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Abstract

Background Drought is most likely the most significant abiotic stress affecting wheat yield. The discovery

of drought-tolerant genotypes is a promising strategy for dealing with the world's rapidly diminishing water resources
and growing population. A genome-wide association study (GWAS) was conducted on 298 Iranian bread wheat lan-
draces and cultivars to investigate the genetic basis of yield, yield components, and drought tolerance indices in two
cropping seasons (2018-2019 and 2019-2020) under rainfed and well-watered environments.

Results A heatmap display of hierarchical clustering divided cultivars and landraces into four categories, with high-
yielding and drought-tolerant genotypes clustering in the same group. The results of the principal component analy-
sis (PCA) demonstrated that selecting genotypes based on the mean productivity (MP), geometric mean productivity
(GMP), harmonic mean (HM), and stress tolerance index (STI) can help achieve high-yield genotypes in the environ-
ment. Genome B had the highest number of significant marker pairs in linkage disequilibrium (LD) for both landraces
(427,017) and cultivars (370,359). Similar to cultivars, marker pairs on chromosome 4A represented the strongest LD
(?=0.32). However, the genomes D, A, and B have the highest LD, respectively. The single-locus mixed linear model
(MLM) and multi-locus random-SNP-effect mixed linear model (mrMLM) identified 1711 and 1254 significant marker-
trait association (MTAs) (-log10 P> 3) for all traits, respectively. A total of 874 common quantitative trait nucleotides
(QTNs) were simultaneously discovered by both MLM and mrMLM methods. Gene ontology revealed that 11, 18, 6,
and 11 MTAs were found in protein-coding regions (PCRs) for spike weight (SW), thousand kernel weight (TKW), grain
number per spike (GN), and grain yield (GY), respectively.

Conclusion The results identified rich regions of quantitative trait loci (QTL) on Ch. 4A and 5A suggest that these
chromosomes are important for drought tolerance and could be used in wheat breeding programs. Furthermore,
the findings indicated that landraces studied in Iranian bread wheat germplasm possess valuable alleles, that are
responsive to water-limited conditions. This GWAS experiment is one of the few types of research conducted

on drought tolerance that can be exploited in the genome-mediated development of novel varieties of wheat.
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Background

Providing 25% of the total proteins and calories in the
human diet and food supplies worldwide relies on wheat
(Triticum aestivum L.) [1-3]. Wheat grain annual pro-
duction and consumption reach 750 and 735 million tons,
respectively [4]. Global climate change adversely affects
wheat yield, raising concerns regarding food security in
the future. The genetic dissection of agronomic traits that
affects yield and stress tolerance is essential to improve
wheat yield [5-7]. The Food and Agriculture Organiza-
tion estimated that of the United Nations 13 million
tons of wheat were produced in Iran in 2022, which is
over 28% more compared to 10.1 million tons in 2021.
The quarterly global Crop Prospects and Food Situation
report’s forecast for 2023 production remains the same at
13 million tons. Drought stresses result in approximately
over 50% loss in agricultural productivity [8]. Drought is
the main concern for crop productivity in most wheat
cultivation areas in Iran. In Iran, approximately 6 million
hectares of arable lands have been assigned to wheat cul-
tivation in 2020 [8]. Iran is located in a semi-dry region
where end-season drought stress severely affects wheat
growth [8].

Drought events adversely affect crop productivity by
disrupting a wide range of biochemical/physiological
functions on a global scale. Water deficit stress is the
most severe environmental stress, limiting plant growth
and development worldwide [2, 9]. Drought tolerance
refers to the capability of plants to grow, develop, and
produce a harvestable yield in the absence of water. [10,
11]. Screen and use of the available genetic resources
of crop plants can help to alleviate the impact of cli-
mate change on agricultural productivity in arid and
semi-arid regions [2, 12, 13]. Understanding how plants
adapt to drought stress is crucial for developing new and
improved methods to increase drought-tolerant plants
[14].

Drought tolerance indices (DTIs) have been widely
used for identifying compatible genotypes, by evaluat-
ing their performance under non-stressed and stressed
environments [15, 16]. In the past, the tolerance index
(TOL), geometric mean productivity index (GMP), stress
tolerance index (STI), and stress susceptibility index (SSI)
have all been employed for genotype selection [15]. The
advancement of genetics and genomics has made it pos-
sible to decipher the genetic elements that control agro-
nomic traits, as well as to determine their chromosomal
locations and thus to identify QTLs in crops, including
wheat [13, 17].

