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Abstract 

Background Buckwheat (Fagopyrum spp.), belonging to the Polygonaceae family, is an ancient pseudo-cereal 
with high nutritional and nutraceutical properties. Buckwheat proteins are gluten-free and show balanced amino acid 
and micronutrient profiles, with higher content of health-promoting bioactive flavonoids that make it a golden crop 
of the future. Plant metabolome is increasingly gaining importance as a crucial component to understand the con-
nection between plant physiology and environment and as a potential link between the genome and phenome. 
However, the genetic architecture governing the metabolome and thus, the phenome is not well understood. Here, 
we aim to obtain a deeper insight into the genetic architecture of seed metabolome in buckwheat by integrating 
high throughput metabolomics and genotyping-by-sequencing applying an array of bioinformatics tools for data 
analysis.

Results High throughput metabolomic analysis identified 24 metabolites in seed endosperm of 130 diverse buck-
wheat genotypes. The genotyping-by-sequencing (GBS) of these genotypes revealed 3,728,028 SNPs. The Genome 
Association and Prediction Integrated Tool (GAPIT) assisted in the identification of 27 SNPs/QTLs linked to 18 metabo-
lites. Candidate genes were identified near 100 Kb of QTLs, providing insights into several metabolic and biosynthetic 
pathways.

Conclusions We established the metabolome inventory of 130 germplasm lines of buckwheat, identified QTLs 
through marker trait association and positions of potential candidate genes. This will pave the way for future dissec-
tion of complex economic traits in buckwheat.
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Background
Buckwheat (Fagopyrum spp.) is a pseudo-cereal belong-
ing to the Polygonaceae family. The genus Fagopyrum 
contains 27 species, of which two diploid species—Tar-
tary buckwheat (Fagopyrum tataricum) and common 
buckwheat (Fagopyrum esculentum) are grown for food 
[1]. These two species vary in their breeding system, F. 
tataricum being self-fertile mainly perform inbreeding, 
while F. esculentum is an insect-pollinated, and obligate 
out breeder [2]. The grain is consumed after boiling or 
steaming, or powdered into gluten-free flour.

Buckwheat is a valuable health-promoting crop that 
is used for preparing number of functional foods and 
nutraceuticals products. It has high-quality, gluten-free 
proteins as well as a wealth of bioactive ingredients and 
antioxidants. These characteristics account for its cur-
rent high demand [3]. The balanced essential amino 
acids, resistant starch, vitamins, and minerals available in 
buckwheat are beneficial to human health. Additionally, 
it is a rich source of bioactive flavonoids like epicatechin, 
rutin, quercetin, and (iso)vitexin, all of which have been 
shown to have favourable effects on hyperlipidaemia, dia-
betes, and vascular diseases [4–6]. In particular, Tartary 
buckwheat is abundant in rutin, a citrus flavonoid that 
helps the body to use vitamin C, produce collagen and 
strengthen blood vessels [7].

In view of the increasing interest in nutraceutical crops 
as potential candidates for crop diversification and a shift 
from food to nutritional and health security, a large scale 
nutri-genomic investigations across crops has been initi-
ated, in order to unravel the potential of underutilised 
species as frontline foods to promote health [8]. Despite 
its obvious potential as a functional food, buckwheat has 
not been fully harnessed due to low yield, self-incompat-
ibility, increased seed cracking, limited seed set, lodging, 
and frost susceptibility. To overcome these bottlenecks, 
there is a need to improve these traits in this underuti-
lized species [9]. The availability of diverse data, as well as 
the population structure of crop germplasm, will be valu-
able genetic resources for discovering genes in buckwheat 
for improving it as a potential crop for the future [10].

In-depth research on the flavonoid biosynthesis path-
way in model plants and several crop species has recently 
gained attention. These available experimental evidences 
indicate that metabolomics can provide novel insights 
into the biosynthesis pathways, especially in crops that 
possesses high value traits associated with bioactive anti-
oxidant metabolites. Buckwheat being well known for 
such traits is attracting high throughput omics research 
in the recent years. Metabolome Based Genome Wide 
Association Study (mGWAS) or metabolomic quan-
titative trait loci (mQTL) mapping, in particular, is 
emerging as a powerful tool for mining the genetic loci 

contributing to metabolite diversification. Furthermore, 
the relationship of these metabolites, naturally deputed 
to defence against biotic and abiotic stress [11] with food 
quality and flavour has been thoroughly investigated [12]. 
However, to the best of our knowledge, no mGWAS or 
mQTL studies in buckwheat have been reported till date. 
With the advancement of genome sequencing and bioin-
formatics technologies, approaches such as association 
and linkage mapping have come a long way to unravel 
the genetic diversity of targeted traits across crops. Fur-
thermore, plant association mapping has revealed new 
genetic and biochemical information about metabo-
lomes. Genome-wide association studies (GWAS) are 
frequently used to identify new genes and QTLs by 
locating significant allelic differences in candidate genes 
underpinning quantitative and complicated traits, such 
as those linked to growth, development, stress tolerance, 
and nutritional quality [13]. As a potential technique 
for moving forward, mGWAS entails merging genotyp-
ing and metabolome data from the diverse crop germ-
plasm [14], with a striking example from highland barley 
(Qingke), mGWAS study has been carried out for mining 
genes involved in phenylpropane metabolic pathway [15].

Considering no such information is available till date on 
buckwheat, in the present study, high throughput metab-
olomics analysis was carried out on the seed endosperm 
of 130 diverse buckwheat genotypes and GBS-based 
SNP genotyping was performed to identify marker trait 
associations. Further, candidate genes located in 100  kb 
region of known QTLs were identified.

Results
Identification of phenolic metabolites in buckwheat 
extracts
Results obtained from HPLC–DAD-MS characterisation 
are reported in Supplementary Table 1, and a representa-
tive chromatogram is also shown (Supplementary Fig.  1). 
Among the identified metabolites, 10 were flavonoids (both 
glycosidic derivatives and aglycones), 6 were phenolic acids 
(benzoic, caffeic, and ferulic acids derivatives), 3 were cat-
echin derivatives, and 3 were gallic acid derivatives. Among 
the flavonoids, Rutin and its aglycone (quercetin) possess 
numerous biological activities. Exposure of buckwheat 
grain to moisture results in enzymatic breakdown of rutin 
to quercetin by rutinosidase, as it also happens after mill-
ing and mixing of the flour with water. The beneficial effect 
of rutin depends upon its concentration in the final prod-
uct that further depends upon the conversion rate of rutin 
to quercetin. Thus, the quantification of both rutin and 
quercetin are considered at seed level. Out of 22 different 
metabolites, 18 were found to be significantly associated 
with different SNP markers (Table 1).
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Table 1 Details of significant QTLs associated with seed metabolome content

Trait Chr. no Position p-value R2 Effect Gene Genic Location Nucleotide 
Change using 
Fagopyrum 
tataricum 
as reference 
genome

