their respective subfamilies, suggesting similar functions. Interestingly, we observed similar peaks 
in Ks values (0.1–0.2) for Lhcb genes in apple and pear, indicating a recent whole genome duplication event (about 
30 to 45 million years ago). Additionally, a few Lhcb genes underwent tandem duplication and were located across all 
chromosomes of nine species of Rosaceae. Furthermore, the analysis of the cis-acting elements in the 2000 bp 
promoter region upstream of the pear Lhcb gene revealed four main categories: light response correlation, stress 
response correlation, hormone response correlation, and plant growth. Quantitative expression analysis demon-
strated that Lhcb genes exhibited tissue-specific expression patterns and responded differently to low-temperature 
stress in Rosaceae species.

Conclusions These findings shed light on the evolution and phylogeny of Lhcb genes in Rosaceae and highlight 
the critical role of Lhcb in pear’s response to low temperatures. The results obtained provide valuable insights for fur-
ther investigations into the functions of Lhcb genes in Rosaceae, and these functional genes will be used for further 
fruit tree breeding and improvement to cope with the current climate changes.
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Introduction
Green plants possess the ability to convert light energy 
into chemical energy through photosynthesis, fueling 
essential cellular processes. Pear trees, for instance, 
rely on leaves for photosynthesis to generate energy 
after undergoing flowering, pollination, and fertiliza-
tion. Chlorophyll, a pigment involved in photosynthesis, 
captures and transfers light energy. Within the pho-
tosystem II (PSII) complex, there are various compo-
nents, including the peripheral light trapping (antenna) 
pigment-protein complex (LhcII), internal antenna 
pigment-protein complex (CP43 and CP47) [1, 2], reac-
tion center pigment-protein complex (PSII-RC), periph-
eral proteins such as 33  kDa and 17  kDa. The effective 
functioning of PSII depends on its ability to absorb light 
energy, a role fulfilled by Lhc proteins that serve as light 
traps during photosynthesis. The Lhc superfamily, exclu-
sive to plants, comprises four subfamilies: chlorophyll-
a/b-binding proteins (Lhc), light-harvesting-like (Lil), 
photosystem II subunit S (PsbS), and ferrochelatase II 
(FCII). The Lhc subfamily can be further classified into 
two groups, namely Lhca and Lhcb. The chlorophyll a/b 
binding domain (PF00504) is prevalent a member of the 
Lhc superfamily across various plant species. To date, 
Lhc superfamily members have been discovered in vari-
ous plants, including Arabidopsis [3], rice (Oryza sativa) 
[4, 5], kiwifruit (A. chinensis and A. eriantha) [6], tomato 
(Lycopersicon esculentum) [7, 8], and apple (Malus 
domestica) [9].

Apart from their light-capturing role, members of 
the Lhc family also contribute to the regulation of plant 
growth and development. For instance, the Lhcb gene 
in Arabidopsis had primarily a hand in seed germina-
tion and post-germination growth With regards to the 
plant hormone abscisic acid (ABA). The down-regulation 
of the AtLhcb1 gene in Arabidopsis resulted in slightly 
smaller leaves, lighter colors, and lowered chlorophyll 
content compared to the wild type [10]. In celery (Apium 
graveolens L), the up-regulation of the AgLhcb1 gene 
increased efficiency of photosynthetic, making it a poten-
tial reference for calculating photosynthetic rates [11]. 
Overexpression of the SaLhcb2 gene in Sedum alfredii 
led to increased shoot and root biomass [12]. In Hordeum 
vulgare L., five single nucleotide polymorphisms (SNPs) 
in the Lhcb1 gene were observably link with various agro-
nomic traits, including plant height, ear length, grains per 
ear, thousand-grain weight, flag leaf area, and leaf color 
[13]. Similarly, overexpression of the MdLhcb4.3 gene in 
apple increased chlorophyll content in Arabidopsis, while 
knockout mutants of the AtLhcb6, AtLhcb5, and AtLhcb4 
genes showed significantly lower chlorophyll content in 
Arabidopsis [9]. Moreover, the Lhc family was crucial 
for plant stress response and stress resistance. In Apium 

graveolens, the expression of Lhcb1 was up-regulated 
under cold, heat, salt, and drought stress conditions [11]. 
In Arabidopsis, the Lhcb1-6 genes respond to stomatal 
movement and participate in ABA signaling, influencing 
reactive oxygen species (ROS) homeostasis and contrib-
uting to plant stress resistance [14, 15]. Overexpression 
of the MdLhcb4.3 gene in transgenic Arabidopsis and 
apple callus enhanced their tolerance to drought and 
osmotic stress. In tobacco, overexpression of the LeLhcb2 
gene improved tolerance to low-temperature stress and 
reduced photo-oxidation of PSII [7]. Formaldehyde stress 
impacted the expression of photosynthetic genes Lhcb2.1 
and Lhcb3 in Arabidopsis.

