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Abstract 

Soil salinization is a growing issue that limits agriculture globally. Understanding the mechanism underlying salt toler-
ance in halophytic grasses can provide new insights into engineering plant salinity tolerance in glycophytic plants. 
Seashore paspalum (Paspalum vaginatum Sw.) is a halophytic turfgrass and genomic model system for salt tolerance 
research in cereals and other grasses. However, the salt tolerance mechanism of this grass largely unknown. To explore 
the correlation between  Na+ accumulation and salt tolerance in different tissues, we utilized two P. vaginatum acces-
sions that exhibit contrasting tolerance to salinity. To accomplish this, we employed various analytical techniques 
including ICP-MS-based ion analysis, lipidomic profiling analysis, enzyme assays, and integrated transcriptomic and 
metabolomic analysis. Under high salinity, salt-tolerant P. vaginatum plants exhibited better growth and  Na+ uptake 
compared to salt-sensitive plants. Salt-tolerant plants accumulated heightened  Na+ accumulation in their roots, lead-
ing to increased production of root-sourced  H2O2, which in turn activated the antioxidant systems. In salt-tolerant 
plants, metabolome profiling revealed tissue-specific metabolic changes, with increased amino acids, phenolic acids, 
and polyols in roots, and increased amino acids, flavonoids, and alkaloids in leaves. High salinity induced lipidome 
adaptation in roots, enhancing lipid metabolism in salt-tolerant plants. Moreover, through integrated analysis, the 
importance of amino acid metabolism in conferring salt tolerance was highlighted. This study significantly enhances 
our current understanding of salt-tolerant mechanisms in halophyte grass, thereby offering valuable insights for 
breeding and genetically engineering salt tolerance in glycophytic plants.
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Introduction
Salt accumulation in arable soils is a growing concern for 
global agriculture [1]. High soil salinity can significantly 
impede plant growth and reduce crop yield, as most 
crops are highly sensitive to saline conditions [2]. To 
address this pressing issue, halophytes are increasingly 
recognized as essential genetic models for studying the 
molecular mechanisms behind salt tolerance, with poten-
tial to develop plant germplasm that can thrive in saline 
conditions and enable salinized agricultural land use [1].

Halophytes, equipped with various physiological and 
biochemical mechanisms, can achieve salt tolerance [3]. 
However, excess  Na+ from saline soil can lead to osmotic 
and oxidative stress, resulting in salt-induced changes in 
metabolic status, membrane remodelling, and gene and 
protein expression [1, 4]. To prevent toxic  Na+ accumu-
lation in plant tissues, halophytes efficiently regulate soil 
 Na+ uptake [5].

Due to the high energy cost of adaptation, the antioxi-
dant response, also known as oxidative stress tolerance, is 
of increasing interest for genetic engineering of salt-tol-
erant crops [6–8], as halophytes have evolved a complex 
antioxidant system to combat the toxic effects of reactive 
oxygen species (ROS) induced by salt stress, with hydro-
gen peroxide  (H2O2) being the most stable form of ROS. 
ROS-scavenging enzymes, such as superoxide dismutase 
(SOD), ascorbate peroxidase (APX), and catalase (CAT) 
[9, 10], as well as non-enzyme antioxidants, including 
amino acids (e.g., ascorbate, proline, glutathione), flavo-
noids, polyamines, and polyols, are necessary for excep-
tional salinity tolerance [11, 12], although the type and 
quality of ROS players vary among different halophyte 
species and even within various individual plant tis-
sues [13]. For example, under high salinity conditions, 
the non-enzymatic antioxidant glutathione was signifi-
cantly decreased in the halophytic grass Desmostachya 
bipinnata and Cakile maritima [14, 15], but signifi-
cantly increased in halophyte Salicornia brachiata [16]. 
Thus, mechanistic details of the salt-induced antioxidant 
response in halophyte species remain largely unclear.

Salt stress is a well-known cause of oxidative damage 
to the biological membrane, and can lead to changes in 
plant membrane properties [17]. Membrane lipids, which 
include sphingolipids, sterols, and glycerolipids, play a 
crucial role in regulating plant membrane fluidity and 
permeability in response to abiotic stress [18, 19]. Despite 
some studies showing salt-induced changes in membrane 
lipid composition in halophytes, the relationship between 
specific lipid species and the mechanisms underlying salt 
tolerance remains poorly understood [19–21]. There-
fore, further research is necessary to fully explore this 
correlation.