Wheat breeding programs need to use innovative
technologies to explore the genetic basis of complicated
quantitative traits [18]. The genome-wide association
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mapping (GWAS) technique is an efficient approach to
dissect the genetic basis of complex traits by genotyping
a large number of accessions with multiple single nucleo-
tide polymorphisms (SNPs) and testing the association
between SNPs and agronomic traits [19]. GWAS estab-
lishes a relationship between genotype and phenotype
based on an assumption that linkage disequilibrium (LD)
has developed within a population over several genera-
tions [20, 21]. The use of association mapping has been
successful in evaluating several agronomic character-
istics in plants/crops, including alfalfa [22], sorghum
[23], maize [24], soybean [25], wheat [8], and rice [26].
A meta-analysis was conducted to identify the most sta-
ble QTLs for grain yield (GY) and grain quality traits
in wheat [27]. The results revealed that 449 QTLs were
successfully projected onto the genetic consensus map
which condensed to 100 Meta-QTL (MQTLs) distributed
on wheat chromosomes. The QTLs of thousand kernel
weight (TKW) were frequently associated with QTLs
for GY and grain protein content with co-localization
occurring at 55% and 63%, respectively [27]. Meta-QTL
analysis for drought tolerance was undertaken in bread
wheat to identify consensus and robust MQTLs using
340 known QTLs from 11 earlier studies; accordingly, 13
MQTLs located on 6 chromosomes (1D, 3B, 5A, 6D, 7A,
and 7D) were identified, with a maximum of 4 MQTLs
on chromosome 5A. The in-silico expression analysis of
these 228 cyclic glucans (CGs) allowed the identifica-
tion of 14 important CGs, with +3 to —8 fold change in
expression under drought (relative to normal conditions)
in a tolerant cv. named TAM107 [28].

Our study used a collection of agronomic traits and
drought tolerance indices between Iranian wheat varie-
ties and landraces to identify significant SNP loci asso-
ciated with drought-tolerance traits through a GWAS,
using the MLM and mrMLM. The study further aimed
to explore candidate genes for drought-resistance traits
in bread wheat and to better understand the molecular
mechanisms of the drought adaptation of bread wheat
in order to facilitate the cultivation of drought-tolerant
varieties.

Results

Phenotypic data summary

The box plots of wheat landraces and cultivars are dis-
played in Fig. 1. Compared to a normal situation, the
mean of all traits decreased under stress in both culti-
vars and landraces. Based on the data distribution, there
was considerable diversity in wheat accessions regard-
ing agronomical properties. The variance was stronger
in native populations. In both moisture conditions, the
mean of all traits was lower in landraces than in cultivars.
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Fig. 1 Box-plot representation of the distribution for grain yield (A), grains number per spike (B), thousand kernel weight (C) and spike weight (D)
for Iranian landraces and cultivars in the well-watered and rain-fed environments

The traits GY, GN, TKW, and SW in the normal envi-
ronment exhibited the highest significant, positive
association with the drought tolerance index MP. How-
ever, in the rain-fed environment, the mentioned traits
had the strongest significant, positive connection with
the drought tolerance index HM (Fig. 2).

Clustering analysis

The heatmap was created using the average of agronomic
features as well as a variety of drought tolerance indices
(DTIs). Our purpose in grouping genotypes was to iden-
tify genotypes with common characteristics in terms of
thousand kernel weight, grains number per spike, spike
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Fig. 2 Correlation coefficients between GY,,,, GYgr and various drought tolerance indices (A), GNyy,. GNge and various drought tolerance indices
(B), TKWyy, TKWge and various drought tolerance indices (C) and SWy, SWge and various drought tolerance indices (D) for Iranian landraces

and cultivars wheat in the well-watered and rain-fed environments. Abbreviations: GY, grain yield; GN, grains number per spike; TKW, thousand
kernel weight; SW, spike weight; WW, well-watered; RF, rain-fed; TOL. tolerance index; MP, mean product; GMP, geometric mean product; STI, stress
tolerance index; ATl, abiotic stress tolerance index; SSI, stress susceptibility index; DI, new drought resistance index; HM, harmonic mean

weight, and grain yield. Heatmap and clustering wheat
accessions classified genotypes into four groups based
on GYyn, GYgp and DTIs (Fig. 3a). Group I contains
66 high-yielding genotypes (32 landraces and 34 cul-
tivars). Further, Group II contains 34 genotypes with
average-to-high yields (22 landraces and 12 cultivars),
and Group III contains 179 genotypes with average-to-
low yields (136 landraces and 43 cultivars). Finally, Group
IV contains 19 low-yielding (18 landraces and 1 cultivar).