The Rosaceae family encompasses a diverse range of 
fruit trees and ornamental flowers, playing a vital role in 
our daily lives. However, the flowering patterns of these 
plants are being affected by global climate change. One 
meteorological phenomenon known as "inverted spring 
cold" poses a significant threat by damaging fully devel-
oped flower buds and disrupting pollinator activity. Flow-
ers and well-formed buds are particularly susceptible to 
low temperatures, leading to reduced fruit-setting rates 
and substantial agricultural losses [16]. Previous stud-
ies have highlighted the crucial role of the Lhcb gene in 
Arabidopsis’s adaptation to low temperatures. However, 
limited information is available regarding the Lhcb gene 
family in Rosaceae. In this study, we aim to address this 
gap by identifying and characterizing members of the 
Lhcb gene family in nine Rosaceae species, including 
strawberry (Fragaria vesca), pear (Pyrus bretschneideri), 
apple (Malus domestica), peach (Pyrus bretschneideri), 
rose (Rosa chinensis), black raspberry (Rubus occidenta-
lis), Japanese apricot (Prunus mume), and Japanese Plum 
(Prunus salicina). We conducted a comprehensive analy-
sis of phylogeny, gene duplication, chromosome locali-
zation, and collinearity, promoter motif, and selection 
analysis. Additionally, we examined the expression pro-
files of Lhcb genes in various tissues of multiple Rosaceae 
species, along with their responses to low-temperature 
stress. Our findings will serve as a valuable reference for 
understanding the evolutionary relationships and biolog-
ical functions of the Lhcb gene family in Rosaceae.

Materials and methods
Recognition of representatives of the Lhcb gene family
Genome sequences and annotations for nine Rosaceae 
species were retrieved from the Rosaceae Genome 
Database (GDR: https:// www. rosac eae. org/). We 
employed the representative genomes as stand-
ards: Prunus persica ‘Zhongyoutao’ 14 Genome v1.0; 
Fragaria vesca Genome v4.0.a1; Malus x domes-
tica Gala haploid v1.0 genome; Rosa chinensis Old 
Blush homozygous Genome v2.0; Prunus armeniaca 

https://www.rosaceae.org/


Page 3 of 16Li et al. BMC Plant Biology          (2023) 23:484  

Marouch n14 Whole Genome v1.0; Rubus occidentalis 
whole genome assembly v3.0; Prunus mume Tortuosa 
Genome v1.0; Prunus salicina Zhongli No.6 Genome 
v1.0; Pyrus bretschneideri ’DangshanSuli’ Genome 
Assembly v1.1. Complete Lhcb protein alignments of 
Arabidopsis were obtained from The Arabidopsis Infor-
mation Resource (TAIR10: http:// www. Arabi dopsis. 
org/) and utilized for BLASTP searches targeting the 
protein sequences of nine Rosaceae species possess-
ing an e-value of 1e-10. In addition, a Hidden Markov 
Model search (HMMsearch) was employed to deter-
mine Lhcb members according to their respective 
HMM profile (PF00504) conserved domain. The inter-
section of genes acquired using these two methods was 
used as a screening criterion for candidate Lhcb genes. 
Each candidate gene was input to Pfam (http:// pfam. 
xfam. org/) to establish the existence of Lhcb domains. 
Moreover, the appearance of a chlorophyll A/B binding 
domain across candidate proteins was established and 
determined using the Pfam program [17]. The integrity 
of the domain was confirmed using CDD-search and 
interpro software. Syntenic blocks were identified using 
MCScanX software [18], and whole genome duplica-
tion (WGD) occurrences were detected upon gene 
duplications situated on syntenic blocks on duplicated 
chromosomes [19, 20].

Construction of a phylogenetic tree
A phylogenetic tree was constructed utilizing the entire 
amino acid sequences of Lhcb proteins spanning nine 
Rosaceae species. The sequence alignment of Lhcb pro-
teins was conducted using MUSCLE software (https:// 
www. ebi. ac. uk/ Tools/ msa/ muscle/), with standard set-
tings in MEGA 11 (http:// megas oftwa re. net). The phylog-
eny was generated through the use of a Neighbor–Joining 
(NJ) algorithm in MEGA11, and confirmed utilizing a 
maximum likelihood method (ML) with 1000 bootstrap-
ping repetitions. The final tree topology was presented 
using itol (https:// itol. embl. de/).

Gene organization, motif attributes, and exploration 
of cis‑regulatory elements
The arrangement of genes in the Lhcb family was ana-
lyzed using the Gene Structure Display Server (GSDS 
2.0, http:// gsds. cbi. pku. edu. cn/). By employing MEME 
(http:// meme- suite. org/ tools/ meme) [21], a total of 15 
conserved motifs were discerned within Lhcb proteins. 
Additionally, the PlantCARE databank (https:// bioin 
forma tics. psb. ugent. be/ webto ols/ plant care/ html/) was 
utilized to project cis-regulatory elements within the 
proximal 2000 bp upstream of Lhcb genes.

Chromosomal position, gene copying, and synteny 
evaluation
TBtools [22] was employed to extract the locations of 
Lhcb genes from the corresponding GFF file. MapChart 
software (https:// www. mapch art. net/) was used to visu-
alize specific chromosome genes. Thereafter, MCScanX 
software was utilized for the identification of duplication 
configuration of Lhcb using default settings. The synony-
mous (Ks) and nonsynonymous (Ka) mutation levels of 
the replicated Lhcb gene pairs were determined utiliz-
ing the TBtools software package. The Ks value is often 
used as a molecular timer to compute the duration since 
gene replication [23]. Nonsynonymous substitutions 
(Ka), Ks, and Ka/Ks were computed across six Rosaceae 
species with MEGA7.0. The Ka/Ks ratio served as a piv-
otal gauge for assessing the selective pressure on pro-
tein-coding genes. A Ka/Ks ratio surpassing 1 indicated 
the presence of positive selective pressure driving gene 
evolution and overall advantageous variability. A Ka/Ks 
ratio of precisely 1 denoted neutral selection, while genes 
with Ka/Ks ratios below 1 displayed purifying selection 
[24]. Additionally, the ClustalW 2.0 tool [25] was used to 
build nucleotide alignments of CDSs across gene families 
within the nine species, employing corresponding protein 
sequences. For the analysis of corresponding CDSs, the 
Jukes-Cantor approach was applied using pairwise dele-
tion. The Ks values for nine Rosaceae species were visual-
ized using the ‘ggplot2’ R package. The syntenic blocks of 
Lhcb were generated through MCScanX software using 
default settings, and Lhcb gene sets were detected using 
TBtools.

