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Abstract 

Background  Oregano (Origanum vulgare L.), one of the important medicinal plants in the world, has valuable 
pharmacological compounds with antimicrobial, antiviral, antioxidant, anti-inflammatory, antispasmodic, antiurolithic, 
antiproliferative and neuroprotective activities. Phenolic monoterpenes such as thymol and carvacrol with many med-
ical importance are found in Oregano essential oil. The biosynthesis of these compounds is carried out through the 
methyl erythritol-4 phosphate (MEP) pathway. Environmental stresses such as salinity might improve the secondary 
metabolites in medicinal plants. The influence of salinity stress (0 (control), 25, 50 and 100 mM NaCl) on the essential 
oil content, composition and expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), γ-terpinene 
synthase (Ovtps2) and cytochrome P450 monooxygenases (CYP71D180) genes involved in thymol and carvacrol bio-
synthesis, was investigated in two oregano subspecies (vulgare and gracile).

Results  Essential oil content was increased at low NaCl concentration (25 mM) compared with non-stress condi-
tions, whereas it was decreased as salinity stress intensified (50 and 100 mM). Essential oil content was significantly 
higher in subsp. gracile than subsp. vulgare. The highest (0.20 mL pot−1) and lowest (0.06 mL pot−1) amount of essen-
tial oil yield was obtained in subsp. gracile at 25 and 100 mM NaCl, respectively. The content of carvacrol, as the main 
component of essential oil, decreased with increasing salinity level in subsp. gracile, but increased in subsp. vulgare. 
The highest expression of DXR, Ovtps2 and CYP71D180 genes was observed at 50 mM NaCl in subsp. vulgare. While, 
in subsp. gracile, the expression of the mentioned genes decreased with increasing salinity levels. A positive correla-
tion was obtained between the expression of DXR, Ovtps2 and CYP71D180 genes with carvacrol content in both sub-
species. On the other hand, a negative correlation was found between the expression of CYP71D180 and carvacrol 
content in subsp. gracile.

Conclusions  The findings of this study demonstrated that both oregano subspecies can tolerate NaCl salinity 
up to 50 mM without significant reduction in essential oil yield. Also, moderate salinity stress (50 mM NaCl) in subsp. 
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vulgare might increase the carvacrol content partly via increment the expression levels of DXR, Ovtps2 and CYP71D180 
genes.

Keywords  Origanum vulgare L., Salinity stress, Gene expression, 1-deoxy-D-xylulose-5-phosphate reductoisomerase, 
γ-Terpinene synthase, Carvacrol

Background
Oregano (Origanum vulgare L.) is an herbaceous per-
ennial plant in the mint family (Lamiaceae), native to 
Europe and central Asia [1, 2]. Many investigations have 
demonstrated its antimicrobial, antiviral, antioxidant, 
anti-inflammatory, antispasmodic, antiurolithic, antipro-
liferative, and neuroprotective pharmacological activities 
[3–5]. Furthermore, it is an important natural source for 
preserving foods or cosmetics due to its high antioxi-
dant activity [5–7]. A great variety has been reported in 
the essential oil composition of oregano, which is attrib-
uted to the high morphological and chemical diversity 
within the genus Origanum [8–10]. Depending on the 
growth conditions, growth stage and different organs, the 
dominant constituents of essential oil in oregano have 
been recognized such as carvacrol, thymol, p-cymene, 
γ-terpinene, sabinene, linalool, borneol, β-bisabolene, 
terpinen-4-ol, β-caryophyllene, caryophyllene oxide, 
germacrene D and β-ocimene [5, 9, 11–15]. Phenolic 
monoterpenes (thymol and carvacrol) identified in O. 
vulgare essential oil, are medically important due to their 
antioxidant, antimicrobial, antitussive, expectorant, anti-
spasmodic and antibacterial properties [16–19]. Terpene 
synthases (TPS) are key enzymes involved in the bio-
synthesis of monoterpenes and sesquiterpenes, which 
catalyze the oxidation steps from precursors for each 
group of terpenes [20, 21]. Terpene synthase genes have 
been identified in different species of mint family plants 