Nucleotide 
change using 
Fagopyrum 
esculentum 
as reference 
genome

DH 6 31,943,608 1.85E-05 0.158705 -0.02714 FtPinG0003273700.01-
FtPinG0009352600.01

intergenic_region G > C C

6 31,943,643 5.08E-05 0.141664 -0.02666 FtPinG0003273700.01-
FtPinG0009352600.01

intergenic_region C > T C > T

7 1,442,391 1.73E-04 0.121484 -0.01428 FtPinG0002741000.01-
FtPinG0002741100.01

intergenic_region T > G T > G

7 1,442,405 1.12E-04 0.128641 -0.0152 FtPinG0002741000.01-
FtPinG0002741100.01

intergenic_region T > G C > G

7 1,442,440 7.07E-05 0.136179 -0.01541 FtPinG0002741000.01-
FtPinG0002741100.01

intergenic_region A > C T > C

CAH 1 686,973 1.43E-04 0.140211 0.013776 FtPinG0000109300.01 transcript A > G T > G
2 20,704,365 1.91E-04 0.135583 0.009183 FtPinG0007484300.01 transcript T > G C > G
3 27,868,660 9.36E-05 0.147047 0.013873 FtPinG0004748800.01-

FtPinG0004818900.01
intergenic_region C > T C > T

FARD 1 690,702 1.11E-04 0.247833 0.049632 FtPinG0000107500.01 transcript C > T T

1 690,741 1.47E-04 0.243917 0.045342 FtPinG0000107500.01 transcript C > T T

1 24,428,872 1.32E-04 0.245393 -0.02166 FtPinG0009765900.01-
FtPinG0009765800.01

intergenic_region A > G G

1 36,893,765 1.30E-04 0.245693 -0.02427 FtPinG0009723600.01-
FtPinG0009723000.01

intergenic_region G > A G > A

1 56,206,146 7.86E-06 0.286407 -0.03312 FtPinG0009546600.01-
FtPinG0009547000.01

intergenic_region T > C A > C

1 56,206,255 7.66E-06 0.286781 -0.02978 FtPinG0009546600.01-
FtPinG0009547000.01

intergenic_region C > G G

1 56,206,256 1.46E-05 0.277167 -0.02798 FtPinG0009546600.01-
FtPinG0009547000.01

intergenic_region T > G A > G

1 66,342,001 1.61E-05 0.275742 0.05765 FtPinG0009047000.01 transcript G > A A

1 66,350,397 3.16E-05 0.265903 0.052706 FtPinG0009047800.01 transcript A > C T > C

1 66,772,599 5.13E-05 0.258913 0.050667 FtPinG0008819900.01 transcript T > C C

1 66,772,612 8.22E-05 0.252153 0.047167 FtPinG0008819900.01 transcript C > A G > A

1 67,240,863 6.82E-05 0.254816 -0.02415 FtPinG0007913300.01-
FtPinG0007914400.01

intergenic_region C > A A

2 17,630,572 6.70E-05 0.255069 -0.02232 FtPinG0006267400.01 transcript C > T C > T

2 43,827,225 9.62E-05 0.249909 -0.02301 FtPinG0007781400.01-
FtPinG0007781500.01

intergenic_region A > T C > T

3 24,391,155 1.26E-04 0.246074 -0.02141 FtPinG0008451400.01-
FtPinG0007098800.01

intergenic_region C > T T

3 24,391,204 1.26E-04 0.246059 -0.02214 FtPinG0008451400.01-
FtPinG0007098800.01

intergenic_region C > T T

3 24,391,246 3.72E-05 0.263542 -0.02454 FtPinG0008451400.01-
FtPinG0007098800.01

intergenic_region C > T T

3 27,527,353 8.21E-05 0.25216 -0.02363 FtPinG0008424800.01-
FtPinG0006577900.01

intergenic_region T > C C

4 15,679,429 1.68E-04 0.242033 -0.02163 FtPinG0004200100.01-
FtPinG0005928300.01

intergenic_region G > A C > A



Page 4 of 18Zargar et al. BMC Plant Biology          (2023) 23:373 

Table 1 (continued)

Trait Chr. no Position p-value R2 Effect Gene Genic Location Nucleotide 
Change using 
Fagopyrum 
tataricum 
as reference 
genome

Nucleotide 
change using 
Fagopyrum 
esculentum 
as reference 
genome

4 40,483,173 8.51E-05 0.251657 -0.02554 FtPinG0008592100.01-
FtPinG0007101500.01

intergenic_region G > A T > A

4 40,483,242 1.01E-04 0.24915 -0.02325 FtPinG0008592100.01-
FtPinG0007101500.01

intergenic_region C > T A > T

6 21,277,090 1.99E-04 0.239631 -0.02061 FtPinG0009334000.01 transcript C > A A

6 25,196,690 1.27E-04 0.245935 -0.02207 FtPinG0006368000.01-
FtPinG0006368600.01

intergenic_region G > A A

6 33,349,635 8.44E-07 0.320425 -0.03594 FtPinG0009101100.01-
FtPinG0006198100.01

intergenic_region C > A T > A

8 27,024,873 1.47E-04 0.243868 -0.02266 FtPinG0009096400.01-
FtPinG0009096700.01

intergenic_region G > A T > A

8 27,168,605 1.28E-04 0.245854 -0.02628 FtPinG0009099100.01-
FtPinG0007437200.01

intergenic_region C > T C > T

8 31,903,089 6.55E-05 0.255389 -0.02226 FtPinG0007066900.01-
FtPinG0007066500.01

intergenic_region T > C T > C

CG 3 5,955,778 1.56E-04 0.147546 0.018385 FtPinG0007345300.01-
FtPinG0007345100.01

intergenic_region G > A G > A

6 40,712,816 1.84E-04 0.144954 -0.01958 FtPinG0000951700.01-
FtPinG0009389800.01

intergenic_region C > T A > T

6 47,601,958 1.67E-04 0.146488 -0.02541 FtPinG0009744500.01-
FtPinG0009745000.01

intergenic_region G > A C > A

SI 3 27,531,299 1.64E-04 0.138372 -0.00649 FtPinG0008424800.01-
FtPinG0006577900.01

intergenic_region C > G A > G

4 18,035,789 1.86E-04 0.136442 -0.00486 FtPinG0005139500.01-
FtPinG0003394400.01

intergenic_region C > T C > T

5 9,638,542 6.62E-05 0.153038 -0.00541 FtPinG0009308500.01-
FtPinG0009309300.01

intergenic_region A > G T > G

5 19,139,130 2.00E-04 0.135279 -0.00455 FtPinG0006720000.01 transcript C > T T

5 52,022,751 1.64E-04 0.138378 -0.00575 FtPinG0000759400.01-
FtPinG0001108200.01

intergenic_region G > A G > A

Catechin 1 37,667,295 1.79E-04 0.186122 0.007466 FtPinG0003113900.01-
FtPinG0008771600.01

intergenic_region C > A C > A

3 5,955,359 8.79E-06 0.232852 0.009372 FtPinG0007345300.01 transcript C > T T

3 5,955,370 4.95E-05 0.205691 0.00858 FtPinG0007345300.01 transcript A > T A > T
3 5,955,386 3.91E-05 0.209333 0.008408 FtPinG0007345300.01 transcript T > A T > A
4 47,183,385 1.11E-04 0.193272 -0.00794 FtPinG0005258100.01-

FtPinG0007507100.01
intergenic_region G > A A

5 20,516,429 1.37E-04 0.190159 -0.00876 FtPinG0006758300.01-
FtPinG0007298300.01

intergenic_region C > A T > A

6 3,469,009 1.97E-04 0.184654 -0.00775 FtPinG0002700100.01 transcript G > A T > A
UNK2 2 30,282,729 6.59E-05 0.171165 -0.00877 FtPinG0006957600.01-

FtPinG0009282100.01
intergenic_region T > A C > A

EAEC 5 9,852,061 4.64E-05 0.264065 -0.01507 FtPinG0009313800.01 transcript C > T T