Transcriptome data investigation
Transcriptome data from 16 diverse strawberry tissues 
were obtained from strawberry genome resources (http:// 
bioin forma tics. towson. edu/ straw berry/ Defau lt. aspx) 
[26, 27] as well as the Genome Database for Rosaceae 
(GDR: https:// www. rosac eae. org/) (Fv.2.0a1). This data 
encompassed carpels, anther, cortex, embryo, leaf, ovule, 
pulp, bud, seedling, style, wall, microspore, flower, peri-
anth, and receptacle [28, 29]. The RNA-seq data were 
compiled through the use of the Illumina Hiseq2000 
and HiSeq4000 platforms. Clean reads were mapped to 
the F. vesca Genome v2.0.a1 [30] employing Bowtie2, 
and the gene expression was standardized as RPKM 
(reads per KB per million) values. Transcriptome data 
from seven different pear tissues, including buds, stems, 
ovaries, leaves, petals, sepals, and fruits, were accessed 
using the PearEXP databank (http:// www. peardb. org. 
cn/). These raw reads are available at the National NCBI 
under the study of project accession PRJNA498777 [31]. 
The expression levels of Lhcb gene family members from 
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strawberry and pear were obtained from the correspond-
ing expression data and presented utilizing the ‘pheat-
map’ R package.

To understand the response mode of the Lhcb gene 
family to low temperature, we downloaded the RNA-
seq data of buds under low-temperature stress at differ-
ent periods and three different tissues (PRJNA577143) of 
Prunus armeniaca [32] from the Sequence Read Archive 
(SRA: SAMN12791244 to SAMN12791303). The expres-
sion data of leaves and corolla under low-temperature 
environment from woodland strawberry (PRJNA700642) 
using Gene Expression Omnibus (GEO, https:// www. 
ncbi. nlm. nih. gov/ geo/) [33]. The base levels of reads from 
each gene across apricot and strawberry following read 
mapping were deposited into NCBI GEO with the acces-
sion numbers GSE138792 and GSE166374, respectively. 
RNA extraction from floral buds of five apricot genotypic 
representatives was conducted, followed by sequencing 
using an Illumina NextSeq 500. HISAT2 [34] was utilized 
to align the clean apricot RNA-seq reads to the reference 
genome “Marouch n14” of Prunus armeniaca OF[35]. 
The aligned reads were examined through HTSeq-count 
[36].

Phenotypic evalution and qPCR assay
Nine rootstock variety ’Douli’ pear seedlings with good 
growth and similar growth state were selected from the 
greenhouse in Zhejiang Agriculture and Forestry Uni-
versity. Then, each three seedlings were incubated in an 
artificial climate chamber at different temperatures (4℃, 
20℃, 30℃) for treatment. In addition, a pear seedling 
with similar growth was selected as CK (untreated con-
trol) group in the greenhouse and sampled simultane-
ously with the treatment groups. We amassed juvenile 
pear leaves over 5 durations: 0 h, 12 h, 24 h, 3 days, and 
5 days. Three leaves were collected at each time period as 

biological replicates, and immediately flash-frozen in liq-
uid nitrogen. The chlorophyll index of pear leaf from dif-
ferent heights of the pear plants was measured using the 
SPAD-502 Plus (Konica Minolta), and used the boxplot 
to presented the results. For qPCR assays, the entire RNA 
complement was obtained from samples and exposed to 
DNase for genomic DNA removal. This was followed by 
reverse transcription to synthesize the first cDNA strand. 
qPCR was conducted using a SYBR reaction mix. Tubulin 
was employed as an internal reference. Relative expres-
sion of the examined genes were determined through 
the use of biological triplicates, and expression was com-
puted utilizing the  2−ΔΔCT method. qPCR primers out-
lined in Additional file and Table S4 were engineered 
to increase the candidate gene sequence signals using 
NCBI web services (National Center for Biotechnology 
Information, https:// www. ncbi. nlm. nih. gov/ tools/ prime 
rblast/), with 55–60℃ of  Tm value and 40%-60% of GC 
content.