such as, Salvia officinalis [22, 23], Mentha spicata [24], 
O. vulgare [25], and Thymus capitatus [26]. The methyl 
erythritol-4 phosphate (MEP) pathway provides substrate 
for producing both mono and di-terpenes in plastids 
[27]. The induction and activity of 1-deoxy-D-xylulose 
5-phosphate reductoisomerase (DXR) is recognized 
as an important key point in MEP pathway, which has 
been reported as the first major and separating step of 
this pathway [21, 28]. Generally, the synthesis of geranyl 
diphosphate (GDP) from isopentenyl diphosphate (IPP) 
and dimethylallyl diphosphate (DMAPP) (as a precursor 
of monoterpenes) catalyzes by geranyl diphosphate syn-
thase. The next step of the pathway is the conversion of 
GDP to γ-terpinene, which is catalyzed by γ-terpinene 
synthase. In plants such as thyme and oregano, the 
precursor of thymol and carvacrol is γ-terpinene [25, 
29] and cytochrome P450 (CYP) monooxygenases are 
involved in the conversion of γ-terpinene to thymol and 
carvacrol (Fig. 1). According to the previous studies, car-
vacrol is derived from γ-terpinene through the acting 
of CYP71D180 and CYP71D181, whereas CYP71D178, 
CYP71D179 and CYP71D182 are likely involved in thy-
mol biosynthesis [30–32].

About 20% of the world’s land, as well as about half of 
arable irrigated land in the worlds, is affected by salinity 
[33]. As a worldwide issue, soil salinization restricts agri-
cultural production due to its adverse effect on the plant 
growth and production [34, 35]. Soil salinity reduces soil 

Fig. 1  Proposed pathway for carvacrol and thymol biosynthesis in oregano and thyme in plastids (Crocoll, 2011). DXR: 
1-deoxy-D-xylulose-5-phosphate reductoisomerase, Ovtps2: γ-Terpinene synthase, CYP71D180 
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water potential, leaf water potential and turgor pressure 
of the plant cells, consequently induce osmotic stress 
[36]. High accumulation of ions (Na+ and Cl−) in saline 
conditions prevents K+ and Ca+2 uptakes and leads to 
ion imbalance [37]. Salinity increases reactive oxygen 
species (ROS) in the plant cells [38] which causes lipid 
peroxidation, membrane degradation, and DNA and 
protein damage [39]. To deal with saline conditions, 
plants use various strategies such as ionic homeosta-
sis and partitioning, ion transport, osmotic adjustment, 
antioxidant defense system, and polyamine biosynthesis 
[40]. Furthermore, plant secondary metabolites notably 
improve plant growth and survival under biotic and abi-
otic stresses [41, 42] and their biosynthesis and accumu-
lation are influenced by environmental stresses such as 
salinity [43]. It has been demonstrated that environmen-
tal stresses might change both the quality and quantity 
of the plant secondary metabolites through influencing 
the expression of the genes involved in their biosynthesis 
[44]. Studies have shown that soil salinity changes essen-
tial oil biosynthesis and composition in several plant spe-
cies such as Salvia officinalis [45], Satureja hortensis [46], 
and Melissa officinalis [47].

To our knowledge, the effect of salinity stress on the 
content of terpenes and expression of their biosynthetic 
genes has not been evaluated in O. vulgare yet. Due to 
the presence of valuable compounds in the essential oil of 
O. vulgare, study the expression of the genes involved in 
their biosynthesis and their association with the accumu-
lation of the compounds under salinity conditions may be 
of great interest for pharmaceutical and industrial mar-
ket. Hence, for the first time, the expression of the genes 

involved in the biosynthesis of the valuable secondary 
metabolites (carvacrol and thymol) was compared in two 
oregano subspecies (gracile and vulgare) under various 
salinity levels. Moreover, the association between genes 
expression levels and their corresponded compounds, 
changes in essential oil content, oil yield and their com-
pounds were also studied under salinity conditions.