Vanillin 1 770,266 1.81E-04 0.20833 -0.00373 FtPinG0000116900.01 transcript T > C T > C
2 25,219,312 1.36E-04 0.212469 -0.00412 FtPinG0008771000.01-

FtPinG0008770600.01
intergenic_region G > A A

4 32,201,379 1.50E-04 0.211102 -0.00393 FtPinG0002498500.01-
FtPinG0007295400.01

intergenic_region C > T C > T
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Table 1 (continued)

Trait Chr. no Position p-value R2 Effect Gene Genic Location Nucleotide 
Change using 
Fagopyrum 
tataricum 
as reference 
genome

Nucleotide 
change using 
Fagopyrum 
esculentum 
as reference 
genome

4 37,569,986 3.56E-05 0.232479 -0.00379 FtPinG0005694200.01-
FtPinG0005693900.01

intergenic_region G > A A

5 48,972,415 1.62E-04 0.209901 -0.00353 FtPinG0006470900.01 transcript T > G G

7 16,971,070 6.12E-05 0.22436 -0.00379 FtPinG0007389500.01 transcript C > T G > T
7 26,624,210 4.57E-05 0.228734 -0.00496 FtPinG0008373300.01-

FtPinG0006832800.01
intergenic_region G > A C > A

Orientin 5 20,236,700 1.59E-04 0.177486 -0.03427 FtPinG0006758900.01-
FtPinG0006758300.01

intergenic_region C > T N > T

8 44,828,457 3.37E-05 0.20154 -0.04085 FtPinG0004158200.01 transcript G > C G > C
8 44,828,469 1.18E-04 0.182103 -0.03586 FtPinG0004158200.01 transcript T > G A > G

Rutin 3 18,109,943 1.88E-04 0.12706 -0.0253 FtPinG0001983600.01 transcript C > G A > G
5 52,022,270 3.11E-05 0.156608 -0.03027 FtPinG0000759400.01-

FtPinG0001108200.01
intergenic_region G > A G > A

Duratin 1 41,194,007 3.84E-05 0.252683 0.020089 FtPinG0009552900.01-
FtPinG0009553100.01

intergenic_region T > C G > C

1 61,107,764 1.18E-04 0.236442 -0.01614 FtPinG0004992900.01 transcript G > T A > T

3 25,220,994 1.20E-04 0.23612 -0.02378 FtPinG0000957700.01-
FtPinG0000705900.01

intergenic_region C > A T > A

5 20,432,271 7.80E-05 0.242379 -0.02215 FtPinG0006758300.01-
FtPinG0007298300.01

intergenic_region G > A T > A

QDG 1 36,305,222 1.88E-04 0.121977 -0.01995 FtPinG0008486000.01-
FtPinG0002428800.01

intergenic_region C > A A

6 33,447,847 1.11E-04 0.130612 -0.03464 FtPinG0009101100.01-
FtPinG0006198100.01

intergenic_region G > A C > A

7 36,838,229 1.87E-05 0.160296 -0.01753 FtPinG0001130600.01-
FtPinG0006711700.01

intergenic_region A > G C > G

7 36,838,233 8.32E-06 0.174117 -0.01802 FtPinG0001130600.01-
FtPinG0006711700.01

intergenic_region A > G C > G

EEM 1 56,206,007 1.70E-04 0.230017 0.018241 FtPinG0009546600.01-
FtPinG0009547000.01

intergenic_region C > A A

EED 1 36,902,263 8.49E-05 0.140581 -0.15143 FtPinG0009723000.01 transcript G > A G > A
1 40,494,217 6.52E-05 0.144906 -0.15095 FtPinG0009459500.01-

FtPinG0006043600.01
intergenic_region C > T T

1 56,205,855 9.67E-05 0.138464 -0.14649 FtPinG0009546600.01-
FtPinG0009547000.01

intergenic_region C > T G > T

1 56,205,857 4.99E-05 0.149315 -0.15454 FtPinG0009546600.01-
FtPinG0009547000.01

intergenic_region A > G G

1 63,055,659 4.62E-05 0.150599 -0.15261 FtPinG0007147500.01-
FtPinG0007147100.01

intergenic_region T > C A

2 24,116,413 1.53E-04 0.131037 -0.14383 FtPinG0009268700.01 transcript G > A C > A
4 22,592,618 1.99E-04 0.126772 -0.12859 FtPinG0006817900.01-

FtPinG0006817800.01
intergenic_region C > T A > T

4 27,546,189 1.12E-04 0.136066 -0.14038 FtPinG0006589600.01-
FtPinG0001650100.01

intergenic_region C > T T

4 37,570,298 1.62E-04 0.130047 -0.14167 FtPinG0005694200.01-
FtPinG0005693900.01

intergenic_region T > C C

5 50,760,514 1.50E-04 0.131302 -0.14217 FtPinG0009566500.01-
FtPinG0009566800.01

intergenic_region A > G C > G

7 40,000,586 1.25E-04 0.134232 -0.14186 FtPinG0005061300.01-
FtPinG0005842300.01

intergenic_region T > A T > A
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Metabolite fingerprinting of buckwheat samples
Raw HPLC–DAD-MS data were analysed using multi-
variate statistics. An explorative analysis was performed, 
namely PCA. Results, reported in Fig. 1a, showed a clear 
distinction between F. tataricum and F. esculentum sam-
ples, indicating different metabolome compositions. The 
same group’s distinction can be observed from the heat-
map in Fig. 1c. PCA score plot revealed that the variance 
explained by PC1 is higher than that explained by PC2 
(26.6% vs. 14.8%), indicating that the inter-group variabil-
ity is higher than the intra-group one.

Variables significantly associated with the two sam-
ple groups were selected using a volcano plot, where 
variables with FDR-adjusted p-value < 0.05 and with 
Fold Change > 2 were considered as significant descrip-
tors. As can be observed in Fig.  1b, four variables 
were significantly associated to the F. tataricum sam-
ples group, namely rutin, quercetin, kaempferol and 

epiafzelchin-epicatechin-O-dimethylgallate (EED). The 
amounts of these variables in the two groups of samples 
are shown in Fig. 1d.

Characterization and distribution of SNPs in buckwheat
The data from the sequencing platform (with a sequenc-
ing depth of 121x) represent an average of 1.58 million 
reads per sample with a read length of 150 base pairs. 
The reads were then mapped to the buckwheat refer-
ence genome (GCA 002319775.1; http:// www. mbkba 
se. org/ Pinku1/) with an average mapping percentage of 
90.78. The mapping of reads resulted in the identifica-
tion of 4,142,684 variants, containing 3,728,028 SNPs 
and 414,656 InDels (214,798 insertions and 199,858 dele-
tions). However, while considering 5% minor allele fre-
quency and 30% missing rate, a total of 34,978 SNPs were 
observed. The chromosome wise distribution of SNP 
is shown in Fig. 2. The highest number of filtered SNPs 

Table 1 (continued)

Trait Chr. no Position p-value R2 Effect Gene Genic Location Nucleotide 
Change using 
Fagopyrum 
tataricum 
as reference 
genome