Results
Identification of Lhcb genes in nine species of Roseaceae
BLAST and hmmer methods were used to identify Lhcb 
homologous genes. Based on these methods, 212 com-
plete Lhcb protein sequences were identified from nine 
species, including 23 in strawberry (Fragaria vesca), 33 in 
apple (Malus domestica), 21 in peach (Prunus persica), 29 
in white pear (Pyrus bretschneideri), 33 in Chinese rosa 
(Rosa chinensis), 18 in black raspberry (Rubus occidenta-
lis), 15 in Japanese Plum (Prunus salicina), 20 in apricot 
(Prunus armeniaca), and 20 in Japanese apricot (Prunus 
mume) (Table 1). Among them, Fragaria vesca (23), Pru-
nus mume (20), Prunus persica (21), and Prunus armeni-
aca (20) had the same number of Lhcb genes. In addition, 
across the 9 species studied, strawberry (0.80‰) had the 
highest proportion of Lhcb genes, while plum (0.53‰) 

Table 1 Numbers of Lhcb genes in nine Rosaceae species

The version of the Rosaceae species genome data was downloaded from the data sources GDR: Genome Database for Rosaceae (https:// www. rosac eae. org/); The 
proportion of Lhcb genes is relative to their whole genome genes in nine Rosaceae species, respectively

Species name Chromosome number Release version Genome gene 
number

Identified
Lhcb genes

Proportion of 
Lhcb genes (‰)

F. vesca 7 GDR, v4.0a1 28,588 23 0.80

P. armeniaca 8 GDR, 27,643 20 0.72

M. domestica 17 GDR, v2 45,352 33 0.72

P. persica 8 GDR, v1 30,181 21 0.69

R. chinensis 7 GDR, v2.0a1 50,387 33 0.65

P. bretschneider 17 GDR, v1.1 42,180 29 0.69

R. occidentalis 7 GDR, v3.0 33,253 18 0.54

P. mume 8 GDR 37,521 20 0.53

P. salicina 8 GDR, v2.0 24,448 15 0.61

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/tools/primerblast/
https://www.ncbi.nlm.nih.gov/tools/primerblast/
https://www.rosaceae.org/
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had the lowest. The pear and peach Lhcb genes were 
used as examples for multiple sequence alignment. Our 
findings indicated that Lhcb genes in both pears and 
peaches contained a chlorophyll a/b binding protein 
domain (Fig. S1A). We next investigated homologous 
domain sequence characteristics through multiple align-
ment analysis using 283 homologous domain amino acid 
sequences for Lhcb repeats. We obtained the frequencies 
of the most common amino acids for each location across 
the Lhcb domain of nine Rosaceae representatives. The 
height of each letter in the sequence logo is proportional 
to the occurrence frequency of the corresponding base at 
that location, represented in bits. The letters in each posi-
tion are arranged from most conserved to least conserved 
(Fig. 1A). Our findings suggested that the basic region of 
the Lhcb domain consisted of 281 basic residues (includ-
ing the junction), with a few deletions or insertions. In 
the Rosaceae Lhcb family, Lhcb repeats consist of charac-
teristic amino acids, including a series of evenly distrib-
uted and highly conserved proline, glycine, and glutamic 
acid residues, indicating high amino acid conservation in 
the Lhcb domain between species in the Rosaceae fam-
ily. Among these highly conserved residues, some amino 
acids were changed less frequently. Through comparison 
to the Arabidopsis Lhcb gene family (Fig. S1B), we found 
that the amino acid distribution in the Lhcb domain of 
Rosaceae was nearly identical to Arabidopsis. Finally, we 
renamed the Lhcb gene according to the positional order 
on the chromosome (Table S1).

Phylogenetic tree and conserved motif of the Lhcb genes
To investigate the evolutionary relationships within the 
Lhcb gene family, a joint phylogenetic analysis was con-
ducted on the Lhcb proteins from across nine Rosaceae 
species (212 genes), Arabidopsis (17 genes), and cassava 
(23 genes) using an Neighbor–Joining (NJ) method in 
MEGA11. To confirm the reliability of the results, boot-
strapping was used for 1000 repeats, and the maximum 
likelihood method (ML) was also used for additional 
verification. In our generated phylogenetic trees, we 
uncovered members of the Arabidopsis Lhcb gene fam-
ily on each branch, indicating that gene expansion of the 
Lhcb family occurred prior to the origin of dicotyledon-
ous plants. Consistent with this classification of Lhcb 
proteins in Arabidopsis thaliana and Manihot esculenta, 
all Lhcb proteins were classified into seven distinct sub-
families, namely LhcbI, LhcbII, LhcbIII, LhcbIV, LhcbV, 
LhcbVI, and LhcbVII (Fig. 1B). Based on cluster analysis, 
we can conclude that the LhcbIII, LhcbV, and LhcbVII 
subfamilies are relatively conserved. Using our evolution-
ary tree, it can be determined that LhcbV and LhcbVII 
are encoded by a single gene, while Lhcb4 is encoded by 
several highly conserved genes. To uncover structural 

changes and possible functional divergences, the coding 
sequences for the Lhcb genes from the nine Rosaceae 
species were analyzed using MEME software, identifying 
a total of 15 conserved motifs. Nearly all gene members 
within the same clade have several motifs, indicating that 
the protein is conserved and may have similar functions. 
The conserved motifs may be involved in transcriptional 
regulation (Fig. 2A). The LhcbIV subfamily contained the 
highest number of motifs compared to other subfamilies. 
Motif 1 was widely distributed across all Lhcb proteins 
and located in the conserved Chlorophyll a/b binding 
domain (Fig. S2). Several specific motifs were found only 
in particular subfamilies. For example, motif 14 and motif 
15 were only present in the LhcbIV subfamily, suggesting 
that genes in LhcbIV have specific functions. To further 
explore the role of Lhcb genes in plant growth, we per-
formed functional prediction for each subfamily based 
on previous reports (Table S6). The results indicated that 
LhcbI has a vital role in regulating circadian rhythm, and 
LhcbII, LhcbIV, and LhcbV respond to stress. At the same 
time, LhcbIII is closely related to chloroplast biosynthe-
sis, and LhcbVI and LhcbVII influence plant growth and 
development.