Results
Essential oil content and yield
Essential oil content was significantly affected by salin-
ity treatments and subspecies. According to the results, 
essential oil content was increased at low NaCl concen-
tration (25  mM) compared with non-stress conditions, 
whereas it was decreased as salinity stress intensified (50 
and 100  mM). Briefly, essential oil content was signifi-
cantly higher in subsp. gracile than subsp. vulgare (Fig. 2). 
Essential oil yield was significantly influenced by salinity 
treatments, subspecies and their interaction. In vulgare 
subspecies, essential oil yield decreased by increasing 
salinity, but the difference between 0, 25 and 50 mM NaCl 
was not significant. In gracile subspecies, the essential oil 
yield increased by enhancing the intensity of salinity, up 
to 25 mM and then decreased by increasing salinity level. 
Also, the difference between 0, 25 and 50 mM NaCl was 
not significant (Fig. 3). A positive relationship was found 
between essential oil content and yield in both subspecies 
(Fig. 6a,b).

Chemical composition of essential oil
The alterations of essential oil compounds in O. vul-
gare subsp. vulgare and O. vulgare subsp. gracile under 
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Fig. 2  Effect of salinity stress and Origanum vulgare subspecies (subsp. vulgare and subsp. gracile) on essential oil content. Columns with different 
letters have significant differences (p < 0.05)
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salinity stress were presented in Table  1. According 
to the results of GC–MS analysis, total volatile com-
pounds detected in gracile and vulgare subspecies were 
23 and 27, respectively. The dominant constituents of 
essential oils were carvacrol, carvacrol methyl ether, 
γ-terpinene, thymol, cis-α-bisabolene and p-cymene 
in both subspecies. The results revealed the differ-
ent impact of salinity on the chemical composition of 
essential oil in two subspecies. The highest percentage 
of carvacrol (60 and 47.36%) was recorded at non-stress 
conditions and 50 mM NaCl in gracile and vulgare 
subspecies, respectively. Although in gracile subspe-
cies, the percentage of carvacrol decreased with the 
application of salinity stress, no significant difference 
was observed between salinity treatments in terms of 
this composition. Conversely, in vulgare subspecies, 
the percentage of carvacrol raised by increasing salin-
ity levels. Although, the trend of thymol changes in 
two subspecies does not follow a discrete pattern, but 
in both subspecies, the amount of thymol in non-stress 
treatment was higher than salinity treatments. The find-
ings of this research demonstrated that, p-cymene was 
significantly increased in both subspecies by enhancing 
salinity stress. However, no significant differences were 
found between 25, 50 and 100 mM salinity treatments 
in vulgare subspecies. In both subspecies, the amount 
of γ-terpinene increased up to 25 mM NaCl and then 
decreased by increasing salinity. Furthermore, the 
trend of changes in carvacrol methyl ether and cis-α-
bisabolene did not follow a specific pattern, however, 
vulgare subspecies had higher content of carvacrol 

methyl ether and cis-α-bisabolene under all salinity 
treatments (Fig. 4).

According to the results, monoterpenes were the main 
groups of the identified components in both subspecies. 
The essential oil of subsp. gracile contained monoterpe-
nes (93.65%, 93.18%, 93.02% and 94.6%) at different lev-
els of salinity, respectively. Oxygenated monoterpenes 
had the highest percentage in the subclass of monoter-
penes. Of these, carvacrol, carvacrol methyl ether and 
thymol were the major components. 1,8-cineole, as an 
oxygenated monoterpene, was detected only at 100 mM 
NaCl in subsp. gracile. Monoterpene hydrocarbons are 
the second subclass of the monoterpenes, among which 
γ-terpinene and ρ-cymene were identified as the domi-
nant components. Sesquiterpene hydrocarbons were 
the next subclass of compounds found in subsp. gracile 
oil that reached the highest percentage (4.18%) at 50 mM 
NaCl, and cis-α- bisabolene was identified as the major 
component. In addition, oxygenated sesquiterpenes were 
not detected in subsp. gracile. In contrast, the oil of subsp. 
vulgare contained monoterpenes (89.19%, 91.53%, 92.23% 
and 91.57%) and sesquiterpenes (6.05%, 4.91%, 4.78% and 
5.76%) at different levels of salinity, respectively. Oxygen-
ated monoterpenes were the most dominant subclass of 
compounds in subsp. vulgare. Of these, carvacrol, carvac-
rol methyl ether and thymol were the major components. 
Furthermore, the highest percentage (61.39%) of oxygen-
ated monoterpenes was found at 50 mM NaCl. The high-
est monoterpene hydrocarbons (35.07%) as the second 
subclass of compounds were observed at 25 mM NaCl, 
of which γ-terpinene and ρ-cymene were identified as 
predominant components. Sesquiterpene hydrocarbons 