Nucleotide 
change using 
Fagopyrum 
esculentum 
as reference 
genome

GEDC 1 19,115,204 1.02E-04 0.158153 0.003964 FtPinG0006187600.01-
FtPinG0006187400.01

intergenic_region C > T G > T

3 21,354,743 1.11E-04 0.156796 0.005107 FtPinG0007606600.01-
FtPinG0007633300.01

intergenic_region T > A C > A

7 5,447,892 1.94E-04 0.148009 0.003523 FtPinG0008977900.01-
FtPinG0008978100.01

intergenic_region A > T T

Quercetin 2 6,522,591 5.37E-05 0.189762 -0.61128 FtPinG0006973300.01-
FtPinG0006973100.01

intergenic_region T > A T > A

2 19,936,435 8.33E-05 0.182878 -0.60977 FtPinG0000053600.01-
FtPinG0005240800.01

intergenic_region G > A G > A

2 19,942,252 1.88E-04 0.170308 -0.6232 FtPinG0000053600.01-
FtPinG0005240800.01

intergenic_region C > T C > T

2 35,787,786 6.26E-05 0.187339 -0.66247 FtPinG0004834600.01-
FtPinG0004835000.01

intergenic_region A > G T > T

2 47,754,251 1.91E-04 0.170036 -0.44249 FtPinG0002929100.01 transcript G > T T

4 46,063,806 1.83E-04 0.170666 -0.56031 FtPinG0008652100.01 transcript G > A N > A

5 29,043,577 1.01E-05 0.21647 -0.92787 FtPinG0006381600.01 transcript T > C A > C

5 29,043,597 1.28E-04 0.17622 -0.73951 FtPinG0006381600.01 transcript T > C G > C

7 23,524,375 1.64E-04 0.172378 -0.47712 FtPinG0001268600.01-
FtPinG0001269100.01

intergenic_region G > A C > A

8 24,957,491 1.85E-04 0.17055 -0.647 FtPinG0009120700.01-
FtPinG0007897200.01

intergenic_region G > A T > A

Kaemph-
erol

1 36,305,386 7.01E-05 0.176993 0.044452 FtPinG0008486000.01-
FtPinG0002428800.01

intergenic_region A > T T

5 29,043,577 1.80E-05 0.198776 -0.06374 FtPinG0006381600.01 transcript T > C A > C

http://www.mbkbase.org/Pinku1/
http://www.mbkbase.org/Pinku1/
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(6750) was observed on chromosome (chr.) 1, whereas 
the lowest number of SNPs (3190) was found on chr. 
7. SNPs have also been classified as having a high, low, 
moderate, or modifier impact, with the percentage of 
high being 0.413%, low being 1.566%, moderate being 
2.105%, and modifier being 95.916%. According to the 
effects by functional class missense percent was 59.93%, 
nonsense was 3.37% and silent was 36.70%. Number 
of effects by type and region are mentioned in detail in 
Supplementary Table 2. Total number of transitions and 
transversions were found to be 39,416,882 and 23,590,338 
respectively, with a transition by transversion ratio (Ts/
Tv) of 1.6709.

In order to ensure similarity between two genomes of 
buckwheat, we performed pairwise alignment of both 
genomes using the GSALIGN program and visualized 
the result using DotPlot. Surprisingly from genome 

alignment, the major scaffolds from the common buck-
wheat genome aligned strongly with the Tataricum 
genome (Supplementary Fig.  2). So, we concluded that 
utilizing the Tataricum genome as a reference genome for 
annotating traits of common buckwheat doesn’t drift the 
overall study. It was further validated by using the com-
mon buckwheat genome (https:// doi. org/ 10. 1111/ jipb. 
13459) [16] as reference genome to revalidate the already 
identified SNPs. We found a total of 68 QTLs (~ 67%) 
common among both genomes as detailed in Table  1. 
Moreover 31QTLs have the same residues in Fagopyrum 
esculentum genome as the genotypes under study.

Genetic diversity and population structure
All paired genetic distances between the 130 buckwheat 
lines in this study were calculated using SNP-based 
genotypic data. A neighbouring tree revealed that the 

Fig. 1 Metabolomic analysis of buckwheat samples. a PCA score plot. Red dots: F. esculentum; green dots: F. tataricum; (b) Volcano plot showing 
variables significantly associated to the two buckwheat sample groups. Variables on the right side of the plot are more abundant in F. tataricum, 
while those on the left side are more abundant in F. esculentum. Only variables significantly (FDR-p < 0.05) associated to one of the two groups are 
highlighted; (c) Heatmap plot. Red: F. esculentum; green: F. tataricum; (d) Boxplots showing the comparison of the amounts of significant variables 
in the two groups of buckwheat samples. Red: F. esculentum; Green: F. tataricum 

https://doi.org/10.1111/jipb.13459
https://doi.org/10.1111/jipb.13459
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genotypes were divided into four main groups, which were 
further subdivided based on the genetic distances (Fig. 3a). 
Dendrogram analysis revealed that among the four major 
groups there was one minor group which was clustered 
together and included only three genotypes, i.e. BWM30, 
BWM38 and BWZ49. These three genotypes were all 
from the same species, F. esculentum, and are thus closely 
related. PCA revealed variations among buckwheat geno-
types (Fig. 3b). Furthermore, the population structure was 
scored for K values ranging from 1 to 12 across the panel 
using high quality SNPs in population structure analysis. 
The delta K peak was found to be the highest at K = 4, and 
130 buckwheat genotypes were classified into four popula-
tions (Fig. 3c and d). Furthermore, this was consistent with 
the neighbour-joining tree with only minor deviations.

Marker trait association
A total of 99 markers were found to be having signifi-
cant association with 18 metabolites. The details of these 
marker trait associations are summarized in Table  1 
and depicted in Manhattan and QQ-Plots (Fig.  4 A-R). 
GWAS was performed for 18 buckwheat seed metabo-
lites (catechin, orientin, rutin, quercetin, EAEC, vanillin, 
GEDC, duratin, keampferol, QDG, DH, EED, SI, EEMG, 
FARD, CAH, UNK2 and CG). The analysis was done 
using GAPIT CMLM method. GAPIT uses FDR adjusted 
p-value to filter significant SNPs. This approach reduces 
chances of false positive SNP makers in further analysis. 
In Manhattan plot dotted green line shows p-value and 
solid green line shows FDR adjusted p-value. Out of total 
3,728,028 SNPs, 34,978 were found to be significantly 

associated with different seed metabolites with 12.14–
32.04% phenotypic variance. A total of 27 SNPs were 
found significantly associated with the metabolite ferulic 
acid rhamnosyl derivative (FARD). Out of 27, 12 SNPs 
were found in chr. 1; as such this region could be regarded 
as hot-spot of SNPs for this particular metabolite. One 
SNP on chr.6 (p-value = 8.44E-07) contributed for 32.04% 
of phenotypic variation. For metabolite epiafzelchin epi-
catechin-o-dimethylgallate (EED), 11 SNPs were signifi-
cantly associated. These were positioned on chr.1, chr.2, 
chr.4, chr.5, and chr.7 with the highest number of SNPs 
(5) on chr.1 and the lowest (1) on chr.2, chr.5 and chr.7, 
respectively. One SNP on chr.1 positioned at 63,055,659 
(p-value = 4.62E-05) contributed 15.05% to phenotypic 
variation. Ten SNPs were found associated with querce-
tin on each of chr.2, chr.4, chr.5, chr.7, and chr.11. One 
SNP on chr.5 positioned at 29,043,577 (p-value = 1.01E-
05) contributed 21.64% phenotypic variation. For vanil-
lin, 7 SNPs were found significantly associated that are 
positioned on chr.1, chr.2, chr.4, chr.5 and chr.7. One SNP 
on chr.4 positioned at 37,569,986 (p-value = 3.56E-05) 
contributed 23.24% phenotypic variation. For catechin, 
7 SNPs were significantly associated and are positioned 
on chr.1, chr.3, chr.4, chr.5 and chr.6. One SNP on chr.3 
positioned at 5,955,359 (p-value = 8.79E-06) contributed 
23.28% phenotypic variation. For diacaffeoyl-hexoside 
(DH), 5 SNPs were found significantly associated and are 
positioned on chr.6 and chr.7. One SNP on chr.6 posi-
tioned at 31,943,608 (p-value = 1.85E-05) contributed 
15.87% phenotypic variation. For swertiamacroside iso-
mer (SI), 5 SNPs were found significantly associated that 