Wheat genotypes were split into four categories using
the GNyw, GNgp and DTIs. Based on the results, 48
(27 cultivars and 21 landraces), 73 (20 cultivars and 53
landraces), 127 (38 cultivars and 89 landraces), and 50
(5 cultivars and 45 landraces), genotypes were found in
the first, second, third, and fourth groups, respectively
(Fig. 3b). Clustering and heatmap based on TKW .y,
TKWy, and DTIs were used to separate wheat acces-
sions into four groups. The first and second groups
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Fig. 3 Hierarchical clustering and heatmap based on GYy,,, GY and various drought tolerance indices (A), GNy, GNge and various drought
tolerance indices (B), TKW,yy, TKWge and various drought tolerance indices (C) and SWyy,y, SWge and various drought tolerance indices (D) for Iranian
landraces and cultivars wheat in well-watered and rain-fed environments. Abbreviations: GY, grain yield; GN, grains number per spike; TKW,
thousand kernel weight; SW, spike weight; WW, well-watered; RF, rain-fed; TOL. tolerance index; MP, mean product; GMP, geometric mean product;
STI, stress tolerance index; ATI, abiotic stress tolerance index; SSI, stress susceptibility index; DI, new drought resistance index; HM, harmonic mean

consisted of 70 genotypes with a high TKW (22 cultivars
and 48 landraces), and 49 genotypes with a medium-to-
TKW (21 cultivars and 28 landraces), respectively. More-
over, the third and fourth groups contained 93 genotypes
with a medium-to-low TKW (68 landraces and 25 culti-
vars), and 86 genotypes (22 cultivars and 64 landraces)
with a low TKW (Fig. 3c), respectively. Wheat genotypes
based on the SWyy, SWrg and DTIs were classified into
four groups; the I, I, III, and IV groups consisted of 53
(28 landraces and 25 cultivars), 74 (43 landraces and 31
cultivars), 121 (92 landraces and 29 cultivars), and 50

genotypes (45 landraces and 5 cultivars), respectively
(Fig. 3d).

Principal component analysis (PCA) for drought tolerance
indices

For the selection of superior genotypes based on the
environment, the responses of all accessions were evalu-
ated with a PCA. The results of PCA for DTIs (based on
GY) showed that 65.2% and 34% of the variance were
explained by the first and second components, respec-
tively. The attributes GYyy, GYge, MP, GMP, STI, and
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HM had direct associations with PC1. The PC2 had a
positive correlation with the SSI, TOL, and ATI indices,
whereas the DI index had a negative correlation with the
PC2. Genotypes-based PCA revealed that several geno-
types (623417, 627299, 628189, 627460, 626855, 622356,
623344, 623109, and 624944, BAM, ADL KARIM,
AZARE2, CHAMRAN2, PISHGAM, and FALAT cul-
tivars) had the highest GY in both rain-fed and well-
watered environments (Fig. 4a). Nonetheless, selecting
genotypes based on the MP, GMP, HM, and STI indices
can help achieve high yield genotypes in the environment.
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The above explanations are also applicable to the other
attributes of GN, TKW, and SW (Fig. 4b, c, d).

Analysis of linked single-nucleotide polymorphisms (SNPs)
Among the 566,439,207 reads identified in eight Ion
Proton runs, 458,363,607 (about 81%) were high-quality
barcoded ones. Eventually, 133,039 unique SNPs were
identified after removing duplicate reads. A total of
43,525 SNPs were detected across all 21 wheat chromo-
somes after imputation and discarding those with >20%
missing values,>10% heterozygosity, and<5% minor
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Fig. 4 Principal component analysis of Iranian wheat germplasm exposed to well-watered irrigation and rain-fed environments using PC1 and 2.
Biplot for GY,y, GYgr and various drought tolerance indices (A), Biplot for GNyy,, GNg and various drought tolerance indices (B), Biplot for TKW
TKWyg and various drought tolerance indices (C), and Biplot for SWy,, SWgr and various drought tolerance indices (D). Abbreviations: GY, grain
yield; GN, grains number per spike; TKW, thousand kernel weight; SW, spike weight; WW, well-watered; RF, rain-fed; TOL. tolerance index; MP, mean
product; GMP, geometric mean product; STI, stress tolerance index; ATl, abiotic stress tolerance index; SSI, stress susceptibility index; DI, new drought

resistance index; HM, harmonic mean
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allele frequency. In addition, a set of 43,525 imputed
SNPs was obtained using the W7984 reference genome,
and these SNPs were used to estimate genetic diversity.
Overall 15,951, 21,864, and 5,710 SNPs were mapped to
the A, B, and D genomes, respectively, accounting 36.7%,
50.2%, and 13.1% of the total SNPs, respectively (Fig. 5).
The highest and lowest numbers of SNPs were located on
3A (4034 SNPs) and 4D (270 SNPs), respectively.