Fig. 3  Interaction effect of salinity × Origanum vulgare subspecies (subsp. vulgare and subsp. gracile) on essential oil yield. Columns with different 
letters have significant differences (p < 0.05)
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were another dominant subclass of compounds with cis-
α- bisabolene as the major component. Spathulenol and 
caryophyllene oxide are the only oxygenated sesquiterpe-
nes identified at non-stress treatments in subsp. vulgare. 
Moreover, α-phellandrene was detected at 25 mM NaCl 
in subsp. gracile. Whereas, in subsp. vulgare it was not 
detected only at 50 mM NaCl. Sabinene, as a monoter-
pene hydrocarbon, was not identified in gracile subspe-
cies but was found at non-stress treatment and 25 mM 
NaCl in vulgare subspecies (Table 1).

Correlation analysis showed a negative relationship 
between γ-terpinene and p-cymene in subsp. vulgare. 
Also in this subspecies, a negative relationship was 
obtained between γ-terpinene and thymol with carvac-
rol, whereas the correlation between p-cymene and car-
vacrol was positive. In addition, the correlation between 
γ-terpinene and p-cymene with thymol was negative 
(Fig.  6a). In contrast in subsp. gracile, a negative corre-
lation was observed between γ-terpinene and p-cymene. 
Also, a negative relationship was obtained between 
p-cymene and carvacrol, as well as γ-terpinene with thy-
mol. Furthermore, a positive relationship was observed 
between carvacrol with thymol and γ-terpinene with car-
vacrol (Fig. 6b).

Gene expression levels
To partly unravel the molecular mechanism by which 
salinity stress alters the content of essential oil in two 
studied oregano subspecies, the expression levels of 
DXR, Ovtps2 and CYP71D180 genes were investigated 
under various salinity levels in these subspecies for the 
first time. The expression levels of studied genes were 
significantly affected by salinity treatments, subspecies 
and their interaction. The highest DXR expression was 
observed at 50 mM NaCl in vulgare subspecies, while 
the lowest expression of that was obtained at gracile 

subspecies under salinity stress. Furthermore, the high-
est expression of Ovtps2 was observed at 50 mM NaCl in 
vulgare subspecies. However, in gracile subspecies, the 
relative expression of this gene decreased with increas-
ing salinity. Similar to the DXR gene, the highest relative 
expression of CYP71D180 was obtained at 50 mM salin-
ity in vulgare subspecies. Whereas, in gracile subspecies, 
the expression of this gene decreased with increasing 
salinity up to 50 mM, then increased at 100 mM salinity 
(Fig. 5).

A positive relationship was observed between the 
expression of DXR, Ovtps2 and CYP71D180 genes with 
carvacrol in vulgare subspecies, while, the correlation 
of these genes with thymol content was negative. Also, 
a negative correlation was found between the relative 
expression of Ovtps2 gene and γ-terpinene, while the 
correlation of this gene with p-cymene was positive in 
this subspecies (Fig.  6a). In contrast, in gracile subspe-
cies, a positive correlation was obtained between the 
relative expression of Ovtps2 and γ-terpinene, whereas 
the correlation of this gene with p-cymene was negative. 
There was a negative relationship between the expression 
of CYP71D180 and carvacrol, while a positive correlation 
was obtained between DXR and Ovtps2 genes expression 
with carvacrol content. Also, in gracile subspecies, the 
correlation between the three studied genes and thymol 
content was positive (Fig. 6b).

