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Abstract 

Background Drought is most likely the most significant abiotic stress affecting wheat yield. The discovery 
of drought-tolerant genotypes is a promising strategy for dealing with the world’s rapidly diminishing water resources 
and growing population. A genome-wide association study (GWAS) was conducted on 298 Iranian bread wheat lan-
draces and cultivars to investigate the genetic basis of yield, yield components, and drought tolerance indices in two 
cropping seasons (2018–2019 and 2019–2020) under rainfed and well-watered environments.

Results A heatmap display of hierarchical clustering divided cultivars and landraces into four categories, with high-
yielding and drought-tolerant genotypes clustering in the same group. The results of the principal component analy-
sis (PCA) demonstrated that selecting genotypes based on the mean productivity (MP), geometric mean productivity 
(GMP), harmonic mean (HM), and stress tolerance index (STI) can help achieve high-yield genotypes in the environ-
ment. Genome B had the highest number of significant marker pairs in linkage disequilibrium (LD) for both landraces 
(427,017) and cultivars (370,359). Similar to cultivars, marker pairs on chromosome 4A represented the strongest LD 
(r2 = 0.32). However, the genomes D, A, and B have the highest LD, respectively. The single-locus mixed linear model 
(MLM) and multi-locus random-SNP-effect mixed linear model (mrMLM) identified 1711 and 1254 significant marker-
trait association (MTAs) (-log10 P > 3) for all traits, respectively. A total of 874 common quantitative trait nucleotides 
(QTNs) were simultaneously discovered by both MLM and mrMLM methods. Gene ontology revealed that 11, 18, 6, 
and 11 MTAs were found in protein-coding regions (PCRs) for spike weight (SW), thousand kernel weight (TKW), grain 
number per spike (GN), and grain yield (GY), respectively.

Conclusion The results identified rich regions of quantitative trait loci (QTL) on Ch. 4A and 5A suggest that these 
chromosomes are important for drought tolerance and could be used in wheat breeding programs. Furthermore, 
the findings indicated that landraces studied in Iranian bread wheat germplasm possess valuable alleles, that are 
responsive to water-limited conditions. This GWAS experiment is one of the few types of research conducted 
on drought tolerance that can be exploited in the genome-mediated development of novel varieties of wheat.
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Background
Providing 25% of the total proteins and calories in the 
human diet and food supplies worldwide relies on wheat 
(Triticum aestivum L.) [1–3]. Wheat grain annual pro-
duction and consumption reach 750 and 735 million tons, 
respectively [4]. Global climate change adversely affects 
wheat yield, raising concerns regarding food security in 
the future. The genetic dissection of agronomic traits that 
affects yield and stress tolerance is essential to improve 
wheat yield [5–7]. The Food and Agriculture Organiza-
tion estimated that of the United Nations 13 million 
tons of wheat were produced in Iran in 2022, which is 
over 28% more compared to 10.1 million tons in 2021. 
The quarterly global Crop Prospects and Food Situation 
report’s forecast for 2023 production remains the same at 
13 million tons. Drought stresses result in approximately 
over 50% loss in agricultural productivity [8]. Drought is 
the main concern for crop productivity in most wheat 
cultivation areas in Iran. In Iran, approximately 6 million 
hectares of arable lands have been assigned to wheat cul-
tivation in 2020 [8]. Iran is located in a semi-dry region 
where end-season drought stress severely affects wheat 
growth [8].

Drought events adversely affect crop productivity by 
disrupting a wide range of biochemical/physiological 
functions on a global scale. Water deficit stress is the 
most severe environmental stress, limiting plant growth 
and development worldwide [2, 9]. Drought tolerance 
refers to the capability of plants to grow, develop, and 
produce a harvestable yield in the absence of water. [10, 
11]. Screen and use of the available genetic resources 
of crop plants can help to alleviate the impact of cli-
mate change on agricultural productivity in arid and 
semi-arid regions [2, 12, 13]. Understanding how plants 
adapt to drought stress is crucial for developing new and 
improved methods to increase drought-tolerant plants 
[14].

Drought tolerance indices (DTIs) have been widely 
used for identifying compatible genotypes, by evaluat-
ing their performance under non-stressed and stressed 
environments [15, 16]. In the past, the tolerance index 
(TOL), geometric mean productivity index (GMP), stress 
tolerance index (STI), and stress susceptibility index (SSI) 
have all been employed for genotype selection [15]. The 
advancement of genetics and genomics has made it pos-
sible to decipher the genetic elements that control agro-
nomic traits, as well as to determine their chromosomal 
locations and thus to identify QTLs in crops, including 
wheat [13, 17].