Fig. 2 Chromosome wise SNP distribution in buckwheat germplasm
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are positioned on chr3, chr4 and chr5. One SNP on chr.5 
positioned at 9,638,542 (p-value = 6.62E-05) contributed 
15.30% phenotypic variation. For quercetin 3-D-gluco-
side (QDG), 4 SNPs were found significantly associated 
that are positioned on chr.1, chr.6 and chr.7. One SNP on 
chr.7 positioned at 36,838,233 (p-value = 8.32E-06) con-
tributed 17.41% phenotypic variation. For duratin, 4 SNPs 
were found significantly associated that are positioned on 
chr.1, chr.3 and chr.5. One SNP on chr.1 positioned at 
41,194,007 (p-value = 3.84E-05) contributed 25.26% phe-
notypic variation. For galloyl ester of 5,6,7-trihydroxy-2,3 
dihydrocyclopents(b)chromene-1,9-dione-3-carboxylic 

acid hexoside (GEDC), 3 SNPs were found signifi-
cantly associated that are positioned on chr.1, chr.3 
and chr.7. One SNP on chr.1 positioned at 19,115,204 
(p-value = 1.02E-04) contributed 15.81% phenotypic vari-
ation. For orientin, 3 SNPs were found significantly asso-
ciated that are positioned on chr.5 and chr.8. One SNP on 
chr.8 positioned at 44,828,457 (p-value = 3.37E-05) con-
tributed 20.15% phenotypic variation. For catechin gly-
coside (CG), 3 SNPs were found significantly associated 
that are positioned on chr.3 and chr.6. One SNP on chr.3 
positioned at 5,955,778 (p-value = 1.56E-04) contributed 
14.75% phenotypic variation. For caffeic acid hexoside 

Fig. 3 SNP markers based population analysis. a UPGMA dendrogram showing genetic relationship among 130 genotypes; (b) PCA Plot 
of Buckwheat genotypes; (c) Peak of delta K; (d) structure analysis indicated genotypes grouping into four sub-populations based on membership 
coefficients indicated on vertical coordinate

Fig. 4 The figure showing the Manhattan plots and Q-Q plots of different metabolites. a Catechin, (b) Orientin, (c) Rutin, (d) Quercetin, (e) (epi)
afzelchin-(epi)catechin, (f) Vanillin, (g) Galloyl ester of 5,6,7-trihydroxy-2,3 dihydrocyclopents (b)chromene-1,9-dione-3-carboxylic acid hexoside, (h) 
Duratin, (i) Keampferol, (j) Quercetin, 3-D-glucoside, (k) Diacaffeoyl-hexoside, (l) Epiafzelchin epicatechin-o-dimethylgallate, (m) Swertiamacroside 
isomer, (n) Epiafzelchin epicatechin-o-methylgallate, (o) Ferulic acid rhamnosyl derivative, (p) Caffeixc acid hexose, (q) UNK2 and (r) Catechin 
Glycoside

(See figure on next page.)
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Fig. 4 (See legend on previous page.)



Page 11 of 18Zargar et al. BMC Plant Biology          (2023) 23:373  

(CAH), 3 SNPs were found significantly associated that 
are positioned on chr.1, chr.2 and chr.3. One SNP on 
chr.3 positioned at 27,868,660 (p-value = 9.36E-05) con-
tributed 14.70% phenotypic variation. For Rutin, 2 SNPs 
were found significantly associated that are located on 
chr3 and chr5. and contributed 12.70% and 15.66% phe-
notypic variation. For kaempferol, 2 SNPs were found 
significantly associated that are located on chr.1 and chr.5 
and contributed 17.69% and 19.87% phenotypic variation. 
For (epi)afzelchin-(epi) catechin (EAEC), only 1 SNP was 
found significantly associated that is located on chr.5 and 
contributed 26.40% to phenotypic variation. For epiaf-
zelchin epicatechin-o-methylgallate (EEM), only 1 SNP 
was found significantly associated that is located on chr.1 
and contributed 23% to phenotypic variation. For UNK2, 
only 1 significantly associated SNP was found on chr.2 
and contributed 17.11% to phenotypic variation.

LD Plot and haplotype blocks
LD was calculated from 4,142,684 pairs using 100 mark-
ers sliding window operation, out of which 8% was with 
zero LD and 23% was found in the significant range 
(p-value < 0.05). As the physical distance increases, the  r2 
distribution showed a rapid LD decay for all genotypes. A 
total of 1783 haplotype blocks were identified, containing 
68% markers (Supplementary Figs.  3 and 4). The blocks 
were uniformly distributed among all chromosomes.

In‑silico analysis for candidate gene identification
In-silico analysis revealed a total of 168 genic sequences 
linked with different marker traits (Table 1). The candi-
date genes were subjected to pathway analysis using the 
KEGG-KASS server and GO process identification using 
the Uniprot database to gain insight into the biological 
process. According to GO analysis, the key biological 
processes involved are biotic stimulus response, phos-
pholipid biosynthetic process, protein phosphorylation, 
lipid transport, oxidative stress response, and ion trans-
port (Table 2). The key molecular functions of the iden-
tified candidate genes were flavin adenine dinucleotide 
binding, cysteine-type peptidase activity, protein hetero 
dimerization and protein binding (Table 2). KEGG-KASS 
server revealed that the identified candidate genes were 
related to metabolic pathways of butanoate, glycerol-
phospholipids, arachidonic acid, glutathione, alanine, 
aspartate and glutamate and biosynthetic pathways of 
secondary metabolites such as flavonoids, sesquiterpe-
noids and triterpenoids (Table 3).

Discussion
The enormous diversity of structurally distinct metabo-
lites found in the plant metabolome are genetically 
controlled. It has been hypothesised that species-level 

metabolome variations are significantly more extensive 
than previously believed [17]. This calls for the inte-
gration of metabolomics and genetics techniques like 
QTL and GWAS for examining the genetic control of 
the metabolome and enabling the delineation of meta-
bolic pathways and the dissection of agronomic features 
[18–20]. Most of the reported metabolites are necessary 
for the plant’s survival, as well as for its ability to grow 
and interact with its environment [21]. Some of these 
metabolites confer special nutritional benefits to crops 
like buckwheat [22]. Our endeavour to characterise buck-
wheat secondary metabolites was based on the premise 
that these compounds provide an effective way of defence 
against biotic and abiotic challenges as well as contribute 
to the nutritional quality of this valuable crop [23, 24].