Discussion
To deal with salinity, plants adjust their growth and 
development behaviors along with an organizing between 
primary and secondary metabolites [48]. The results of 
the several investigations demonstrate that the biosyn-
thesis of secondary metabolites in medicinal plants is 
seriously affected by environmental factors [23, 49–51]. 
Furthermore, the difference between the content and 

Fig. 4  Interaction effect of salinity × Origanum vulgare subspecies (subsp. vulgare and subsp. gracile) on γ-terpinene, ρ-cymene, carvacrol, thymol, 
carvacrol methyl ether and cis-α-bisabolene content in the essential oil. Columns with different letters have significant differences (p < 0.05)
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composition of essential oil in medicinal plants depends 
on the various factors such as cultivar, genetics and envi-
ronmental conditions [52]. However, studies have shown 
that these changes may be caused through the different 
expression of the enzymes involved in the production 
of these compounds under salinity conditions [53, 54]. 
In this investigation, essential oil content influenced by 
salinity stress and subspecies. The highest percentage 
of essential oil was achieved for subsp. gracile at 25 mM 
salinity. However, the essential oil content decreased 
at 50 and 100  mM NaCl stress. Under moderate salin-
ity stress, the stimulation of essential oil production can 
be due to the higher density of essential oil glands [55]. 
Moreover, the increment of essential oil contents in 
plants may be due to the reduction of primary metabo-
lites by salinity and the improvement of intermediary 
products availability for secondary metabolites synthesis 
[54, 55]. According to the previous studies, the essential 
oil content increased with the intensity of salinity in Sal-
via officinalis [56] and Ocimum basilicum [55]. However, 
the essential oil content decreased by increasing salinity 
in O. majorana [57] and Mentha piperita [58]. Moreover, 
the highest essential oil yield was observed at low salin-
ity level in subsp. gracile. The essential oil yield in subsp. 
vulgare decreased with increasing salinity. Similarly, high 
salinity levels led to a decline in essential oil yield in some 

plant species such as, Trachyspermum ammi [59] and 
Matricaria sp. [60].

The chemical composition of O. vulgare essential oil 
has been studied in several researches [9, 15, 25, 61]. 
There is a high variety in essential oil composition of this 
plant. The main composition of essential oil in O. vulgare 
is thymol, carvacrol, γ-terpinene, p-cymene, β-myrcene 
and β-bisabolene [2, 9, 13]. In this study, the main com-
ponents under salinity treatments and in both subspecies 
were carvacrol, γ-terpinene, p-cymene, thymol, carvac-
rol methyl ether and cis-α-bisabolene. It can be consid-
ered that the accumulation of some main compounds 
as a defense mechanism in medicinal plants by induc-
ing changes in cellular metabolism adapts them to stress 
conditions [62]. Salinity stress can affect the essential oil 
composition of plants depending on its severity. In pre-
vious reports, percentage of main compounds enhanced 
with severity of NaCl stress in comparison with non-
stress conditions, in Salvia officinalis [48, 53, 63], S. mir-
zayanii [64] and Ocimum basilicum [55].