Population structure and kinship matrix

The number of clusters (K) and subpopulations (AK)
was plotted against each other to determine the appro-
priate number of subpopulations. Three subpopulations
were observed as the strongest AK value at K=3. Three
subpopulations of 298 accessions were created using the
structure software, S-I, S-II, and S-III (Fig. 6a). S_I con-
tained 113 genotypes (107 landraces and 6 cultivars). Fur-
thermore, S_II encompasses 111 genotypes (97 landraces
and 14 cultivars), and S_III consists of 74 genotypes (4
landraces and 70 cultivars) (Fig. 6b). According to a PCA
based on molecular markers, the first and second compo-
nents explain 16.9% and 6.3% of the total genetic variance
between wheat accessions. This study could distinguish
landraces from cultivars favorably. In the Iranian wheat
landraces, a population structure was found with 30.5%
genetic diversity, accounting for the first five eigenvalues.
The selection effects in breeding programs are considered
the reasons for such a genetic separation (Fig. 6¢). Heat-
map analysis using the kinship matrix for Iranian geno-
types is illustrated in Fig. 6d. Clustering results identified
two subgroups of native populations. Using imputed
markers, we could also separate cultivars and landraces
by utilizing the nearest neighbor clustering (Fig. 6e).

Linkage disequilibrium (LD)

The LD decreased with increased distances between SNPs
and varied between and within chromosomes. There
were 1,858,425 markers with *=0.211 with varieties,
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out of which 700,991 (37.72%) had significant linkages at
P<0.001. The majority of significant marker pairs were
located at a distance of<10 cM, based on our observa-
tions. An analysis of landraces found 1,867,575 markers
with 7*=0.182, of which 847,725 (45.39%) displayed sig-
nificant linkages at P<0.001. Chromosome 4A marker
pairs also demonstrated the strongest LD (*=0.368).
Most marker pairs with statistical significance were
located at distances of<10 cM. Genomes B and D had
the most and least marker pairs (575,681 and 113,374),
respectively (Fig. 7, Supplementary 1 Table 1).

Single-nucleotide polymorphisms for agronomic traits

and various drought tolerance indices

In total, 477 significant marker pairs (MTAs) were identi-
fied for GY and related stress tolerance indices [-logl0
P> 3] by using MLM approaches. Of the total number of
MTAs in the MLM method, 197, 241, and 39 MTAs were
assigned to genomes A, B, and D, respectively. Using
the MLM method, the number of significant MTAs for
GYyny» GYgp TOL, MP, GMP, STI, ATI, SSI, DI, HM,
PCA1, and PCA2 traits were 57, 30, 69, 30, 25, 30, 59,
44, 32, 22, 30, and 49, respectively (Fig. 8a). The number
of significant SNPs based on GN, TKW, SW, and stress
tolerance indices associated with them were 217, 346,
and 214, respectively. Drought tolerance indices for GN,
TKW, and SW traits led to the discovery of 81, 79, and
102 significant SNPs for genome A, as well as 125, 200,
and 83 significant SNPs for genome B. Additionally, 11,
67, and 29 significant SNPs were found for genome D,
respectively. GN, TKW, SW, and stress tolerance indi-
ces associated with them led to the discovery of 81, 79,
and 102 significant SNPs for genome A. In addition, for
genomes B and D, 125, 200, and 83 as well as 11, 67, and
29 significant SNPs were found, respectively (Fig. 8b,c,d).
SNPs with P values<1073 and<10~® (black and red) are
highlighted in the Manhattan circle plot (Fig. 9).

@A genome @B genome @D genome
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Fig. 6 Determination of subpopulations number in wheat genotypes based on AK values (A), A structure plot of the 298 wheat genotypes
and landraces determined by K=3 (B). Principle component analysis (PCA) for a total of 298 Iranian bread wheat accessions (C). Cluster analysis

using Kinship matrix of imputed data for Iranian wheat accessions (D). The dendrogram of Neighbor-Joining clustering constructed using 43,525
SNPs and 298 Iranian wheat accessions (E)

The mrMLM method discovered 233, 294, and 50 sig- GYgp TOL, MP, GMP, STI, ATI, SSI, DI, HM, PCA1l,
nificant SNPs for GY v, GYgp DTIs, PCAL, and PCA2 and PCA2 had 48, 22, 97, 15, 20, 21, 85, 84, 47, 17, 20,
in genomes A, B, and D, respectively. Further, GYy,, and 101 significant markers, respectively. The number
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of important SNPs based on GN, TKW, SW, and asso-
ciated stress tolerance indices was 367, 371, and 396,
respectively (Fig. 10). SNPs with P values <10~ and <107
(black and red) are highlighted in the Manhattan circle
plot (Fig. 11).