Wheat breeding programs need to use innovative 
technologies to explore the genetic basis of complicated 
quantitative traits [18]. The genome-wide association 

mapping (GWAS) technique is an efficient approach to 
dissect the genetic basis of complex traits by genotyping 
a large number of accessions with multiple single nucleo-
tide polymorphisms (SNPs) and testing the association 
between SNPs and agronomic traits [19]. GWAS estab-
lishes a relationship between genotype and phenotype 
based on an assumption that linkage disequilibrium (LD) 
has developed within a population over several genera-
tions [20, 21]. The use of association mapping has been 
successful in evaluating several agronomic character-
istics in plants/crops, including alfalfa [22], sorghum 
[23], maize [24], soybean [25], wheat [8], and rice [26]. 
A meta-analysis was conducted to identify the most sta-
ble QTLs for grain yield (GY) and grain quality traits 
in wheat [27]. The results revealed that 449 QTLs were 
successfully projected onto the genetic consensus map 
which condensed to 100 Meta-QTL (MQTLs) distributed 
on wheat chromosomes. The QTLs of thousand kernel 
weight (TKW) were frequently associated with QTLs 
for GY and grain protein content with co-localization 
occurring at 55% and 63%, respectively [27]. Meta-QTL 
analysis for drought tolerance was undertaken in bread 
wheat to identify consensus and robust MQTLs using 
340 known QTLs from 11 earlier studies; accordingly, 13 
MQTLs located on 6 chromosomes (1D, 3B, 5A, 6D, 7A, 
and 7D) were identified, with a maximum of 4 MQTLs 
on chromosome 5A. The in-silico expression analysis of 
these 228 cyclic glucans (CGs) allowed the identifica-
tion of 14 important CGs, with +3 to −8 fold change in 
expression under drought (relative to normal conditions) 
in a tolerant cv. named TAM107 [28].

Our study used a collection of agronomic traits and 
drought tolerance indices between Iranian wheat varie-
ties and landraces to identify significant SNP loci asso-
ciated with drought-tolerance traits through a GWAS, 
using the MLM and mrMLM. The study further aimed 
to explore candidate genes for drought-resistance traits 
in bread wheat and to better understand the molecular 
mechanisms of the drought adaptation of bread wheat 
in order to facilitate the cultivation of drought-tolerant 
varieties.

Results
Phenotypic data summary
The box plots of wheat landraces and cultivars are dis-
played in Fig.  1. Compared to a normal situation, the 
mean of all traits decreased under stress in both culti-
vars and landraces. Based on the data distribution, there 
was considerable diversity in wheat accessions regard-
ing agronomical properties. The variance was stronger 
in native populations. In both moisture conditions, the 
mean of all traits was lower in landraces than in cultivars.
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The traits GY, GN, TKW, and SW in the normal envi-
ronment exhibited the highest significant, positive 
association with the drought tolerance index MP. How-
ever, in the rain-fed environment, the mentioned traits 
had the strongest significant, positive connection with 
the drought tolerance index HM (Fig. 2).

Clustering analysis
The heatmap was created using the average of agronomic 
features as well as a variety of drought tolerance indices 
(DTIs). Our purpose in grouping genotypes was to iden-
tify genotypes with common characteristics in terms of 
thousand kernel weight, grains number per spike, spike 

Fig. 1 Box-plot representation of the distribution for grain yield (A), grains number per spike (B), thousand kernel weight (C) and spike weight (D) 
for Iranian landraces and cultivars in the well-watered and rain-fed environments
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weight, and grain yield. Heatmap and clustering wheat 
accessions classified genotypes into four groups based 
on  GYWW,  GYRF, and DTIs (Fig.  3a). Group I contains 
66 high-yielding genotypes (32 landraces and 34 cul-
tivars). Further, Group II contains 34 genotypes with 
average-to-high yields (22 landraces and 12 cultivars), 
and Group III contains 179 genotypes with average-to-
low yields (136 landraces and 43 cultivars). Finally, Group 
IV contains 19 low-yielding (18 landraces and 1 cultivar). 

Wheat genotypes were split into four categories using 
the  GNWW,  GNRF, and DTIs. Based on the results, 48 
(27 cultivars and 21 landraces), 73 (20 cultivars and 53 
landraces), 127 (38 cultivars and 89 landraces), and 50 
(5 cultivars and 45 landraces), genotypes were found in 
the first, second, third, and fourth groups, respectively 
(Fig.  3b). Clustering and heatmap based on  TKWWW, 
 TKWRF, and DTIs were used to separate wheat acces-
sions into four groups. The first and second groups 

Fig. 2 Correlation coefficients between  GYWW,  GYRF and various drought tolerance indices (A),  GNWW,  GNRF and various drought tolerance indices 
(B),  TKWWW,  TKWRF and various drought tolerance indices (C) and  SWWW,  SWRF and various drought tolerance indices (D) for Iranian landraces 
and cultivars wheat in the well-watered and rain-fed environments. Abbreviations: GY, grain yield; GN, grains number per spike; TKW, thousand 
kernel weight; SW, spike weight; WW, well-watered; RF, rain-fed; TOL. tolerance index; MP, mean product; GMP, geometric mean product; STI, stress 
tolerance index; ATI, abiotic stress tolerance index; SSI, stress susceptibility index; DI, new drought resistance index; HM, harmonic mean
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consisted of 70 genotypes with a high TKW (22 cultivars 
and 48 landraces), and 49 genotypes with a medium-to-
TKW (21 cultivars and 28 landraces), respectively. More-
over, the third and fourth groups contained 93 genotypes 
with a medium-to-low TKW (68 landraces and 25 culti-
vars), and 86 genotypes (22 cultivars and 64 landraces) 
with a low TKW (Fig. 3c), respectively. Wheat genotypes 
based on the  SWWW,  SWRF, and DTIs were classified into 
four groups; the I, II, III, and IV groups consisted of 53 
(28 landraces and 25 cultivars), 74 (43 landraces and 31 
cultivars), 121 (92 landraces and 29 cultivars), and 50 

genotypes (45 landraces and 5 cultivars), respectively 
(Fig. 3d).