Seashore paspalum (Paspalum vaginatum Sw.), a halo-
phytic turf species, has excellent potential for improving 
saline soils in tropical and subtropical regions worldwide 
due to its salt tolerance capacity [22, 23]. However, there 
is significant genotypic variation in salt tolerance across 
P. vaginatum species [24], underscoring the need to com-
prehend its molecular basis of salt tolerance. Although 
the molecular mechanisms underlying its salt tolerance 
have received significant attention recently [10, 24], our 
understanding of the mechanisms involved in halophyte 
tolerance in this grass is still limited. While a recent study 
suggested that  Na+ uptake may confer an advantage to 
seashore paspalum, the correlation between  Na+ accu-
mulation and salt tolerance remains unclear. Therefore, 
we compared salt-tolerant and salt-sensitive P. vagina-
tum accessions to elucidate tissue-specific salt tolerance 
mechanisms based on the antioxidant system, metabolic 
adaptation, and lipid remodeling. This knowledge has 
the potential to enhance salinity tolerance of other crops 
through genetic engineering or selective breeding.

Materials and methods
Plant growth conditions and salt treatment
Two contrasting P. vaginatum materials, the salt-toler-
ant accession (UAS 17–18; PI UPG145) and salt-sensi-
tive accession (USA17-26; PI 647910), were previously 
reported and used for the current study [25]. The materi-
als were acquired from the University of Georgia, and are 
now being preserved by the Hainan University and the 
University of Georgia resource nurseries since they have 
not been deposited in a publicly available herbarium. 
Stolons from two-month-old P. vaginatum plants were 
hydroponically cultivated in plastic containers (90-mm 
top diameter × 57-mm diameter width × 135-mm depth) 
filled with full-strength Hoagland solution (pH = 6.0) in a 
growth chamber with a 16 h:8 h light: dark at 30/25 ℃, 
50%-60% relative humidity and 1000 µmol  m−2  s−1 stand-
ard light intensity.

Salt treatments and non-stress treatments were per-
formed on two-week-old plants in the hydroponic plas-
tic containers by supplementing with (and without) 
400 mM NaCl. To avoid the undesirable effects of plant 
salt shock, NaCl concentrations were gradually increased 
100 mM each day up to 400 mM NaCl. On the fifth day 
of salinity stress, the leaves and roots of salt-stressed and 
non-stressed plants were collected separately. The treat-
ments were each replicated in three hydroponic plastic 
containers, and six individual plants from each treat-
ment were considered as a biological replicate. Three to 
six biological replicates were used for the experiments 
described below. At the beginning and end of the salt 
stress period, we measured plant weight (in grams), and 
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using the formula (final weight-initial weight) / time 
period (5 days), we calculated plant growth rate (in grams 
per day).

ICP‑MS based ion measurement
ICP-MS analysis was used to quantify leaf and root  Na+ 
and  K+ concentrations. Approximately 50  mg of oven-
dried samples were ground and dissolved in 2% HNO3, 
then diluted to prepare five-point calibration standards 
for  Na+ and  K+ concentration. An iCAP Q ICP mass 
spectrometer from Thermo Fisher Scientific (USA) was 
used in single KED mode with the following parame-
ters: 1550 W forward power, 14 L/min coolant gas flow, 
1.0749 L/min nebulizer gas flow, 0.8 L/min auxiliary gas 
flow, and 0.02 s dwell time. ST capacity was calculated as 
ST =  (K+/Na+ in leaves) /  (K+/Na+ in roots) according to 
Wang [26].

H2O2 measurement and antioxidant enzymatic assay
Approximately 100 mg of fresh roots or leaves from three 
to five biological replicates were used for the following 
measurements.  H2O2 concentrations were measured 
using a commercial kit (Product ID: BC3590, Nanjing 
Jiancheng Bioengineering Institute, Nanjing, China. 
Superoxide dismutase (SOD) levels including  Mn2+-SOD 
activity and Cu/Zn-SOD were measured using a SOD 
Assay kit (Product ID: A001-2–1; Nanjing Jiancheng Bio-
engineering Institute, Nanjing, China). Catalase (CAT) 
levels were measured using a CAT Assay kit (Product ID: 
BC0205; Beijing, China, Solarbio).

Lipidomic profiling analysis
Approximately 100  mg of fresh leaves and roots from 
three biological replicates were frozen into liquid nitro-
gen, ground to powder and extracted with 300 µL 
Methanol/1  mL MTBE/300 µL water. LC–MS analy-
sis was conducted using the Nexera UHPLC LC-30A 
system (Shimadzu, Kyoto, Japan) coupled to a Tri-
pleTOF5600 + (AB SCIEX™) mass spectrometer. The col-
umn temperature was set at 40 °C and the mobile phase 
was 0.1% HCOOH-H2O (A)-acetonitrile (B) at a flow 
rate of 0.3 mL/min in gradient elution. ESI source condi-
tions included Ion Source Gas1 (Gas 1) and Ion Source 
Gas2 (Gas 2) at 50, Curtain Gas (CUR) at 25, and Source 
Temperature at 500 ℃/450 ℃ (positive ion/negative 
ion). The Ion Sapary Voltage Floating (ISVF) was set at 
5500 V/4400 V (positive ion/negative ion), and TOF MS 
scan range was 100–1200 Da with a 0.2 s scan accumu-
lation time. The Declustering potential (DP) was ± 60 V. 
Lipid identification was performed using LipidSearch 
software 4.0 (Thermo Fisher Scientific, CA, USA).