Using 43,525 SNPs and a significant value of -logl0
(P>5), MLM and mrMLM models identified a total of
67 and 24 MTAs for yield attributes and DTIs, respec-
tively. There were a total of 26, 36, and 5 MTAs based on
MLM, as well as 4, 20, and zero MTAs based on mrMLM,
respectively, for genomes A, B, and D (Table 1).

Gene ontology

The markers with the highest significance (P value <0.0001)
and pleiotropic impact were investigated thoroughly. Based
on GO for DTIs for GN, TKW, and SW traits, 11, 6, 18, and
11 markers containing overlapping genes were identified,
which are contained in important molecular and biologi-
cal processes. Several biological and molecular processes
were attributed to some of the discovered MTAs, includ-
ing defense response, glycolytic process, lipid biosynthetic
process, lipid metabolic process, fatty acid biosynthetic
process, and response to wounding. The other processes
were carbohydrate metabolic process, protein binding,
ATP binding, nucleic acid binding, DNA binding, zinc ion

binding, oxidoreductase activity, sulfotransferase activity,
lipid binding, RNA binding and DNA binding (Table 2).
Different pathways were found through rice reference
genomes, including ascorbate and aldarate metabolism
(Fig. 12a), biosynthesis of amino acids (Fig. 12b), oxidative
phosphorylation (Supplementary 1 Fig. 1), fatty acid elon-
gation (Supplementary 1 Fig. 2), and metabolic pathways
(Supplementary 1 Fig. 3).

Discussion
It is possible to examine how GY is affected under normal
and drought conditions by using DTIs to select optimal
genotypes. DTIs STI, GMP, MP, and HM are key indices
for screening high-yielding genotypes in different mois-
ture conditions [29, 30]. The previous study also demon-
strated that STI is a useful parameter for distinguishing
high-yield genotypes growing in both high-yielding and
drought-tolerant environments [31-33]. The MP, GMP,
STI, and HM parameters were related to GY. According
to Ravari et al. [34] YSI, GMP, ST1, and HM parameters
were all well associated with the dependent variable for
stress.

PCA and heatmap analyses have already been con-
firmed to be effective in identifying drought-tolerant and
high-yield genotypes in tomato [35], chickpea [36], and
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resistance index; HM, harmonic mean; PCA, principal component analysis

switchgrass [37]. The MP, GMP, STI, and HM indices are
effective for finding DT genotypes suitable for planting
in a water-limited region according to the cluster analy-
sis. Based on the PCA of Iranian cultivars and landraces,
the first component could be linked to GY gy, GYgp, MP,
STI, and GMP, and cultivars with high yields and DT
could be identified as having this component. A similar
finding was reported by Farshadfar et al. [38] for DTIs.
According to our PCA results, GMP and HM were the
most appropriate indices for screening in local varieties.

A high level of variation was uncovered in the stud-
ied traits for Iranian wheat accessions, suggesting the
potential of the GWAS technique for exploring QTLs.
A strong correlation between yield traits can be justified
by indirect or direct contributions from other traits [39].
Regarding the wheat genome, the genetic areas respon-
sible for such yield traits can be similar [40]. Mwadzin-
geni et al. [41], for example, discovered that a single locus
influences numerous wheat traits such as plant height,
spike length, and, grains per spike, all of which are con-
nected frequently [42]. However, some loci affect only
one crop attribute [41].

The frequency of the linked SNPs was higher in genome
B than that of the other genomes. Because chromosome
B is smaller than chromosome A, it appears that there is
a clear association between chromosome size and SNP
density [43, 44]. The increased frequency of SNP in the B
genome was the result of evolutionary processes. Alipour
et al. [45] and Mourad et al. [46] also reported this infer-
ence. Three separate subpopulations of wheat accessions
were identified. Considering that wheat accessions have
different pedigrees, this issue is expectable. There may be
some relationships among accessions when common par-
ents or origins exist in their pedigrees [40, 47].

Genomes D, A, and B have the highest LD, respectively.
The strongest LD was recorded between marker pairs on
chromosome 4A [48]. LD differences between genomes
and accessions indicate the effects of breeding schedules
in addition to evolutionary processes. In wheat Pakistan/
China collections, Liu et al. [26] found that the distance
of LD decay in native populations is less than that in cul-
tivated varieties.