Upstream 2000 bp cis‑regulatory element analysis 
of PbrLhcb
Cis-acting elements, including promoters, are cru-
cial for regulating transcription and gene expression. 
The upstream 2000  bp promoter sequences of the pear 
Lhcb gene family members were isolated using TBtools 
(Fig.  2B). PlantCARE analysis indicated the presence 
of 29 high-frequency cis-acting elements in the pear 
Lhcb promoter region. Among them, there were many 
response elements related to plant growth and develop-
ment, including meristem expression (CAT-box element), 
light response element (Box4, CTT-motif, ATCT-motif, 
Ae-box, G-box, Kata-motif ), circadian regulation, and 
endosperm expression (GCN4-motif ). Furthermore, the 
promoter region contains hormone response elements, 
including those involved in auxin response (Aux RR-core 
element, TGA-element element), gibberellin response 
(P-box, GARE-motif ), salicylic acid response (TCA-ele-
ment), and methyl jasmonate response (TGACG-motif, 
CGTCA-motif ). Additionally, stress response elements 
such as MYB binding sites, low-temperature response 
(LTR), defense and stress response elements (TC-rich 
repeats), and anaerobic induction (ARE) elements were 
also identified.

The promoter region of PbrLhcb19 contained the high-
est number of abscisic acid response elements and also 
contained the most light response elements. In con-
trast, the promoter region of PbrLhcb8 contained the 
most MeJA response elements. Most PbrLhcbs contain 
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more than one abiotic stress response element, and the 
number of MYB-binding sites in the PbrLhcb promoter 
region is relatively high. It has been reported that MYB 
transcription factors respond to several stresses such as 
hormones, drought, high temperature, and high salt. The 

Lhcb gene in pear has more light-responsive elements, a 
feature common to all Lhcb genes. This feature suggests 
that light-sensitive reactions have a significant regulatory 
effect on Lhcb gene expression. Additionally, gibberellin, 
abscisic acid, salicylic acid, and auxin response elements 

Fig. 1 A Sequence logos of Lhcb repeats are generated based on the full-length alignments of all Lhcb domains in nine roseceae species: Malus 
domestica, Prunus persica, Pyrus bretschneider, Prunus salicina, Prunus mume, Prunus armeniaca, Rosa chinensis, Fragaria vesca and Rubus occidentalis. 
B The phylogenetic tree of Lhcb genes from 9 Rosaceae species was clustered according to the classification of Lhcb gene in Arabidopsis. Different 
colored backgrounds represents different clusters. The blue circles represents bootstrap values
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Fig. 2 A Architecture of conserved protein motifs in Lhcb genes from nine Rosaceae species. B PbrLhcb upstream 2000 bp diagram of different 
functional cis-regulation elements
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were also identified. These results suggest that pear Lhcb 
genes are induced and regulated by stress and light regu-
lation, which may be crucial for coping with stress.

Distribution, expansion pattern, and collinearity analysis 
of Lhcb genes from nine Rosaceae species
Lhcb genes were located across all chromosomes in each 
of the investigated Rosaceae species, and the distribution 
of genes from chromosome to chromosome was uneven 
among the nine species (Fig. S3, S4). For example, in pear, 
Lhcb genes are primarily located on chromosomes 9 and 
17, with lower distribution on other chromosomes. In 
strawberries, there are the most Lhcb genes (11) on chro-
mosome 6. However, only one Lhcb gene was located on 
each chromosome 1, 2, and 4.

To further study duplication events throughout the 
evolutionary history of the Lhcb gene family using pear 
as a model, we analyzed the genome collinearity among 
nine Rosaceae species. Through analysis of the col-
linearity relationship between species, we determined 
that there is a high degree of collinearity between Pyrus 
bretschneider and Malus domestica but poor collinear-
ity between Pyrus bretschneider and Prunus armeniaca 
(Fig. 3). These results demonstrated that pear and apple 
were closely related and strongly constrained by natural 
selection [37–41]. In contrast, pear and apricot may have 
undergone structural variations such as chromosome 
rearrangement, resulting in poor collinearity [39]. Visu-
alization of collinearity between homologous Lhcb genes 
was performed to infer gene repetition events. Fifty-six 
duplicate gene pairs were identified in pear and apple, 
but only 28 homologous gene pairs could be matched 
between Pyrus bretschneider and other Rosaceae species, 

due to two shared WGD events occurring in apple and 
pear [42]. Additionally, the Ks values of the duplicate 
gene pairs varied between 0.10 and 1.94 (Table S3), indi-
cating that duplicated gene pairs had evolved at different 
rates. The Ka/Ks comparison results showed that PbrLh-
cbs and MdgLhcbs were subjected to purifying selection. 
Purifying selection should theoretically eliminate harm-
ful mutations in the population [43]. In woodland straw-
berry, the Ka to Ks ratio of FvLhcb11 was much higher 
than 1, suggesting that this gene was subject to strong 
positive selection and was rapidly evolving, which is of 
great significance for the evolution of the species. Many 
of the duplicated gene pairs experienced a WGD event, 
suggesting that WGD was critical in the expansion of 
Lhcb in Rosaceae (Fig. 4A). Simultaneously, we used the 
pear Lhcb gene family to analyze the intraspecies col-
linearity. The results indicated that the Lhcb gene was 
duplicated in series, and chromosome fragments were 
replicated. (Fig. 4B).