Metabolomic profiling has been frequently used in 
conjunction with genetic techniques like genome-wide 
association studies (GWAS as mGWAS) and quantita-
tive trait loci (QTL as mQTL) to discover the functional 
genes behind the variation in metabolite content of dif-
ferent plant species. Tomato and Arabidopsis were the 
first plants wherein mQTL tools were applied previously 
[25, 26]. Following these ground-breaking researches, 
the mQTL technique was widely modified to identify the 
various genetic components controlling the metabolome 
in many plant species including the Tartary buckwheat 
[27, 28], offering insights into the genetic and biochemi-
cal underpinnings of metabolic pathways. An obvious 
advantage of using metabolomics is the complexity of 
phenotyping as well as difficulties associated with large 
scale field phenotyping. The relative levels of numer-
ous metabolites can be comprehensively profiled with 
ease and associated to the phenotypes of interest either 
directly or indirectly [29]. Therefore, identifying putative 
functional genes governing the variation in metabolite 
concentration may aid in our understanding of impor-
tant crop characteristics. A huge population’s genes can 
be identified using GWAS at substantially higher map-
ping resolutions [14]. In rice, the metabolite trigonelline 
(N-methyl nicotinic acid) implicated in grain width with 
its underlying genetic factors were discovered using the 
same approach.

The current study focuses on the use of mGWAS to 
identify candidate genes and metabolic pathways in 
buckwheat. Metabolic pathways are composed of highly 
varied yet vaguely linked metabolites, which could be 
thought of as chemical decorations on a number of fun-
damental structures [30]. Here we not only reported 
metabolomic profiling data from buckwheat seed but 
also discovered high-confidence candidate genes. The 
ultimate objective of this study is the understanding of 
the genetics underlying traits of interest, which in turn 
may benefit breeding efforts that seek improvement in 
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economically important traits in buckwheat. The cur-
rent study used genome-wide association to identify 99 
significant markers underlying the studied traits. We 
were able to predict important genes that encode met-
abolic and biosynthetic pathways. An enriched gene 
involved in the flavanoid biosynthesis pathway was also 
discovered. These findings are significant because fla-
vonoids are the largest class of secondary metabolites 

found in plants and have a wide range of functional 
roles, including pigments and antioxidant properties 
[30]. In addition to flavonoids, different components of 
amino acid metabolism pathways of alanine, aspartate, 
glutamate, glutathione, valine, leucine and isoleucine 
were identified. These defence compounds help plants 
to withstand various stresses such as hypoxia, water 
logging, and drought, and act indirectly as a precursors 

Table 2 Gene ontology annotation of the identified candidate genes

Genes Gene ID Name Group

FtPinG0007389500 GO:0030001 Metal ion transport Biological process

FtPinG0007897200 GO:0006355 Regulation of transcription, DNA-templated Biological process

FtPinG0008424800 GO:0008152 Metabolic process Biological process

FtPinG0006711700 GO:0006508 Proteolysis Biological process

FtPinG0000116900 GO:0006397 mRNA processing Biological process

FtPinG0006973100 GO:0055085 Transmembrane transport Biological process

FtPinG0005258100 GO:0006869 Lipid transport Biological process

FtPinG0007913300 GO:0009772 Photosynthetic electron transport in photosystem II Biological process

FtPinG0006589600 GO:0006351 Transcription,DNA-templated Biological process

FtPinG0009313800 GO:0006952 Defense response Biological process

FtPinG0006973100 GO:0016020 Membrane Cellular component

FtPinG0007345300 GO:0016021 Integral component of membrane Cellular component

FtPinG0009546600 GO:0005741 Mitochondrial outer membrane Cellular component

FtPinG0000107500 GO:0009579 Thylakoid Cellular component

FtPinG0009566500 GO:0005737 Cytoplasm Cellular component

FtPinG0005842300 GO:0000786 Nucleosome Cellular component

FtPinG0002741100 GO:0003777 Microtubule motor activity Molecular function

FtPinG0009334000 GO:0003824 Catalytic activity Molecular function

FtPinG0004200100 GO:0005488 Binding Molecular function

FtPinG0009099100 GO:0005515 Protein binding Molecular function

FtPinG0001650100 GO:0016491 Oxidoreductase activity Molecular function

FtPinG0007484300 GO:0005506 Iron ion binding Molecular function

FtPinG0004748800 GO:0003676 Nucleic acid binding Molecular function

FtPinG0007147500 GO:0010277 Chlorophyllide a oxygenase [overall] activity Molecular function

FtPinG0008486000 GO:0003924 GTPase activity Molecular function

FtPinG0006758300 GO:0008168 Methyltransferase activity Molecular function

FtPinG0007606600 GO:0003743 Translation initiation factor activity Molecular function

FtPinG0001108200 GO:0004602 Glutathione peroxidase activity Molecular function

FtPinG0006832800 GO:0008444 CDP-diacylglycerol-glycerol-3-phosphate3-phosphatidyltrans-
ferase activity

Molecular function

FtPinG0009552900 GO:0016788 Hydrolase activity, acting on ester bonds Molecular function

FtPinG0009047000 GO:0003723 RNA binding Molecular function

FtPinG0006470900 GO:0000287 Magnesium ion binding Molecular function

FtPinG0008592100 GO:0003700 DNA-binding transcription factor activity Molecular function

FtPinG0003394400 GO:0003779 Actin binding Molecular function

FtPinG0007781400 GO:0004672 Protein kinase activity Molecular function

FtPinG0007295400 GO:0003677 DNA binding Molecular function

FtPinG0009047800 GO:0005524 ATP binding Molecular function

FtPinG0007298300 GO:0004252 Serine-type endopeptidase activity Molecular function

FtPinG0007914400 GO:0008137 NADH dehydrogenase (ubiquinone) activity Molecular function
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Table 3 The description of identified genes related to different metabolic pathways

S.No Pathway name and ID Enriched genes Pathway function

1 Metabolic pathway
ko01100

• Glutathione peroxidise
• CDP-diacylglycerol-glycerol-3-phosphte-
3-Phosphatidyltransferase
• ATP citrate (pro-s)-lyase
• 3-methylcrotonyl-coA carboxylase alpha 
subunit
• F-type H + /Na + -transporting ATPase 
subunit beta
Photosystem I P700 chlorophyll a apoprotein 
A1Photosystem II P680 reaction center D1 
protein
• NAD(P)H-quinone oxidoreductase subunit 5
(3S,6E)-nerolidolsynthase
• Prenylcysteine alpha-carboxyl methylester-
ase
• Succinate-semialdehyde dehydrogenase, 
mitochondrial Cinnamyl-alcohol dehydroge-
nase

Converts sugar, into more readily usable 
materials. These reactions occur inside of a cell, 
where enzymes, or protein molecules, break 
down or build up molecules

2 Biosynthesis of secondary metabolites
ko01110

• ATP citrate (pro-S)-lyase
• Leucoanthocyanidin reductase
• Prenylcysteine alpha-carboxyl methylester-
ase
• Cinnamyl-alcohol dehydrogenase

These compounds induce stress onto a plant 
leading to increased production of secondary 
metabolites

3 Butanoatemetabolism
ko01120

Succinate-semialdehyde dehydrogenase, 
mitochondrial

Butanoate metabolism describes the metabolic 
fate of a number of short chain fatty acids 
or short chain alcohols

4 Oxidative phosphorylation
ko00190

• F-type H + /Na + -transporting ATPase 
subunit beta
• NAD(P)H-quinone oxidoreductase subunit 5

Oxidative phosphorylation is the principal 
purpose of oxygen respiration and for the gen-
eration of energy in the body

5 Photosynthesis ko00195 • F-type H + /Na + -transporting ATPase 
subunit beta
Photosystem I P700 chlorophyll a apoprotein 
A1
• Photosystem II P680 reaction center D1 
protein

To create oxygen and energy in the form 
of sugar

6 Glycerophospholipidmetabolism ko00564 CDP-diacylglycerol–-glycerol-3-phosphate3-
phosphatidyltransferase

The metabolites of glycerophospholipid path-
way probably maintained the stability of cell 
membranes against hypoxic stress to relieve 
the cell injury