The number of GO-based on GY, GN, TKW, and SW
were 11, 6, 18, and 11 markers containing overlapping
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Fig. 9 Circular Manhattan plots (MLM method) to draw common regions associated with A=GYyy, GY, various drought tolerance indices,

PCAT and PCA2, B=GNy,y, GNg various drought tolerance indices, PCAT and PCA2, C=TKW,,y, TKWp, various drought tolerance indices, PCA1

and PCA2 and D= SW,y,y, SWjy, various drought tolerance indices, PCA1 and PCA2. Inner to outer circles represent average trait and breeding Values
including Yy, Yge, TOL, MP, GMP, STI, AT, SSI, DI, HM, PCAT and PCA2, respectively. The chromosomes are plotted at the outmost circle where thin
dotted blue and red lines indicate significant level at P value <0.001 (—1og10 (p) > 3) and < 0.00001 (—1og10 (p) > 5), respectively. Green and red dots
indicate genome-wide significantly associated SNPs at P value <0.001 and <0.00001 probability level, respectively. Scale between ChrUn and Chr1A
indicates—1og10 (p) values. Colored boxes outside on the top right side indicate SNP density across the genome where green to red indicates

less dense to dense. Abbreviations: GY, grain yield; GN, grains number per spike; TKW, thousand kernel weight; SW, spike weight; WW, well-watered;
RF, rain-fed; TOL, tolerance index; MP, mean product; GMP, geometric mean product; STI, stress tolerance index; AT, abiotic stress tolerance index;
SSI, stress susceptibility index; DI, new drought resistance index; HM, harmonic mean; PCA, principal component analysis
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product; GMP, geometric mean product; STI, stress tolerance index; ATI, abiotic stress tolerance index; SSI, stress susceptibility index; DI, new drought

resistance index; HM, harmonic mean; PCA, principal component analysis

genes were identified. Although only those connections
with P<0.0001 were considered significant, the remain-
ing MTAs may be useful in improving wheat drought
tolerance. These connections can be found in genomic
areas that influence agronomic traits. Given that yield is a
highly complex genetic trait with low heritability, MTAs
for yield appeared significant at a higher P value. Most of
the identified markers were located on chromosomes 4A,
5A,7B, 1A, 1B, 6B, and 2B based on the studied traits and
their related tolerance indices. A number of MTAs/QTLs
have been found for GY in wheat chr. 7A [49-52], 7B [49,
52, 53], 3D [49], 3A [49, 52-54], 5B [49, 52, 55], 1B [49,
53, 56], and 2B [49, 53, 54, 56, 57]. MTAs/QTLs for TKW
have been found in previous reports on chr. 7B [52], 7D
[50], 5B [58], 3A [57, 58], 3B [50], 2D [56], 2A [50], 2B
[50, 52, 57], and 1A [52, 56—58]. Therefore, MTAs on chr.
5A, 1B, 6B, and 1D are novel for TKW. As a result, MTA
on chr. 4A and 5A have never been documented, and it is
novel for wheat output.

The results of our study are in line with those of some
studies made on the bread wheat of Iran, including Sala-
rpour et al. [59], Salarpour et al. [8], Sobhanian et al. [60],
Tahmasebi et al. [61], and Heidari et al. [62]. Tahmasebi
et al. [61], stated that the most important QTLs for the

thousand-grain weight, and GY were detected on chro-
mosomes 1B, 1D-a, and 7D-b. In another study, Heydari
et al. [62] reported that the major QTL located at the
Hair—Xpsp2999 interval on chromosome 1A controlled
the expression of grains/spike (R*=12.9% in 2004 and
22.4% in 2005), grain weight/spike (R*=21.4% in 2004
and 15.8% in 2005), and spike number (R*>=15.6% in 2004
and 5.4% in 2005). The QTL for GY located on chromo-
somes 6A, 6B, and 6D totally accounted for 27.2% and
31.7% of the total variation in this trait in 2004 and 2005,
respectively.

The flanking sequences of 43,525 SNPs were com-
pared to RefSeq v2.0 and aligned accordingly. Surpris-
ingly, the majority of marker pairs were found in the
protein-coding areas, which regulate transcription.
Other factors contributing to drought tolerance include
DNA binding, transcription factor activity, and trans-
membrane transport. Some pathways were discovered
using the rice reference genome, including ascorbate
and aldarate metabolism, oxidative phosphorylation,
biosynthesis of amino acids, fatty acid elongation, and
metabolic pathways. In the metabolism of ascorbate
and aldarate sucrose synthase, and sucrose-phosphate
synthase are both genes that are involved in a metabolic
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and PCA2 and D=SW,,y, SWg;, various drought tolerance indices, PCAT and PCA2. Inner to outer circles represent average trait and breeding Values
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less dense to dense. Abbreviations: GY, grain yield; GN, grains number per spike; TKW, thousand kernel weight; SW, spike weight; WW, well-watered;
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Fig. 12 The KEGG pathway of ascorbate and aldarate metabolism (A) and
that permissions were obtained for the appropriate copyright KEGG image

pathway that is associated with DS tolerance [63].
Drought stimulates energy-intensive activities such as
osmolyte production and oxidative phosphorylation, as
well as increased respiratory rates [64, 65]. In oats [66]
and wheat [67], fatty acid synthesis is beneficial in com-
bating DS. The amino acid pathway is one of the amino

pathway of biosynthesis of amino acids (B). The authors declare all
depicted

acids produced by proline. The amino acid proline has
been related to a number of osmoprotective properties
that scavenge reactive oxygen species [68—71]. Under
DS, drought-tolerant genotypes gained proline content
faster and in higher proportions than sensitive equiva-
lents, emphasizing its importance in drought-tolerance
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breeding. It has been discovered that genes that control
proline content have cumulative effects [72, 73].