Lhcb gene response to biotic and abiotic stresses
We evaluated Lhcb gene expression patterns using 
several diverse transcriptome projects. We analyzed 
the Lhcb gene expression levels from 16 different 
strawberry tissues (bud, leaf, seedling, anther, wall, 
cortex, pith, microspores, carpels, perianth, flow-
ered, receptacle, style, embryo, ghost, and ovule), 
seven different pear tissues (bud, stem, ovary, leaf, 
petal, sepal, and fruit), as well as three other apri-
cot tissues (Fig.  5ABC). Results indicated that Lhcb 
exhibits tissue-specific expression. For example, in 
strawberries, many Lhcb genes were highly expressed 
in seedling bells, followed by the leaves. In pears, the 

Fig. 3 Collinearity analysis of Lhcb genes between eight rosaceae species and Pyrus bretschneideri. Syntenic relationships of Lhcb genes 
between Pyrus bretschneideri and Fragaria vesca, Malus domestica, Prunus persica, Prunus mume, Prunus armeniaca, Rosa chinensis, Rubus occidentalis, 
Prunus salicina 
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overwhelming majority of Lhcb genes were highly 
expressed in shoots and stems, followed by leaves 
and ovaries. Pbr002396.1 and Pbr010895.1 were not 
expressed in any of the six tissues. In apricots, the 
Lhcb gene was expressed in all three tissues, and the 
expression level in the buds was relatively high. Low 

temperature may influence the chlorophyll content 
of plants, and we, therefore, studied the effect of low 
temperature on PruLhcb expression level in Prunus 
armeniaca buds (Fig.  5D). We determined that there 
were differences in PruLhcb expression levels between 
buds treated with the low temperature at different time 

Fig. 4 A Distribution of Ks distance in nine species of Rosaceae. B The collinearity of the Lhc gene in pear, and the green lines represent duplicate 
gene pairs
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points (Fig.  5D). Moreover, we investigated the effect 
of low temperature on the expression level of FvLhcb 
in the leaves and corolla of varying strawberry varieties 
(’NCCR1363’ and ’Alta’) (Fig.  6). The results demon-
strated that FvLhcb genes responded differently to low 
temperatures, and there were differences across the 
different varieties. Under low-temperature stress, the 
expression of many FvLhcb genes in leaves decreased 
significantly. At the same time, gene FvH4_2g34470 
was up-regulated in both varieties, which may be due 
to the stress resistance of plants (Fig. 6A, C). However, 
Lhcb gene expression in NK (‘NCCR1363’ corolla) and 
AK (‘Alta’corolla) was distinct at low temperatures 
(Fig. 6B, D). This suggested that when the temperature 
decreased, the expression of chlorophyll a/b binding 
protein in leaves also decreased, influencing chloro-
phyll synthesis. It can also be concluded from these 
data that the genes are expressed in tissue-specific and 
species-specific manners.

Real‑time PCR analysis verifies the stress response of Lhcb 
genes
’Douli’ is an excellent rootstock for pear trees. In our 
study, ’Douli’ pear seedlings with good growth and simi-
lar growth state were selected from the greenhouse to 
incubate in an artificial climate chamber at different 
temperatures (4℃, 20℃, 30℃). We observed that 4℃ 
and 30℃ treatments cause the chlorophyll content to 
decrease in pear leaves, and a higher chlorophyll content 
was presented in 20℃ treatment, indicating the most 
suitable growing temperature for pear seedling and low 
temperature significantly (p-value = 0.001) inhibit chloro-
phyll synthesis. Untreated pear seedling (CK) was grow-
ing in the greenhouse with the most suitable temperature, 
light, and ventilation condition, thus it presented a high-
est chlorophyll content (Fig. 7A). To further explore the 
response of PbrLhcb at different temperatures, genes with 
high expression levels were identified from the leaf tissues 
identified by RNA-seq data, and qPCR was performed on 

Fig. 5 Expression profiles of Lhcb genes in different tissues and under different treatments. The bar at the right of each heatmap represents 
expression values. A Expression profiles of FvLhcb in 16 different tissues (bud, leaf, seedling, Anther, wall, cortex, pith, Microspores, carpels, perianth, 
flowered, receptacle, style, embryo, ghost, ovule). B Expression profiles of PbrLhcb in 7 different tissues (bud, stem, ovary, leaf, petal, sepal, fruit). 
C Expression profiles of PruLhcb in 3 different tissues(bud, sepal, petal). D The expression profiles of PruLhcb in buds treated at low temperature 
for different time points
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these selected genes. Under different temperature treat-
ments, the relative expression levels of the three genes 
were the most elevated at 20℃. The relative expression 
levels of Pbr021654 and Pbr022044 were highest at 4℃ 
and 30℃, respectively (Fig. 7B). We then conducted cold 
treatment on plants to identify gene expression levels at 
different time periods. The experimental data indicated 
that the expression of four genes exhibited a similar trend 
of first increasing followed by a decrease after exposure 
to cold treatment (Fig.  7C). According to the results, 

the up-regulation of photosynthesis-related genes over 
the course of 0–24 h may be related to the influence of 
environmental conditions within a short period of time 
and the adaptation of plants to a low-temperature envi-
ronment. Down-regulation over the course of 1 to 5 days 
may be due to increased sugar accumulation and super-
oxide dismutase and peroxidase activity due to longer 
cold treatments, which may inhibit the activity of these 
genes. Sugar-mediated inhibition of gene expression has 
been identified in genes associated with photosynthesis, 