7 Arachidonic acid metabolism ko00590 Glutathione peroxidase Arachidonic acid metabolism provides a path-
way for the generation of diverse, fast-acting, 
short-lived signaling molecules

8 Alanine, aspartate and glutamate metabolism
ko00250

Succinate-semialdehyde dehydrogenase, 
mitochondrial

The defense compound that enables plants 
to withstand various stresses such as hypoxia, 
waterlogging and drought, and indirectly 
as a precursor to the compounds pantothenate 
and CoA, and position in amino acid metabo-
lism

9 Valine, leucine and isoleucine degradation
ko00280

3-methylcrotonyl-CoA carboxylase alpha 
subunit

They are needed for the physiological response 
to stress, in energy production, and particularly 
for the normal metabolism

10 Glutathione metabolism ko00480 Glutathione peroxidase Glutathione plays important roles in antioxidant 
defense, nutrient metabolism, and regulation 
of cellular events

11 Terpenoid backbone biosynthesis
ko00900

Prenylcysteine alpha-carboxyl methylesterase The terpenoid backbone biosynthesis pathway 
is responsible for the synthesis of different 
backbones for terpenoids; (E)-β-farnesene 
(EβF), a sesquiterpene, is the major component 
of aphid alarm pheromone
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to the compounds pantothenate and CoA, as well as 
play a central role in amino acid metabolism. They have 
been implicated in physiological response to stress, 
normal metabolism and energy processes such as pho-
tosynthesis and respiration. Similarly, glutathione is 
crucial for the regulation of cellular processes, nutri-
tion metabolism, and antioxidant defence. To that end, 
our data not only provides specific candidate genes as 
molecular resources that can be effectively used after 
validation, but also enlightens further metabolite net-
work exploration (Supplementary Figs.  5 and 6). The 
information generated in the present study will surely 
facilitate the metabolomics-associated breeding of 
buckwheat in the future.

Conclusion
The present study exemplified the potential of integrat-
ing GBS technology with metabolomics that led to the 
discovery of a significant number of potential SNP mark-
ers for association mapping and is a valuable resource for 
QTL studies for the breeding programmes. As such, 68 
common QTLs identified in this study by using F. tatari-
cum and F. esculentum reference genomes might have 
better implications in improving metabolome content in 
both common and Tartary buckwheat through molecular 
breeding approach.

Additionally, the identified candidate genes with poten-
tial roles can be explored further through more exten-
sive research. The findings of this study will promote the 
efficient use of genetic and genomic resources aimed to 
raising the yield potential and enhancing the metabolite 
contents and overall quality of buckwheat.

Methods
Plant material
A total of 130 diverse buckwheat genotypes were used 
as plant material in the present study (Supplementary 
Table  3). Buckwheat germplasm was collected from 
different geographical regions of Western Himalayan 
state of Jammu and Kashmir, India and some of the 

genotypes were also procured from National Bureau of 
Plant Genetic Resources (NBPGR), New Delhi (Supple-
mentary Fig.  7). Most of the collected genotypes were 
maintained in the crop research fields of Sher-e-Kash-
mir University of Agricultural Sciences & Technology of 
Kashmir, India.

Quali-quantitative characterization of phenol secondary 
metabolites
Phytochemical characterization of buckwheat samples 
was performed by HPLC–DAD-MS. Samples were pre-
pared by extracting 200  mg of dried powdered samples 
in 25  mL of a 50:50 v/v methanol:water mixture, using 
an ultrasound bath to increase the extraction efficiency 
(20  min at r.t.). After centrifugation at 13,000  rpm for 
10  min, supernatant was collected and directly injected 
in the instrument for analysis.

Chromatographic separation was performed 
using a Phenomenex Synergy MAX-RP 80A (4  µm, 
150 × 2.0 mm) column as stationary phase, and a mix-
ture of 1% formic acid in water (A) and acetonitrile (B) 
as mobile phase. Elution gradient was set to the fol-
lowing setting: 0  min, 95% A; 10  min, 50% A; 13  min, 
50% A; 18 min, 10% A; 19 min, 10% A; 20 min, 95% A. 
Column was left to equilibrate for 5 min. Flow rate was 
0.4 mL/min with injection volume set to10 µL.

Identification of eluted compounds was performed 
using integrated DAD and MS data. UV–Vis absorb-
ance was monitored in the range 200–600 nm, and the 
spectrum of each eluted compound was used to deter-
mine its chemical class. Regarding MS, fragmentation 
data of each compound obtained from  MSn experi-
ments were compared with literature data to identify 
the eluted compounds. The following conditions was 
set for MS: needle voltage- 4500  V; capillary voltage- 
70  V; RF loading- 100%; nebulising gas pressure- 20 
psi (nitrogen); drying gas pressure- 15 psi; drying gas 
temperature- 350 °C. and mass range was 50–2000 Da. 
Fragmentation patterns of eluted compounds were 
obtained using the turbo detection data scanning 

Table 3 (continued)

S.No Pathway name and ID Enriched genes Pathway function

12 Sesquiterpenoid and triterpenoid biosyn-
thesis
ko00909

(3S,6E)-nerolidol synthase A group of terpenoids consisting of three 
isoprene units and are derived from farnesyl 
diphosphate (FPP) and can be cyclized to pro-
duce various skeletal structures

13 Flavonoid biosynthesis
ko00941

Leucoanthocyanidin reductase Major class of plant secondary metabolites 
that serves a multitude of functions includ-
ing pigments and antioxidant activity. Flavo-
noids are synthesized from phenylpropanoid 
derivatives by condensation with malonyl-CoA
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(TDDS®) function of the instrument, setting n = 4 lev-
els of fragmentation.

For the quantification of phenolic compounds from 
buckwheat samples, standard calibration curves built 
from DAD measurements were used. Flavonoids were 
quantified using rutin as standard compound (1-100 µg/
mL in methanol), and calibration curve (y = 51.52x – 
183.22;  R2 = 0.999) was built by monitoring the absorb-
ance values of standard solutions at λmax = 350 nm. For 
phenolic acids, chlorogenic acid was used as reference 
compound (0.9–90  µg/mL in methanol), and the cali-
bration curve (y = 90.54x – 32.84;  R2 = 0.999) was built 
monitoring the absorbance values of standard solutions 
at λmax = 280  nm. Standard solutions (1–100  µg/mL in 
methanol) of gallic acid were used for the quantifica-
tion of gallic derivatives, and the calibration curve was 
built at λmax = 280  nm: y = 109.72x – 68.33;  R2 = 0.999. 
Finally, catechin derivatives were quantified using a cat-
echin calibration curve (y = 20.81x – 29.61;  R2 = 0.999) 
and was built analysing the absorbance value at 
λmax = 280  nm of catechin solutions (methanol) in the 
concentration range of 1–100 µg/mL.

Metabolomics analysis
Metabolomics exploration of buckwheat samples data-
set was performed using the Metaboanalyst v. 5.0 plat-
form [31]. For this, quali-quantitative chemical data were 
organized in a proper data matrix and submitted to the 
web platform. Data were log transformed and Pareto 
scaled before analysis. This was accomplished through 
the use of both unsupervised Principal Component 
(PCA) and heatmap analyses, as well as supervised meth-
ods such as Partial Least Squares Discriminant Analysis 
(PLS-DA). To avoid over fitting of results, PLS-DA mod-
els were validated by using both permutation test (1000 
random permutations) and leave-one-out cross valida-
tion, whose  R2,  Q2 and accuracy parameters were used 
to assess the robustness and predictability of the models. 
Variables (metabolites) significantly associated to specific 
sample groups were selected by using a Volcano plot, set-
ting as threshold values FDR-adjusted p-value < 0.05 and 
Fold Change > 2.