Conclusion

MTAs are key elements for detecting genomic areas
linked to agronomic traits in wheat under drought stress.
The identified markers might be used to clone and fine
map underlying genes, as well as perform gene introgres-
sion and marker-based selection in wheat under nor-
mal and drought conditions. The discovery of QTL-rich
regions on Ch. 4A and 5A supports the theory that this
chromosome is important for drought tolerance and
should be utilized for wheat breeding. Furthermore, a
large number of SNP correlations were discovered at the
genome level on the B genome, which has been related
to drought resistance. Further, the use of association
mapping based on several drought tolerance indices can
be highly effective in finding the most essential markers
for drought tolerance as well as discovering linked gene
networks.

Materials and methods

Experimental site

The research was conducted at the Agricultural and
Natural Resources Campus of Tehran University. Fig-
ure 13 illustrates the geographical location of the study
area (35°48'59"'N, 51°58"48"’E, 1321 m elevation) and
the geographic distribution of Iranian wheat landraces
collected between 1931 and 1968 years. Figure 14 shows
the climatic characteristics of this field (Supplementary
1 Table 2). It covers approximately 246 ha and its main
crops are barley, corn, wheat, and alfalfa. The climate in
this region is dry and warm. A majority of the soil is clay
and silt with an average annual temperature and precipi-
tation of 22 °C and 248 mm.

Plant materials and experimental design

This study followed 298 wheat genotypes collected from
various regions and climates of Iran (Supplementary 1
Table 3) in alpha lattice design with two repeats during
two crop seasons (2018-19 and 2019-20) under rain-
fed (drought) and well-watered (normal) conditions. The
plots consisted of four rows (1*1 m?) spaced 50 cm. The
plant density was 300 plants/m? and the sowing and har-
vesting dates in both years were November 1 and June 30.
The threshold for irrigation implementation was deter-
mined based on 40 mm evaporation from an evaporation
pan for well-watered crops. We used a crop coefficient
of determination (K) as well as a reference crop evapo-
transpiration equation, ET,=E,,,"K,,,, where E,,, is the
evaporation depth below the pan surface (40 mm), and
K, denotes the pan coefficient (0.8) for each month, to

pan

determine evapotranspiration (ET-=K. * ET,) [2, 74].
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In this study, the irrigation time was calculated by divid-
ing the applied water for 1400 m? (the cultivation area
for 298 genotypes in two repeats) by the water discharge
(10.8 m3/h). Water requirement (m>/ha) was estimated by
multiplying the depth of ET, (mm) by 10. Wheat is grown
under the rain-fed regime and only receives rainfall as a
source of water. Table 1 presents the patterns of rainfall
during the cropping seasons. After physiological matu-
rity, GY per plant was measured by isolating 20 plants
and pounding their spikes, then weighing their seeds,
which were weighed, followed by calculating the yield of
a single plant. The traits measured in this study were GY
(g per plant), spike weight (SW, gr), GN (per spike), and
TKW (gr). The calculations of the DTIs were based on
the trait yield for normal (Y;) and stress (Y) conditions,
and the total average trait (GY, GN, TKW, and SW) for
normal (Yp) and stress (Y) environments with the for-
mulas listed in Table 3. Samples of plants are provided by
the Gene Bank of Agronomy and Plant Breeding Group
and these samples are available at USDA with USDA PI
number (Supplementary 1 Table 3), respectively. The
authors declare that all study complies with relevant
institutional, national, and international guidelines and
legislation for plant ethics in the methods section. The
authors declare that all that permissions or licenses were
obtained to collect the wheat plant.

Genotyping-by-sequencing and imputation

In accordance with Alipour et al. [45], GBS libraries for
Iranian wheat genotypes were established and sequenced.
As reads were trimmed to 64bp and categorized into
tags, SNPs were detected based on internal alignments,
allowing for up to 3 bp of mismatch. The GBS pipeline
was called Universal Network-Enabled Analysis Kit SNPs
and discarded reads with a low-quality score (<15). The
imputation was performed with BEAGLE v3.3.2 and the
w7984 reference genome [48]. Finally, SNPs with het-
erozygotes of <10% and minor allele frequency greater
than > 5% were considered for further analysis.