Monoterpenes in plants have a high commercial value 
industrially and can be used in the perfume, anti-cancer 
and pesticide industries [65]. Two dominant compo-
nents of oregano essential oil are phenolic monoterpe-
nes, thymol and carvacrol, which are well known their 
anti-vegetarian, antimicrobial, medicinal and antioxi-
dant activities [25]. In the present research, an early 
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Fig. 6  (See legend on previous page.)
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gene (DXR), a middle gene (Ovtps2) and a last gene 
(CYP71D180) in MEP pathway, involved in thymol and 
carvacrol biosynthesis [30, 31] were evaluated, which 
showed that salinity stress significantly affected their 
expression. This might be due to the role of terpenes in 
defense pathways and signal transduction in oregano. 
Based on the results, a positive correlation was obtained 
between the expression of DXR with Ovtps2 and 
CYP71D180 in both subspecies. According to the previ-
ous studies, γ-terpinene and p-cymene are the main pre-
cursors of thymol and carvacrol in oregano and thyme, 
which are synthesized by the γ-terpinene synthase 
enzyme from geranyl diphosphate [25, 29]. The results of 
Ovtps2 gene expression in subsp. vulgare indicated that 
salt stress increased the expression of this gene compared 
with control. Furthermore, Ovtps2 as an intermediate 
gene in the pathway of thymol and carvacrol biosynthe-
sis was more affected than DXR and CYP71D180 genes at 
all salinity levels. In oregano, the contents of thymol and 
carvacrol in leaves are related to the expression of Ovtps2 
[25]. In this study, the relative expression of Ovtps2 was 
increased in subsp. vulgare at 50 mM salinity, while the 
percentage of γ-terpinene (as a precursor of thymol and 
carvacrol) decreased. In other words, a negative corre-
lation was found between the expression of Ovtps2 and 
γ-terpinene at this salinity level. The lack of congruence 
between the transcriptional levels of the genes and their 
corresponded compounds (less gene expression but 
more compound production) may be due to the effect of 
stress on the enzymatic activity or some changes in tran-
scription and post-translational processes [50, 66]. Post-
translational modifications of proteins are very important 
factor in regulating the plant response to the stress con-
ditions [67] and can regulate protein function, location, 
half-life and protein interactions to reduce the potential 
damage caused by environmental stresses [68]. However, 
the activity of the enzymes under salinity stress have not 
been studied in this investigation.

Also, the highest expression of the studied genes and 
carvacrol content was observed in vulgare subspecies at 
50 mM salt stress. The gene expression levels may be var-
iable depending on the stress and plant species [69]. The 
higher expression of these genes in retort to moderate 
salinity stress may reverberate the elevation of phenolic 
monoterpenes such as carvacrol. Similarly, the higher 
expression of biosynthesis genes in response to abiotic 
elicitors has been associated with the increment of the 
corresponding metabolites in plants such as Tanacetum 
parthenium (L.) Sch. Bip. [70] and Nigella sativa L. [71]. 
On the contrary, despite the higher expression of DXR, 
Ovtps2 and CYP71D180 genes at 50  mM salinity, the 
content of thymol decreased. In previous studies, high 
transcription levels and high carvacrol production in 

thyme and oregano were correlated with genes encoding 
CYP71D180 and CYP71D181 [72]. Therefore, the reduc-
tion of thymol can be attributed to CYP71D. In the pre-
sent study, severe salinity stress reduced the expression of 
CYP71D180 in subsp. vulgare, which was consistent with 
the trend of carvacrol changes. It can be concluded that 
salinity stress probably reduces the amount of carvacrol 
in vulgare subspecies through reducing the expression 
of CYP71D180. However, in plants treated with sever 
salinity concentrations, despite a decline in the expres-
sion of CYP71D180, the biosynthesis of thymol (as a car-
vacrol isomer) increased, indicating that, other CYP450 
homologues are likely involved in increasing thymol 
production. Noteworthy, 11 sequences of CYP450 gene 
have been isolated from oregano and thyme by Crocoll 
et  al. [25]. Previous studies have shown that, there is a 
significant relation between the activity of CYP450 fam-
ily enzymes and the production of monoterpenes such 
as carvacrol and thymol in oregano [30, 31]. In the for-
mation of thymol and carvacrol from γ-terpinene, the 
aromatic hydrocarbon p-cymene has been proposed as 
an intermediary [73], however, its participation and the 
nature of the enzymes involved in the formation of the 
aromatic ring are still unknown [72]. In this study, the 
trend of Ovtps2 changes was consistent with p-cymene at 
different salinity levels.