DNA extraction, library preparation and sequencing
Seeds of 130 diverse genotypes of buckwheat was sown 
in plastic trays for three weeks in a polyhouse and the 
harvested shoots were used for genomic DNA extraction 
using CTAB method and the quality as well as quantity of 
DNA was checked on both gel electrophoresis (0.8% Aga-
rose) and nano-drop (mySPEC, Wilmington, USA). GBS 
libraries were prepared following the method reported 
in [32], with minor modification. 20 µL digestion reac-
tion contained 1X NEB Buffer, 3.6 U ApeKI and 100 ng of 

DNA was digested for 4 h at 75 °C. The barcoded adapt-
ers were then ligated to sticky ends by using T4 ligase 
(New England Biolabs). To inactivate the T4 ligase, sam-
ples were incubated at 22 °C for 1 h before being heated 
to 65 °C for 30 min. The sets of 130 digested DNA sam-
ples were combined (5 µL each), each with a different 
barcode adapter, and purified using a commercial kit 
(QIAquick PCR Purification Kit; Qiagen, Valencia, CA) 
according to the manufacturer’s instructions. DNA sam-
ples were eluted in a 25 µL final volume.

Restriction fragments from each library were then 
amplified in 50 µL volumes containing 10 µL pooled 
DNA fragments, 25 µl of KAPA HiFi Hot Start Ready Mix 
PCR, and 1 µL each of the P5 and P7 dual indexing prim-
ers (12.5 pmol). These primers included complementary 
sequences for priming future DNA sequencing reactions, 
attaching PCR products to oligonucleotides that coat the 
Illumina sequencing flow cell, and amplifying restric-
tion fragments with ligated adapters. With 0.9X AMPure 
XP beads (Catalog: A63881, Beckman Coulter), the final 
PCR products were purified to get rid of any primers that 
weren’t used. The final 130-plex DNA library that had 
been purified was measured using an Agilent Bioanalyzer 
before being sequenced on an Illumina HiSeqTM X10 
platform (Illumina® Inc., San Diego, CA, USA) using V4 
sequencing chemicals.

Post-sequencing analysis
The raw reads were filtered for adapter sequences, low 
quality reads and low-quality residues towards 5` region 
of the sequence. After quality filtering and data de-multi-
plexing, the high-quality sequences were mapped to the 
Tartary buckwheat reference genome assembly (GCA 
002319775.1; http:// www. mbkba se. org/ Pinku1/) using 
BWA program V 0.7.5 [33]. SNPs were mined from the 
coding and non-coding regions and were subsequently 
annotated. The SNPs were annotated to the genic, inter-
geneic, non-coding and regulatory regions using SNPEFF 
program [34].

Moreover, a comprehensive comparison of the genetic 
sequences at the genomic level between F. esculentum 
(Common Buckwheat) and F. tataricum (Tartary Buck-
wheat) was performed through pairwise genome align-
ment, using GSALIGN program (https:// github. com/ 
hsinn an75/ GSAli gn). This process aimed to elucidate 
the shared characteristics and distinctions within the 
genomes of these two buckwheat species. The pairwise 
genome alignment between the two buckwheat genomes 
encompassed a series of steps, ensuring accurate and 
reliable results. Initially, the genomic data of both spe-
cies underwent a pre-processing stage to eliminate any 
extraneous elements that might introduce noise and 
potentially hinder the alignment process. By reducing 

http://www.mbkbase.org/Pinku1/
https://github.com/hsinnan75/GSAlign
https://github.com/hsinnan75/GSAlign
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unwanted artefacts, the subsequent alignment was 
enhanced, allowing for more precise comparison of the 
genetic sequences. To optimize the alignment, GSALIGN 
tends to maximise the similarity between correspond-
ing regions while minimizing any gaps that might occur 
in the alignment. By strategically aligning the sequences, 
the software facilitated the identification and comparison 
of specific genetic elements shared between the two spe-
cies. The results were visualized using DotPlot (https:// 
dotpl ot. soft1 12. com/).

Population structure analysis
Population structure was estimated using a Bayesian 
Markov Chain Monte Carlo model (MCMC) imple-
mented in STRU CTU RE v2.3.4 [35]. The filtered SNPs 
were converted to structure format using PGD Spi-
der version 2.1.1.5. For each population (k) set number 
from 2 to 7, three runs were completed. For each run, 
the burn-in period and the MCMC replication number 
were set to 100,000 and 300,000, respectively. Structure 
Harvester used the log probability of the data [LnP(D)] 
and delta K (K) based on the rate of change in [LnP(D)] 
between subsequent populations to estimate the most 
likely K-value [36]. The neighbour-joining tree was built 
using Phylip and MEGA5 [37].

Principal component analysis
PCA was calculated using PLINKV 1.9 [38] and then 
plotted by using R program. Dendrogram analysis was 
done using TASSEL V4 using Neighbour-Joining method 
and then plotted with Structure Q-matrix using iTOL. 
PCA plot was made on four populations which were 
detected using Structure. Using high quality SNPs, the 
population structure was graded for K-values ranging 
from 1 to 12 across the panel.

Marker trait association
GAPIT V3, an R package that conducts a Genome-Wide 
Association Study (GWAS) and genome prediction, was 
used to implement the Compressed Mixed Linear Model 
(CMLM) [39]. Modern statistical genetics tools including 
the unified mixed model, EMMA, compressed mixed lin-
ear model, and P3D/EMMAx are used in this application. 
SNPs were considered significant using threshold log10 
(p-value) < 1E-4. Manhattan plots and quantile–quantile 
(QQ) plots were developed using R-package QQMAN. 
Manhattan plots revealed statistically significant associ-
ated markers, and quantile–quantile (QQ) plots were 
created to graphically depict the associated marker dis-
tribution pattern. GAPIT was used to calculate the R 
squared values (r2) for markers; the r2 value explains the 
proportion of phenotypic variation explained by each 
SNP locus.

LD plots and haplotype blocks
Linkage disequilibrium (LD) was measured by the param-
eter  r2 using SNPs with high confidence. The values were 
calculated using TASSEL v5.0 and the values were plot-
ted against genetic distance (in bp) in R software [40]. A 
threshold of  r2 = 0.2 was used to determine LD extent. 
The size of LD blocks was determined by fitting the sec-
ond LOESS decay curve to the  r2 values plotted against 
the physical distance among markers. Using the Gabriel 
et al. 2002 [41] described confidence interval; Haploview 
4.2 was used to identify haplotype blocks from the entire 
set of SNPs [42]. The analysis excluded heterozygous loci.

Candidate gene identification
The gene containing the SNP was used to determine 
the probable candidate gene search from the signifi-
cant SNP-trait associations obtained from mGWAS 
using the SNPEFF programme V5.1 against F. esculen-
tum annotation downloaded from NCBI [34]. The can-
didate genes were mapped to the Kyoto Encyclopaedia 
of Genes and Genomes (KEGG) database using the 
KEGG-KAAS (KEGG Automatic Annotation Server) 
server for pathway analysis and Gene Ontology (GO) 
annotation was carried out using standalone BLASTP 
and BLASTX [43] against the Uniprot database (release 
2022_02) to gain insight into the functional role of can-
didate genes with SNPs (UniProt Consortium, 2019).
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