Principal component analysis (PCA) for drought tolerance 
indices
For the selection of superior genotypes based on the 
environment, the responses of all accessions were evalu-
ated with a PCA. The results of PCA for DTIs (based on 
GY) showed that 65.2% and 34% of the variance were 
explained by the first and second components, respec-
tively. The attributes  GYWW,  GYRF, MP, GMP, STI, and 

Fig. 3 Hierarchical clustering and heatmap based on  GYWW,  GYRF and various drought tolerance indices (A),  GNWW,  GNRF and various drought 
tolerance indices (B),  TKWWW,  TKWRF and various drought tolerance indices (C) and  SWWW,  SWRF and various drought tolerance indices (D) for Iranian 
landraces and cultivars wheat in well-watered and rain-fed environments. Abbreviations: GY, grain yield; GN, grains number per spike; TKW, 
thousand kernel weight; SW, spike weight; WW, well-watered; RF, rain-fed; TOL. tolerance index; MP, mean product; GMP, geometric mean product; 
STI, stress tolerance index; ATI, abiotic stress tolerance index; SSI, stress susceptibility index; DI, new drought resistance index; HM, harmonic mean
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HM had direct associations with PC1. The PC2 had a 
positive correlation with the SSI, TOL, and ATI indices, 
whereas the DI index had a negative correlation with the 
PC2. Genotypes-based PCA revealed that several geno-
types (623417, 627299, 628189, 627460, 626855, 622356, 
623344, 623109, and 624944, BAM, ADL KARIM, 
AZARE2, CHAMRAN2, PISHGAM, and FALAT cul-
tivars) had the highest GY in both rain-fed and well-
watered environments (Fig.  4a). Nonetheless, selecting 
genotypes based on the MP, GMP, HM, and STI indices 
can help achieve high yield genotypes in the environment. 

The above explanations are also applicable to the other 
attributes of GN, TKW, and SW (Fig. 4b, c, d).

Analysis of linked single‑nucleotide polymorphisms (SNPs)
Among the 566,439,207 reads identified in eight Ion 
Proton runs, 458,363,607 (about 81%) were high-quality 
barcoded ones. Eventually, 133,039 unique SNPs were 
identified after removing duplicate reads. A total of 
43,525 SNPs were detected across all 21 wheat chromo-
somes after imputation and discarding those with > 20% 
missing values, > 10% heterozygosity, and < 5% minor 

Fig. 4 Principal component analysis of Iranian wheat germplasm exposed to well-watered irrigation and rain-fed environments using PC1 and 2. 
Biplot for  GYWW,  GYRF and various drought tolerance indices (A), Biplot for  GNWW,  GNRF, and various drought tolerance indices (B), Biplot for  TKWWW, 
 TKWRF, and various drought tolerance indices (C), and Biplot for  SWWW,  SWRF and various drought tolerance indices (D). Abbreviations: GY, grain 
yield; GN, grains number per spike; TKW, thousand kernel weight; SW, spike weight; WW, well-watered; RF, rain-fed; TOL. tolerance index; MP, mean 
product; GMP, geometric mean product; STI, stress tolerance index; ATI, abiotic stress tolerance index; SSI, stress susceptibility index; DI, new drought 
resistance index; HM, harmonic mean
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allele frequency. In addition, a set of 43,525 imputed 
SNPs was obtained using the W7984 reference genome, 
and these SNPs were used to estimate genetic diversity. 
Overall 15,951, 21,864, and 5,710 SNPs were mapped to 
the A, B, and D genomes, respectively, accounting 36.7%, 
50.2%, and 13.1% of the total SNPs, respectively (Fig. 5). 
The highest and lowest numbers of SNPs were located on 
3A (4034 SNPs) and 4D (270 SNPs), respectively.

Population structure and kinship matrix
The number of clusters (K) and subpopulations (ΔK) 
was plotted against each other to determine the appro-
priate number of subpopulations. Three subpopulations 
were observed as the strongest ΔK value at K = 3. Three 
subpopulations of 298 accessions were created using the 
structure software, S-I, S-II, and S-III (Fig. 6a). S_I con-
tained 113 genotypes (107 landraces and 6 cultivars). Fur-
thermore, S_II encompasses 111 genotypes (97 landraces 
and 14 cultivars), and S_III consists of 74 genotypes (4 
landraces and 70 cultivars) (Fig. 6b). According to a PCA 
based on molecular markers, the first and second compo-
nents explain 16.9% and 6.3% of the total genetic variance 
between wheat accessions. This study could distinguish 
landraces from cultivars favorably. In the Iranian wheat 
landraces, a population structure was found with 30.5% 
genetic diversity, accounting for the first five eigenvalues. 
The selection effects in breeding programs are considered 
the reasons for such a genetic separation (Fig. 6c). Heat-
map analysis using the kinship matrix for Iranian geno-
types is illustrated in Fig. 6d. Clustering results identified 
two subgroups of native populations. Using imputed 
markers, we could also separate cultivars and landraces 
by utilizing the nearest neighbor clustering (Fig. 6e).