Also, a positive relationship was observed between the 
relative expressions of the studied genes with carvacrol in 
subsp. vulgare and inversely, a negative relationship was 
obtained with thymol production. In addition, a negative 
relationship was observed between γ-terpinene and car-
vacrol in vulgare subspecies. Similarly, Morshedloo et al. 
[31] stated a negative correlation between γ-terpinene 
and carvacrol in O. vulgare subsp. gracile under drought 
stress. Also, a negative relationship between carvacrol 
and thymol in this subspecies was found. Hence, it can be 
concluded that γ-terpinene is a precursor for carvacrol. 
On the other hand, carvacrol is an isomer of thymol and 
they can be converted to each other. In gracile subspe-
cies, a positive correlation was observed between the rel-
ative expression of DXR and Ovtps2 with carvacrol, but 
the correlation between CYP71D180 and carvacrol was 
negative. Presumably, the negative association between 
carvacrol and CYP71D180 may be due to the role of other 
enzymes of cytochrome family in this pathway [31]. It 
has been demonstrated that Ovtps2, as the main terpene 
synthase, produces the half of the total terpenes content 
[30]. In this study, a direct relationship was obtained 
between the expression of Ovtps2 and thymol synthesis 
in subsp. gracile. The findings of this investigation are in 
line with Crocoll et al. [30] who reported that there is a 
positive correlation between Ovtps2 gene expression and 
γ-terpinene and thymol production in O. vulgare.
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Conclusions
In overall, the result revealed that the essential oil con-
tent increased up to 25  mM NaCl and then decreased. 
Also, gracile subspecies had a higher essential oil content 
than vulgare subspecies. No significant difference was 
found between NaCl treatments (0, 25 and 50  mM) in 
terms of essential oil yield in both subspecies. Carvacrol, 
as the main component of essential oil, decreased with 
increasing salinity levels in subsp. gracile but increased 
in subsp. vulgare. The highest expression of DXR, Ovtps2 
and CYP71D180 genes was observed at 50  mM NaCl 
in subsp. vulgare. A positive relationship was observed 
between the expression of DXR, Ovtps2 and CYP71D180 
with carvacrol content in subsp. vulgare and between the 
expression of DXR and Ovtps2 with carvacrol content in 
subsp. gracile. While, a negative association was observed 
between the expression of DXR, Ovtps2 and CYP71D180 
with thymol content in subsp. vulgare. In contrast, the 
correlation of DXR, Ovtps2 and CYP71D180 with thy-
mol content in subsp. gracile was positive. Therefore, due 
to the pharmacological properties of carvacrol and its 
economic value in the food and cosmetics industries, it 
can be suggested to enhance its production by increas-
ing the expression of DXR, Ovtps2 and CYP71D180 genes 
under controlled conditions in the future studies. Also, 
study the expression of salt-inducible genes/transport-
ers in both subspecies and their relationship with genes 
involved in MEP pathway under salinity conditions, as 
well a transcriptome analysis using RNA-seq in both sub-
species might lead to a comprehensive view regarding the 
MEP pathway in the studied subspecies and genetically 
closed genera.

Materials and methods
Plant material and growing conditions
Seeds of two subspecies of Oregano (O. vulgare subsp. 
vulgare and O. vulgare subsp. gracile) were obtained 
from the collection of medicinal plants in Department 
of Horticultural Science, Urmia University (West Azer-
baijan province, Iran). The plant samples were identified 
by Hossien Maroofi (Research Center of Agriculture and 
Natural Resources of Kurdistan, Sanandaj, Iran). Voucher 
specimens were deposited at the herbarium in Depart-
ment of Horticultural Science, Faculty of Agriculture, 
Urmia University, Iran. The experiment was performed 
as a factorial in a completely randomized design (CRD) 
with three replications during 2019–2020. Seeds of two 
subspecies were planted in plastic pots in research green-
house of Urmia University. Each pot (diameter: 25 cm 
and height: 30 cm) was filled with a 3:2 ratio of soil and 
sand. The physical and chemical characteristics of the 
soil used in the pots were: pH (8.02), EC (1.27 ds m−1), 

organic material (0.62%), total nitrogen (0.12%), avail-
able P (9.45 ppm), exchangeable K (0.46 meq/100g soil), 
and texture (sandy loam). The greenhouse temperature 
was in the range of 20 ± 2 to 28 ± 2°C with 50–60% rela-
tive humidity under natural sunlight. After seed germina-
tion, the seedlings were thinned and finally 7 plants kept 
in each pot. The plants were irrigated evenly with ordi-
nary water until reaching the stage of 6–8 leaves. After 
this stage, they were subjected to salinity stress for 45 
days (until the flowering stage). The salinity treatments 
applied, included four levels of saline irrigation (0, 25, 50 
and 100 mM NaCl). To avoid sudden shock from salinity 
stress, salinity treatments gradually reached the final con-
centration during the three irrigation stages. At the full 
flowering stage, 10 fully developed leaves were harvested 
from each treatment and transferred to a -70  °C freezer 
to evaluate the relative expression of DXR, Ovtps2 and 
CYP71D180 genes. Then, the aerial parts of plants were 
cut from 10  cm above the soil in order to essential oil 
extraction and analysis.