Fig. 6 Heatmap of the expression profiles of Lhcb genes in strawberry in low temperature stresses. Leaves and corolla of two strawberry 
varieties were treated at low temperature. AL was the leaves of ’Alta’ (A), AK was the corolla of ’Alta’ (B), NL was the leaves of ’NCCR1363’ (C), NK 
was the corolla of ’NCCR1363’ (D). 0H represents the 0 h, 42D represents 42 days, R1-3 represents three repeats



Page 12 of 16Li et al. BMC Plant Biology          (2023) 23:484 

including carbonic anhydrase [44], chlorophyll a/b bind-
ing protein [45], plastocyanin, and Rubisco small subunit 
[46]. Our experiment is consistent with these observed 
trends.

Discussion
Light trapping chlorophyll a/b binding proteins (Lhc) are 
the most abundant protein complexes in thylakoid mem-
branes, which play an important role in plant growth and 
development, including capture and transformation of 
light during photosynthesis and oxidative stress [15, 19, 
20, 47, 48]. Lhc superfamily contains a variety of chloro-
phyll and carotenoids binding protein, playing an impor-
tant role in capturing light and protecting green plants 

and algae [2, 49–51]. In green plants, these proteins 
point to chloroplasts or plastids. Although the similar-
ity of the overall sequence may be low, but the charac-
teristic of proteins in this superfamily is the chlorophyll 
binding domain located in the thylakoid membrane 
[3, 19, 51]. So far, four related higher plant subfami-
lies of the Lhc superfamily have been described includ-
ing Lhc, PsbS, Lil, and FCII. Furthermore, a new family, 
RedCAP (red lineage chlorophyll a /b-binding-like), has 
been discovered in Rhodophyta and Bacillariophyta [51]. 
The Lil family is more primitive [50, 51]. OHP1 (Lil1) is 
one of the subfamilies, and cyanobacteria is one of the 
eukaryotes with a long evolutionary history. The pres-
ence of sequences similar to OHP1 in blue-green algae 

Fig. 7 Phenotypic determination at different temperatures and qRT-PCR assay of key candidate genes identified in the heatmap. A The growth 
observation of pear seedlings and chlorophyll index determination of leaf cultured at three different temperatures of the fifth day. A double asterisk 
means extremely significant. B The relative expression of PbrLhcb at different temperatures. C Relative expression of PbrLhcb at 4℃ at the different 
time points. CK is an untreated sample growing in the greenhouse with the suitable environmental conditions. The experiments were repeated 
three times. The error bars represent mean ± SE (n = 3). The abcd in the figure represents the significance of the difference



Page 13 of 16Li et al. BMC Plant Biology          (2023) 23:484  

indicates that the single helix protein is primitive. After 
primary endophytic HLIP The encoded plastids tend to 
transfer to the nuclear genome and are lost in the com-
mon ancestor of all botanical families [50, 51]. In the 
course of later evolution, it is possible that members of 
the light-harvesting family expanded through gene rep-
lication in order to adapt to the environment for better 
photosynthesis. This may have led to an expansion of the 
Lhc family. Lhcb is one of the members of the Lhc super-
family and has been identified and characterized in many 
plants. Several studies have demonstrated that each pro-
tein complex has specific functions under natural envi-
ronmental conditions [2, 3, 8]. In Arabidopsis, thermal 
energy dissipation is a central photo-protection mecha-
nism in response to environmental stresses [52–55]. The 
antenna system is involved in the light-energy dissipa-
tion [47, 56, 57]; previous studies on Lhcb4 and Lhcb6 
have demonstrated that they may take part in nonphoto-
chemical dissipation of superfluous energy [56, 58–60]. 
It has been established that Lhcb5 may be the key factor 
in the catalysis of qI quenching [14, 61–64]. It has been 
demonstrated that Lhcb6 deficiency may lead to severe 
oxidative damage [64]. Loss of Lhcb1 has been reported 
to induce a compensatory mechanism in plants, includ-
ing kinases and phosphatases, regulating photosynthetic 
ETC balance [65, 66]. The primary function of Lhcb3 is 
to modulate state transitions. Phosphorylation of the 
Light-Harvesting Complex II isoform Lhcb2 is crucial for 
state transitions. Compared to Lhcb1, the higher phos-
phorylation level and similar phosphorylation dynamics 
indicate that Lhcb2 is preferentially phosphorylated and 
is a better substrate for kinases in terms of accessibility 
or recognition. Lhcb protein has been extensively studied 
in Arabidopsis thaliana. Therefore, we aimed to infer the 
function of the Lhcb protein in the Rosaceae family based 
on the reported function of Lhcb in Arabidopsis thaliana. 
Gene duplication is a universal phenomenon taking place 
in plant evolution that allows for the accumulation of 
new functions [6, 9, 20, 28, 67, 68]. These duplicates fre-
quently occur in segmental, whole-genome, and tandem 
duplication events [69]. Within the Lhcb gene family, 
Lhcb7 is common in higher plants, encoding transcripts 
that are highly expressed in a subpopulation of mesophyl-
lal cells and associated with protein products homolo-
gous to pigment binding components in the photosystem 
(PSII) peripheral antenna complex [14, 15, 63, 69, 70]. In 
our study, we identified 33, 29, 21, 15, 20, 20, 33, 23 and 
18 Lhcb genes in apple, pear, peach, Japanese Plum, apri-
cot, Japanese apricot, Chinese rose, strawberry and black 
raspberry, respectively. In nine Rosaceae species, lineage-
specific replication was more effective in than species-
specific replication in Lhcb gene amplification. The study 
found that recent duplication of genome-wide replication 