Linkage disequilibrium (LD)
The LD decreased with increased distances between SNPs 
and varied between and within chromosomes. There 
were 1,858,425 markers with r2 = 0.211 with varieties, 

out of which 700,991 (37.72%) had significant linkages at 
P < 0.001. The majority of significant marker pairs were 
located at a distance of < 10 cM, based on our observa-
tions. An analysis of landraces found 1,867,575 markers 
with r2 = 0.182, of which 847,725 (45.39%) displayed sig-
nificant linkages at P < 0.001. Chromosome 4A marker 
pairs also demonstrated the strongest LD (r2 = 0.368). 
Most marker pairs with statistical significance were 
located at distances of < 10 cM. Genomes B and D had 
the most and least marker pairs (575,681 and 113,374), 
respectively (Fig. 7, Supplementary 1 Table 1).

Single‑nucleotide polymorphisms for agronomic traits 
and various drought tolerance indices
In total, 477 significant marker pairs (MTAs) were identi-
fied for GY and related stress tolerance indices [–log10 
P > 3] by using MLM approaches. Of the total number of 
MTAs in the MLM method, 197, 241, and 39 MTAs were 
assigned to genomes A, B, and D, respectively. Using 
the MLM method, the number of significant MTAs for 
 GYWW,  GYRF, TOL, MP, GMP, STI, ATI, SSI, DI, HM, 
PCA1, and PCA2 traits were 57, 30, 69, 30, 25, 30, 59, 
44, 32, 22, 30, and 49, respectively (Fig. 8a). The number 
of significant SNPs based on GN, TKW, SW, and stress 
tolerance indices associated with them were 217, 346, 
and 214, respectively. Drought tolerance indices for GN, 
TKW, and SW traits led to the discovery of 81, 79, and 
102 significant SNPs for genome A, as well as 125, 200, 
and 83 significant SNPs for genome B. Additionally, 11, 
67, and 29 significant SNPs were found for genome D, 
respectively. GN, TKW, SW, and stress tolerance indi-
ces associated with them led to the discovery of 81, 79, 
and 102 significant SNPs for genome A. In addition, for 
genomes B and D, 125, 200, and 83 as well as 11, 67, and 
29 significant SNPs were found, respectively (Fig. 8b,c,d). 
SNPs with P values <  10–3 and <  10–5 (black and red) are 
highlighted in the Manhattan circle plot (Fig. 9).

Fig. 5 Number of imputed SNPs used in different chromosomes of the wheat genomes (A), number of imputed SNPs used in wheat genomes (B)
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The mrMLM method discovered 233, 294, and 50 sig-
nificant SNPs for  GYWW,  GYRF, DTIs, PCA1, and PCA2 
in genomes A, B, and D, respectively. Further,  GYWW, 

 GYRF, TOL, MP, GMP, STI, ATI, SSI, DI, HM, PCA1, 
and PCA2 had 48, 22, 97, 15, 20, 21, 85, 84, 47, 17, 20, 
and 101 significant markers, respectively. The number 

Fig. 6 Determination of subpopulations number in wheat genotypes based on ΔK values (A), A structure plot of the 298 wheat genotypes 
and landraces determined by K = 3 (B). Principle component analysis (PCA) for a total of 298 Iranian bread wheat accessions (C). Cluster analysis 
using Kinship matrix of imputed data for Iranian wheat accessions (D). The dendrogram of Neighbor-Joining clustering constructed using 43,525 
SNPs and 298 Iranian wheat accessions (E)
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of important SNPs based on GN, TKW, SW, and asso-
ciated stress tolerance indices was 367, 371, and 396, 
respectively (Fig. 10). SNPs with P values <  10–3 and <  10–5 
(black and red) are highlighted in the Manhattan circle 
plot (Fig. 11).

Using 43,525 SNPs and a significant value of –log10 
(P > 5), MLM and mrMLM models identified a total of 
67 and 24 MTAs for yield attributes and DTIs, respec-
tively. There were a total of 26, 36, and 5 MTAs based on 
MLM, as well as 4, 20, and zero MTAs based on mrMLM, 
respectively, for genomes A, B, and D (Table 1).

Gene ontology
The markers with the highest significance (P value < 0.0001) 
and pleiotropic impact were investigated thoroughly. Based 
on GO for DTIs for GN, TKW, and SW traits, 11, 6, 18, and 
11 markers containing overlapping genes were identified, 
which are contained in important molecular and biologi-
cal processes. Several biological and molecular processes 
were attributed to some of the discovered MTAs, includ-
ing defense response, glycolytic process, lipid biosynthetic 
process, lipid metabolic process, fatty acid biosynthetic 
process, and response to wounding. The other processes 
were carbohydrate metabolic process, protein binding, 
ATP binding, nucleic acid binding, DNA binding, zinc ion 

binding, oxidoreductase activity, sulfotransferase activity, 
lipid binding, RNA binding and DNA binding (Table  2). 
Different pathways were found through rice reference 
genomes, including ascorbate and aldarate metabolism 
(Fig. 12a), biosynthesis of amino acids (Fig. 12b), oxidative 
phosphorylation (Supplementary 1 Fig. 1), fatty acid elon-
gation (Supplementary 1 Fig.  2), and metabolic pathways 
(Supplementary 1 Fig. 3).