Essential oil extraction
The aerial parts of oregano were shade dried, and then 
plant material (20 g) was subjected to hydro-distillation 
(Clevenger apparatus, 2.5 h) for essential oil extraction. 
The essential oil content was expressed as volume per 
dry weight percentage (%v/w). The collected essential 
oils were dehydrated over anhydrous sodium sulfate and 
stored in dark sealed vials at low temperature (4°C) till 
analysis.

GC–MS analysis of plant volatiles
Gas chromatography/mass spectrometry (GC–MS) was 
used for analysis of essential oil components. An Agi-
lent 7890 gas chromatograph paired with a 5975A mass 
spectrometer equipped with a HP-5 MS capillary col-
umn (5% Phenyl Methylpolysiloxane, 30 m length, 0.25 
mm i.d., 0.25 μm film thickness) (Agilent Technologies, 
Wilmington-DE, USA), was used for GC–MS analysis. 
The oven temperature program was adjusted for 3 min 
(at 80°C), then raised at 10°C min−1 to 200°C, kept for 
15 min at 200°C. The temperatures applied to the injec-
tor, transfer line and ion resource were 240°C, 280°C and 
230°C, respectively. The carrier gas used (with a flow rate 
of 1 mLmin−1 and an electron impact (EI) of 70 eV) was 
helium. The injector was set in a split mode (split ratio of 
1:50) and injection volume was 1.0 μL. Mass spectra were 
scanned in the range of 40–500 amu. The constituents of 
essential oil were determined by using the calculated lin-
ear retention indices (Wiley 2007; NIST 2005) and mass 
spectra with those reported in the NIST 05 and Wily 07.
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RNA isolation and cDNA synthesis
Total RNA of O. vulgare leaves was extracted using RNX 
plus™ kit according to the manufacturer’s instructions 
(Sinaclon, Iran). After evaluating the quality and quan-
tity of RNA using 1% agarose gel electrophoresis and 
nanodrop ND-1000, cDNA was synthesized using Revert 
Aid™ First Strand cDNA Synthesis Kit (Thermo Fisher 
Scientific, USA) according to the instructions of the 
manufacturer (Thermo Scientific, USA). Negative control 
reactions using reverse transcriptase minus (-RT) and 
non-template control (NTC), was performed to ensure 
no genomic DNA contamination and for reagent con-
tamination, respectively.

Real time PCR reactions
The relative expression of the genes was investigated 
using Real time PCR (Rotor gene Q-Pure Detection-
Qiagen) in the treated plants compared with the control. 
Gene specific primer pairs were selected from previous 
studies [25, 31]. Real time PCR reactions were carried out 
by considering three biological replications in the final 
volume of 12.5 μL using Maxima ® SYBR-Green/ROX 
qPCR Master mix kit (Thermo Fisher Scientific, USA), 
according to the manufacturer’s instructions. Initial acti-
vation of the enzyme was done at 95°C for 10 min in one 
cycle, followed by 40 cycles including denaturation at 
95°C for 10 s, annealing at 58–60°C for 15 s and fluores-
cence data collection at 72°C for 20 s. The actin gene was 
used as the reference gene to normalize the data. The rel-
ative expression of the studied genes was calculated after 
obtaining Ct by ΔΔCt method [74].

Statistical analysis
The experiment was performed as a factorial experiment 
in CRD with three replications. Data obtained were sub-
jected to analysis of variance (ANOVA) followed a com-
parison of the means using Duncan’s multiple range test 
at p < 0.05 level using SAS 9.2 software. The relevance 
between the main constituents of essential oil and gene 
expression level were estimated using the Pearson’s cor-
relation coefficient by R software.
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