events produced similar Ks peaks (0.1 to 0.2) in the Lhcb 
gene family of apple and pear. Additionally, a small num-
ber of Lhcb genes underwent tandem duplication and 
were located in across all chromosomes of nine Rosaceae 
species. Furthermore, Lhcb genes with Ka/Ks less than 
1 indicate that they may be developing to new func-
tions and being driven by selective pressure. In our study, 
phylogenetic tree demonstrated that the Lhcb family is 
divided into seven proteins (Lhcb1, Lhcb2, Lhcb3, Lhcb4, 
Lhcb5, Lhcb6, and Lhcb7). The Lhcb protein is conserved 
in a single clade and may have similar functions. The 
results of expression analysis showed that Lhcb gene was 
specifically expressed in different tissues after exposure 
to different stress. However, the differential expression 
patterns were mainly concentrated among different sub-
family genes. As the number of gene family members in 
a species increased, the differentiation of expression pat-
terns was more obvious [71]. The expression of the Lhcb 
gene family in strawberry was the highest at the seedling 
stage, followed by the leaf, and the lowest in the embryo. 
The expression of the Lhcb gene family was also varied 
in different tissues of the pear, with high expression in 
the bud and stem, followed by leaves, and no expression 
in the fruit. This distribution is consistent with the idea 
that Lhcb is expressed in the green portions of plants as a 
light-trapping pigment-binding protein gene, and chloro-
plasts are the light response sites in photosynthesis. Pho-
tosynthesis occurs predominantly in the leaves, buds, and 
stems of plants. Pbr029644.1 was highly expressed in the 
young stem of pears but sparingly expressed in the rest of 
the plant, suggesting that this gene may be required for 
photosynthesis in the stem. Analysis of Lhcb family mem-
bers responding to low-temperature stress demonstrated 
that the expression level of FvLhcb in leaves decreased 
under stress. In contrast, the expression level of FVLhcb 
in the corolla increased. Therefore, we hypothesized that 
when plants were stressed, they would preferentially pro-
gress in their life cycle. By qPCR, we determined that the 
expression of PbrLhcbs were the highest at 20℃, which 
was a relatively suitable temperature for plant growth. 
However, the lack of multiple median temperatures lim-
ited our determination of the optimal temperature for 
plant growth. Additionally, we observed relatively lower 
chlorophyll content of pear leaves in 4℃ and 30℃ treat-
mants, and a highest chlorophyll content was observed 
in 20℃ treatment, indicating low or high temperature 
enables the synthesis inhibition and rapid degradation of 
chlorophyll. According to qPCR analysis results at differ-
ent time periods, PbrLhcbs exhibited a trend of initially 
increasing and then decreasing. This may be due to the 
sudden changes in temperature and the requirement for 
plants to adapt to new environments. Over a short period 
of time, plants require a lot of energy, and PbrLhcbs 
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initially increases through chlorophyll synthesis, driv-
ing photosynthesis to provide the nutrients necessary 
for life. After adaptation to the new environment, gene 
expression was reduced but still higher than the previ-
ous untreated gene expression. This indicates that these 
genes are involved in stress response.

Conclusion
We identified Lhcb genes from nine Rosaceae species, 
and analyzed their phylogenetic tree, family expansion, 
cis-acting elements, and expression patterns of differ-
ent tissues and environmental stress, aiming to increase 
our understanding of the mechanisms underlying the 
evolution and responses to stress of Lhcb gene family 
in Rosaceae fruit crops. Sequences analysis showed that 
Lhcb genes are highly conservative in the Lhcb domain 
between species in Rosaceae. Through evolutionary anal-
ysis, it has been observed that the Lhcb protein is highly 
conserved within the Lhcb3 branch, suggesting poten-
tial functional similarities among its members. Analysis 
of the upstream cis-element results in the PbrLhcbs gene 
has revealed associations with stress response, hormone 
response, and light response. This indicates that the 
Lhcb gene family is indispensable in various aspects of 
plant growth and development. The expression patterns 
of the Lhcb gene family in the leaves of strawberry, pear, 
and Japanese Plum underscores its crucial roles in plant 
growth and development, and Lhcb genes were predomi-
nantly present in various plant tissues such as leaves, 
flower buds, leaf buds, tender stems, and seedlings, indi-
cating their importance in plant morphogenesis. Under 
low-temperature treatment, the synthesis of chlorophyll 
was suppressed and the expression of Lhcb genes ini-
tially increased and then decreased, indicating a potential 
involvement in stress response. These findings contribute 
to a better understanding of the biological function of the 
Lhcb gene family and will pave the way for further resist-
ance breeding of fruit crops.
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