Discussion
It is possible to examine how GY is affected under normal 
and drought conditions by using DTIs to select optimal 
genotypes. DTIs STI, GMP, MP, and HM are key indices 
for screening high-yielding genotypes in different mois-
ture conditions [29, 30]. The previous study also demon-
strated that STI is a useful parameter for distinguishing 
high-yield genotypes growing in both high-yielding and 
drought-tolerant environments [31–33]. The MP, GMP, 
STI, and HM parameters were related to GY. According 
to Ravari et al. [34] YSI, GMP, STI, and HM parameters 
were all well associated with the dependent variable for 
stress.

PCA and heatmap analyses have already been con-
firmed to be effective in identifying drought-tolerant and 
high-yield genotypes in tomato [35], chickpea [36], and 

Fig. 7 Overview of the linkage disequilibrium (LD) within the whole association panel per genome using imputed SNPs
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switchgrass [37]. The MP, GMP, STI, and HM indices are 
effective for finding DT genotypes suitable for planting 
in a water-limited region according to the cluster analy-
sis. Based on the PCA of Iranian cultivars and landraces, 
the first component could be linked to  GYWW,  GYRF, MP, 
STI, and GMP, and cultivars with high yields and DT 
could be identified as having this component. A similar 
finding was reported by Farshadfar et  al. [38] for DTIs. 
According to our PCA results, GMP and HM were the 
most appropriate indices for screening in local varieties.

A high level of variation was uncovered in the stud-
ied traits for Iranian wheat accessions, suggesting the 
potential of the GWAS technique for exploring QTLs. 
A strong correlation between yield traits can be justified 
by indirect or direct contributions from other traits [39]. 
Regarding the wheat genome, the genetic areas respon-
sible for such yield traits can be similar [40]. Mwadzin-
geni et al. [41], for example, discovered that a single locus 
influences numerous wheat traits such as plant height, 
spike length, and, grains per spike, all of which are con-
nected frequently [42]. However, some loci affect only 
one crop attribute [41].

The frequency of the linked SNPs was higher in genome 
B than that of the other genomes. Because chromosome 
B is smaller than chromosome A, it appears that there is 
a clear association between chromosome size and SNP 
density [43, 44]. The increased frequency of SNP in the B 
genome was the result of evolutionary processes. Alipour 
et al. [45] and Mourad et al. [46] also reported this infer-
ence. Three separate subpopulations of wheat accessions 
were identified. Considering that wheat accessions have 
different pedigrees, this issue is expectable. There may be 
some relationships among accessions when common par-
ents or origins exist in their pedigrees [40, 47].

Genomes D, A, and B have the highest LD, respectively. 
The strongest LD was recorded between marker pairs on 
chromosome 4A [48]. LD differences between genomes 
and accessions indicate the effects of breeding schedules 
in addition to evolutionary processes. In wheat Pakistan/
China collections, Liu et al. [26] found that the distance 
of LD decay in native populations is less than that in cul-
tivated varieties.

The number of GO-based on GY, GN, TKW, and SW 
were 11, 6, 18, and 11 markers containing overlapping 

Fig. 8 GWAS results (MLM method) for  GYWW,  GYRF, various drought tolerance indices, PCA1 and PCA2 (A),  GNWW,  GNRF, various drought tolerance 
indices, PCA1 and PCA2 (B),  TKWWW,  TKWRF, various drought tolerance indices, PCA1 and PCA2 (C) and  SWWW,  SWRF, various drought tolerance 
indices, PCA1 and PCA2 (D) of Iranian landraces and cultivars wheat in well-watered and rain-fed environments. Abbreviations: GY, grain yield; GN, 
grains number per spike; TKW, thousand kernel weight; SW, spike weight; WW, well-watered; RF, rain-fed; TOL, tolerance index; MP, mean product; 
GMP, geometric mean product; STI, stress tolerance index; ATI, abiotic stress tolerance index; SSI, stress susceptibility index; DI, new drought 
resistance index; HM, harmonic mean; PCA, principal component analysis
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Fig. 9 Circular Manhattan plots (MLM method) to draw common regions associated with A =  GYWW,  GYRF, various drought tolerance indices, 
PCA1 and PCA2, B =  GNWW,  GNRF, various drought tolerance indices, PCA1 and PCA2, C =  TKWWW,  TKWRF, various drought tolerance indices, PCA1 
and PCA2 and D =  SWWW,  SWRF, various drought tolerance indices, PCA1 and PCA2. Inner to outer circles represent average trait and breeding Values 
including  YWW,  YRF, TOL, MP, GMP, STI, ATI, SSI, DI, HM, PCA1 and PCA2, respectively. The chromosomes are plotted at the outmost circle where thin 
dotted blue and red lines indicate significant level at P value < 0.001 (− log10 (p) > 3) and < 0.00001 (− log10 (p) > 5), respectively. Green and red dots 
indicate genome-wide significantly associated SNPs at P value < 0.001 and < 0.00001 probability level, respectively. Scale between ChrUn and Chr1A 
indicates − log10 (p) values. Colored boxes outside on the top right side indicate SNP density across the genome where green to red indicates 
less dense to dense. Abbreviations: GY, grain yield; GN, grains number per spike; TKW, thousand kernel weight; SW, spike weight; WW, well-watered; 
RF, rain-fed; TOL, tolerance index; MP, mean product; GMP, geometric mean product; STI, stress tolerance index; ATI, abiotic stress tolerance index; 
SSI, stress susceptibility index; DI, new drought resistance index; HM, harmonic mean; PCA, principal component analysis
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genes were identified. Although only those connections 
with P < 0.0001 were considered significant, the remain-
ing MTAs may be useful in improving wheat drought 
tolerance. These connections can be found in genomic 
areas that influence agronomic traits. Given that yield is a 
highly complex genetic trait with low heritability, MTAs 
for yield appeared significant at a higher P value. Most of 
the identified markers were located on chromosomes 4A, 
5A, 7B, 1A, 1B, 6B, and 2B based on the studied traits and 
their related tolerance indices. A number of MTAs/QTLs 
have been found for GY in wheat chr. 7A [49–52], 7B [49, 
52, 53], 3D [49], 3A [49, 52–54], 5B [49, 52, 55], 1B [49, 
53, 56], and 2B [49, 53, 54, 56, 57]. MTAs/QTLs for TKW 
have been found in previous reports on chr. 7B [52], 7D 
[50], 5B [58], 3A [57, 58], 3B [50], 2D [56], 2A [50], 2B 
[50, 52, 57], and 1A [52, 56–58]. Therefore, MTAs on chr. 
5A, 1B, 6B, and 1D are novel for TKW. As a result, MTA 
on chr. 4A and 5A have never been documented, and it is 
novel for wheat output.