Population structure and kinship matrix

STRUCTURE (version 2.3.4) was used to analyze the
population structure of the landraces and cultivars of Ira-
nian wheat [75]. This study employed a 30,000-step sim-
ulation phase, along with an admixture model, covering
K=1 to 10. The most likely number of sub-populations
in this study was estimated by using AK. For association
studies, Q-matrix was utilized as a structural matrix.
Based on pairwise distance matrices counted in TAS-
SEL [76], a neighbor-joining tree was formed and visu-
alized using Archaeopteryx to explore the relationships
between the cultivars and landraces of Iranian wheat.
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Fig. 13 The geographical location of the study area (a) and the geographic distribution of Iranian wheat landraces collected between 1931

and 1968 years (b)

Genome-wide association study

Both MLM (mixed linear models) and mrMLM (multi-
locus random-SNP-effect MLM) were applied to pro-
vide an unbiased estimation of marker effects. Using
the MLM approach, it was possible to accurately associ-
ate marker traits between accessions and various MLM
models for controlling both population structure (Q)
and diffused associations (K) between accessions with
the GAPIT package. In RStudio, GWAS was performed
with the MLM and mrMLM using the GAPIT pack-
age [77]. The MLM approach considers accessions to

be a random effect, the relevance of each is defined by
a kinship matrix. The cluster analysis was conducted
using kinship matrix elements as likeness measures, and
the clusters were visualized by the unweighted double
group approach with arithmetic mean (UPGMA) using
a heat map. Moreover, —logl0 (P)>3 and -logl0 (P)>5
thresholds were used for statistically significant MTAs
[78]. Confidence intervals for each chromosome were
determined using LD decay [79]. A Manhattan plot was
obtained by applying the CMplot package to explore
associations between genotypes and phenotypes [80].
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Fig. 14 Climatic data in the studied environments
Table 3 Drought tolerance indices used for investigation of Iranian wheat germplasm
Index Abbreviation Calculation formula Reference
Tolerance index TOL Yp—Ys [15]
Mean productivity MP % [29]
Geometric mean productivity GMP VYp X Ys [30]
Stress tolerance index STI Ypx¥s [31]
Yﬁ
Abiotic tolerance index ATl Yp—Y: 38
[#75] > (V7o) -
Harmonic mean HM 2xYpxYs [29]
Yp+Ys
Stress susceptibility index SSI 1—=(Yp/Ys) [34]
1—=(Ys/Yp)
Drought resistance index DI [Vs (Ys/Yp)]/Vs [29]

Annotation of genes

The sequences surrounding all significantly associated
SNPs were obtained by aligning them with TWGSC
RefSeq v2.0 of the wheat 90 K SNP database used for
Gramene (http://www.gramene.org/) gene annotation
assessments. The identification of putative candidate
genes was evaluated according to two parameters: a)
being located in the vicinity of the peak marker, and b)
having known functions and involvement in the studied
traits in wheat (http://ensembl.gramene.Org; https://
wheaturgi.versailles.inra.fr/SeqRepository/Annotations).
Moreover, the significant SNPs were utilized in the
enrichment analysis of gene ontology via KOBAS version
2.0 for testing in the KEGG. Finally, gene pathways were

identified through the rice reference genome) Finally,
gene pathways were identified through the rice reference
genome ([80-82]; www.kegg.jp/kegg/keggl.html).

Statistical analysis

Descriptive statistics and correlation coefficients were
obtained by R 4.1 using the ggplot2, dplyr, ggpubr, and
psych packages to reveal the distribution of wheat traits.
An analysis of heatmaps was performed in RStudio to
classify wheat genotypes. Eventually, the evaluation and
dispersion of wheat traits and genotypes across the biplot
diagram were analyzed using PCA and the factoextra
packages in RStudio.


http://www.gramene.org/
http://ensembl.gramene.Org
https://wheaturgi.versailles.inra.fr/SeqRepository/Annotations
https://wheaturgi.versailles.inra.fr/SeqRepository/Annotations
http://www.kegg.jp/kegg/kegg1.html
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Abbreviations
DS Drought stress

GWAS  Genome-Wide Association Study
MTAs Marker-trait associations

LD Linkage disequilibrium

TKW Thousand kernel weight

GN Grains number per spike

SW Spike weight

GY Grain yield

ww Well-watered

RF Rain-fed

TOL Tolerance index

MP Mean productivity
GMP Geometric mean productivity

STI Stress tolerance index

AT Abiotic stress tolerance index
SSI Stress susceptibility index

DI New drought resistance index
HM Harmonic mean

GBS Genotyping-by-sequencing
MAF Minor allele frequencies
PCA Principal component analysis
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