The results of our study are in line with those of some 
studies made on the bread wheat of Iran, including Sala-
rpour et al. [59], Salarpour et al. [8], Sobhanian et al. [60], 
Tahmasebi et al. [61], and Heidari et al. [62]. Tahmasebi 
et al. [61], stated that the most important QTLs for the 

thousand-grain weight, and GY were detected on chro-
mosomes 1B, 1D-a, and 7D-b. In another study, Heydari 
et  al. [62] reported that the major QTL located at the 
Hair–Xpsp2999 interval on chromosome 1A controlled 
the expression of grains/spike (R2 = 12.9% in 2004 and 
22.4% in 2005), grain weight/spike (R2 = 21.4% in 2004 
and 15.8% in 2005), and spike number (R2 = 15.6% in 2004 
and 5.4% in 2005). The QTL for GY located on chromo-
somes 6A, 6B, and 6D totally accounted for 27.2% and 
31.7% of the total variation in this trait in 2004 and 2005, 
respectively.

The flanking sequences of 43,525 SNPs were com-
pared to RefSeq v2.0 and aligned accordingly. Surpris-
ingly, the majority of marker pairs were found in the 
protein-coding areas, which regulate transcription. 
Other factors contributing to drought tolerance include 
DNA binding, transcription factor activity, and trans-
membrane transport. Some pathways were discovered 
using the rice reference genome, including ascorbate 
and aldarate metabolism, oxidative phosphorylation, 
biosynthesis of amino acids, fatty acid elongation, and 
metabolic pathways. In the metabolism of ascorbate 
and aldarate sucrose synthase, and sucrose-phosphate 
synthase are both genes that are involved in a metabolic 

Fig. 10 GWAS results (mrMLM method) for  GYWW,  GYRF, various drought tolerance indices, PCA1 and PCA2 (A),  GNWW,  GNRF, various drought 
tolerance indices, PCA1 and PCA2 (B),  TKWWW,  TKWRF, various drought tolerance indices, PCA1 and PCA2 (C) and  SWWW,  SWRF, various drought 
tolerance indices, PCA1 and PCA2 (D) of Iranian landraces and cultivars wheat in well-watered and rain-fed environments. Abbreviations: GY, grain 
yield; GN, grains number per spike; TKW, thousand kernel weight; SW, spike weight; WW, well-watered; RF, rain-fed; TOL, tolerance index; MP, mean 
product; GMP, geometric mean product; STI, stress tolerance index; ATI, abiotic stress tolerance index; SSI, stress susceptibility index; DI, new drought 
resistance index; HM, harmonic mean; PCA, principal component analysis
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Fig. 11 Circular Manhattan plots (mrMLM method) to draw common regions associated with A =  GYWW,  GYRF, various drought tolerance indices, 
PCA1 and PCA2, B =  GNWW,  GNRF, various drought tolerance indices, PCA1 and PCA2, C =  TKWWW,  TKWRF, various drought tolerance indices, PCA1 
and PCA2 and D =  SWWW,  SWRF, various drought tolerance indices, PCA1 and PCA2. Inner to outer circles represent average trait and breeding Values 
including  YWW,  YRF, TOL, MP, GMP, STI, ATI, SSI, DI, HM, PCA1 and PCA2, respectively. The chromosomes are plotted at the outmost circle where thin 
dotted blue and red lines indicate significant level at P value < 0.001 (− log10 (p) > 3) and < 0.00001 (− log10 (p) > 5), respectively. Green and red dots 
indicate genome-wide significantly associated SNPs at P value < 0.001 and < 0.00001 probability level, respectively. Scale between ChrUn and Chr1A 
indicates − log10 (p) values. Colored boxes outside on the top right side indicate SNP density across the genome where green to red indicates 
less dense to dense. Abbreviations: GY, grain yield; GN, grains number per spike; TKW, thousand kernel weight; SW, spike weight; WW, well-watered; 
RF, rain-fed; TOL, tolerance index; MP, mean product; GMP, geometric mean product; STI, stress tolerance index; ATI, abiotic stress tolerance index; 
SSI, stress susceptibility index; DI, new drought resistance index; HM, harmonic mean; PCA, principal component analysis
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pathway that is associated with DS tolerance [63]. 
Drought stimulates energy-intensive activities such as 
osmolyte production and oxidative phosphorylation, as 
well as increased respiratory rates [64, 65]. In oats [66] 
and wheat [67], fatty acid synthesis is beneficial in com-
bating DS. The amino acid pathway is one of the amino 

acids produced by proline. The amino acid proline has 
been related to a number of osmoprotective properties 
that scavenge reactive oxygen species [68–71]. Under 
DS, drought-tolerant genotypes gained proline content 
faster and in higher proportions than sensitive equiva-
lents, emphasizing its importance in drought-tolerance 

Fig. 12 The KEGG pathway of ascorbate and aldarate metabolism (A) and pathway of biosynthesis of amino acids (B). The authors declare all 
that permissions were obtained for the appropriate copyright KEGG image depicted
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breeding. It has been discovered that genes that control 
proline content have cumulative effects [72, 73].

Conclusion
MTAs are key elements for detecting genomic areas 
linked to agronomic traits in wheat under drought stress. 
The identified markers might be used to clone and fine 
map underlying genes, as well as perform gene introgres-
sion and marker-based selection in wheat under nor-
mal and drought conditions. The discovery of QTL-rich 
regions on Ch. 4A and 5A supports the theory that this 
chromosome is important for drought tolerance and 
should be utilized for wheat breeding. Furthermore, a 
large number of SNP correlations were discovered at the 
genome level on the B genome, which has been related 
to drought resistance. Further, the use of association 
mapping based on several drought tolerance indices can 
be highly effective in finding the most essential markers 
for drought tolerance as well as discovering linked gene 
networks.

Materials and methods
Experimental site
The research was conducted at the Agricultural and 
Natural Resources Campus of Tehran University. Fig-
ure  13 illustrates the geographical location of the study 
area (35°48′59′′N, 51°58′48′′E, 1321 m elevation) and 
the geographic distribution of Iranian wheat landraces 
collected between 1931 and 1968 years. Figure 14 shows 
the climatic characteristics of this field (Supplementary 
1 Table  2). It covers approximately 246 ha and its main 
crops are barley, corn, wheat, and alfalfa. The climate in 
this region is dry and warm. A majority of the soil is clay 
and silt with an average annual temperature and precipi-
tation of 22 °C and 248 mm.

Plant materials and experimental design
This study followed 298 wheat genotypes collected from 
various regions and climates of Iran (Supplementary 1 
Table  3) in alpha lattice design with two repeats during 
two crop seasons (2018–19 and 2019–20) under rain-
fed (drought) and well-watered (normal) conditions. The 
plots consisted of four rows (1*1  m2) spaced 50 cm. The 
plant density was 300 plants/m2, and the sowing and har-
vesting dates in both years were November 1 and June 30. 
The threshold for irrigation implementation was deter-
mined based on 40 mm evaporation from an evaporation 
pan for well-watered crops. We used a crop coefficient 
of determination (KC) as well as a reference crop evapo-
transpiration equation,  ET0 =  Epan*Kpan, where Epan is the 
evaporation depth below the pan surface (40 mm), and 
Kpan denotes the pan coefficient (0.8) for each month, to 
determine evapotranspiration  (ETC =  KC *  ET0) [2, 74]. 

In this study, the irrigation time was calculated by divid-
ing the applied water for 1400  m2 (the cultivation area 
for 298 genotypes in two repeats) by the water discharge 
(10.8  m3/h). Water requirement  (m3/ha) was estimated by 
multiplying the depth of  ET0 (mm) by 10. Wheat is grown 
under the rain-fed regime and only receives rainfall as a 
source of water. Table 1 presents the patterns of rainfall 
during the cropping seasons. After physiological matu-
rity, GY per plant was measured by isolating 20 plants 
and pounding their spikes, then weighing their seeds, 
which were weighed, followed by calculating the yield of 
a single plant. The traits measured in this study were GY 
(g per plant), spike weight (SW, gr), GN (per spike), and 
TKW (gr). The calculations of the DTIs were based on 
the trait yield for normal  (YP) and stress  (YS) conditions, 
and the total average trait (GY, GN, TKW, and SW) for 
normal ( Y P ) and stress ( Y s ) environments with the for-
mulas listed in Table 3. Samples of plants are provided by 
the Gene Bank of Agronomy and Plant Breeding Group 
and these samples are available at USDA with USDA PI 
number (Supplementary 1 Table  3), respectively. The 
authors declare that all study complies with relevant 
institutional, national, and international guidelines and 
legislation for plant ethics in the methods section. The 
authors declare that all that permissions or licenses were 
obtained to collect the wheat plant.

Genotyping‑by‑sequencing and imputation
In accordance with Alipour et al. [45], GBS libraries for 
Iranian wheat genotypes were established and sequenced. 
As reads were trimmed to 64bp and categorized into 
tags, SNPs were detected based on internal alignments, 
allowing for up to 3 bp of mismatch. The GBS pipeline 
was called Universal Network-Enabled Analysis Kit SNPs 
and discarded reads with a low-quality score (< 15). The 
imputation was performed with BEAGLE v3.3.2 and the 
w7984 reference genome [48]. Finally, SNPs with het-
erozygotes of < 10% and minor allele frequency greater 
than > 5% were considered for further analysis.

Population structure and kinship matrix
STRU CTU RE (version 2.3.4) was used to analyze the 
population structure of the landraces and cultivars of Ira-
nian wheat [75]. This study employed a 30,000-step sim-
ulation phase, along with an admixture model, covering 
K = 1 to 10. The most likely number of sub-populations 
in this study was estimated by using ΔK. For association 
studies, Q-matrix was utilized as a structural matrix. 
Based on pairwise distance matrices counted in TAS-
SEL [76], a neighbor-joining tree was formed and visu-
alized using Archaeopteryx to explore the relationships 
between the cultivars and landraces of Iranian wheat.
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Genome‑wide association study
Both MLM (mixed linear models) and mrMLM (multi-
locus random-SNP-effect MLM) were applied to pro-
vide an unbiased estimation of marker effects. Using 
the MLM approach, it was possible to accurately associ-
ate marker traits between accessions and various MLM 
models for controlling both population structure (Q) 
and diffused associations (K) between accessions with 
the GAPIT package. In RStudio, GWAS was performed 
with the MLM and mrMLM using the GAPIT pack-
age [77]. The MLM approach considers accessions to 

be a random effect, the relevance of each is defined by 
a kinship matrix. The cluster analysis was conducted 
using kinship matrix elements as likeness measures, and 
the clusters were visualized by the unweighted double 
group approach with arithmetic mean (UPGMA) using 
a heat map. Moreover, –log10 (P) > 3 and –log10 (P) > 5 
thresholds were used for statistically significant MTAs 
[78]. Confidence intervals for each chromosome were 
determined using LD decay [79]. A Manhattan plot was 
obtained by applying the CMplot package to explore 
associations between genotypes and phenotypes [80].

Fig. 13 The geographical location of the study area (a) and the geographic distribution of Iranian wheat landraces collected between 1931 
and 1968 years (b)
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Annotation of genes
The sequences surrounding all significantly associated 
SNPs were obtained by aligning them with IWGSC 
RefSeq v2.0 of the wheat 90 K SNP database used for 
Gramene (http:// www. grame ne. org/) gene annotation 
assessments. The identification of putative candidate 
genes was evaluated according to two parameters: a) 
being located in the vicinity of the peak marker, and b) 
having known functions and involvement in the studied 
traits in wheat (http:// ensem bl. grame ne. Org; https:// 
wheat urgi. versa illes. inra. fr/ SeqRe posit ory/ Annot ations). 
Moreover, the significant SNPs were utilized in the 
enrichment analysis of gene ontology via KOBAS version 
2.0 for testing in the KEGG. Finally, gene pathways were 

identified through the rice reference genome) Finally, 
gene pathways were identified through the rice reference 
genome ([80–82]; www. kegg. jp/ kegg/ kegg1. html).

Statistical analysis
Descriptive statistics and correlation coefficients were 
obtained by R 4.1 using the ggplot2, dplyr, ggpubr, and 
psych packages to reveal the distribution of wheat traits. 
An analysis of heatmaps was performed in RStudio to 
classify wheat genotypes. Eventually, the evaluation and 
dispersion of wheat traits and genotypes across the biplot 
diagram were analyzed using PCA and the factoextra 
packages in RStudio.

Fig. 14 Climatic data in the studied environments

Table 3 Drought tolerance indices used for investigation of Iranian wheat germplasm

Index Abbreviation Calculation formula Reference

Tolerance index TOL Yp− Ys [15]

Mean productivity MP Yp+Ys
2

[29]

Geometric mean productivity GMP
√
Yp× YS [30]

Stress tolerance index STI Yp×Ys

Y
2

p

[31]

Abiotic tolerance index ATI Yp−Ys

Ys/Yp
×

√
Yp× YS

[38]

Harmonic mean HM 2×Yp×Ys
Yp+YS

[29]

Stress susceptibility index SSI 1−(Yp/Ys)

1−(Ys/Yp)
[34]

Drought resistance index DI
[

Ys
(

Ys/Yp
)]

/Ys [29]

http://www.gramene.org/
http://ensembl.gramene.Org
https://wheaturgi.versailles.inra.fr/SeqRepository/Annotations
https://wheaturgi.versailles.inra.fr/SeqRepository/Annotations
http://www.kegg.jp/kegg/kegg1.html
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DS  Drought stress
GWAS  Genome-Wide Association Study
MTAs  Marker-trait associations
LD  Linkage disequilibrium
TKW  Thousand kernel weight
GN  Grains number per spike
SW  Spike weight
GY  Grain yield 
WW  Well-watered
RF  Rain-fed
TOL  Tolerance index
MP  Mean productivity
GMP  Geometric mean productivity
STI  Stress tolerance index
ATI  Abiotic stress tolerance index
SSI  Stress susceptibility index
DI  New drought resistance index
HM  Harmonic mean
GBS  Genotyping-by-sequencing
MAF  Minor allele frequencies
PCA  Principal component analysis
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