Untargeted metabolomics profiling and identification
For metabolite extraction, approximately 100  mg of 
freeze-dried leaves and roots from three biological rep-
licates were used. These samples were then analyzed 
through a UPLC-ESI–MS/MS system with the follow-
ing conditions: UPLC column was a Waters ACQUITY 
UPLC HSS T3 C18 (1.8  µm, 2.1  mm*100  mm), and the 
mobile phase consisted of solvent A (pure water with 
0.04% acetic acid) and solvent B (acetonitrile with 0.04% 
acetic acid). A gradient program was used, starting with 
95% A and 5% B and gradually shifting to 5% A and 95% B 
within 10 min. The column oven was set to 40 °C, and the 
injection volume was 4 μl.

A triple quadrupole linear ion trap mass spectrometer 
(Q TRAP), API 4500 Q TRAP UPLC / MS / MS system, 
equipped with an ESI Turbo Ion-Spray interface, oper-
ating in positive and negative ion mode, and controlled 
by Analyst 1.6.3 software (AB Sciex, USA) was used to 
acquire LIT and triple quadrupole (QQQ) scans. The ESI 
source parameters were set to: ion source, turbo spray; 
source temperature 550 ℃; ion spray voltage (IS) 5500 V 
(positive ion mode) / 4500  V (negative ion mode); ion 
source gas I [27], gas II (GSII), curtain gas (CUR) were 
set at 50, 60, and 30.0 psi, respectively; the collision gas 
(CAD) was high. The instrument was tuned and mass 
calibrated with 10 μmol/L and 100 μmol/L polypropylene 
glycol solutions in the QQQ and LIT modes, respectively. 
The QQQ scans were acquired as MRM experiments 
with collision gas (nitrogen) set at 5 psi, and individual 
MRM transitions were optimized for DP and CE.

The SIMCA 14.1 software (Umetrics, Umea, Swe-
den) was used for multivariate modelling in metabolic 
profiling, including orthogonal partial least squares dis-
criminant analysis (OPLS-DA) to identify significantly 
abundant metabolites. Only identified metabolites with 
a fold change of 2 or ≤ 0.5 and VIP ≥ 1 were considered 
significant. Pathway enrichment analysis and visualiza-
tion of metabolomic data were performed using Metabo-
Analyst 5.0 and KEGG Mapper (https:// www. genome. jp/ 
kegg/ tool/ map_ pathw ay2. html) [28].

Transcriptomic profiling and gene expression analysis
Total RNA was extracted using a Plant RNA Kit (Omega 
Bio-Tek, Norcross, GA, United States) according to the 
manufacturer’s protocol. Subsequently, cDNA librar-
ies were prepared using the HiSeq 2000 (Illumina Tech-
nologies) platform for transcriptome sequencing and 
de novo assembly. Raw reads were filtered for adapter 
sequences and low-quality bases with Trimmomatic 
(v0.32), followed by alignment to the reference genome 
using HISAT2 (v2.1.0). Gene expression normaliza-
tion was performed by calculating Reads per Kilobase 

https://www.genome.jp/kegg/tool/map_pathway2.html
https://www.genome.jp/kegg/tool/map_pathway2.html
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per Million Mapped Reads (RPKM) based on Mortazavi 
and colleagues’ method. Identification of differentially 
expressed genes (DEGs) was achieved using the R soft-
ware DESeq2 package, with a threshold of false discov-
ery rate (FDR) ≤ 0.05 and |log2 FC|≥ 1.5. GO and KEGG 
pathway analyses were performed to determine DEGs 
biological functions. The RNA-seq reads were deposited 
in the NCBI Gene Expression Omnibus (GEO) under 
GEO accession number: GSE233155, with quality scores 
evaluated prior to submission.

Statistical analysis
Statistical significance analysis was calculated using sin-
gle-factor ANOVA followed by Duncan’s test was per-
formed using GraphPad Prism 8.0 (GraphPad Software 
Inc., San Diego, CA, USA).

Results
In P. vaginatum, genotypic variation in salinity tolerance 
is associated with  Na+ uptake
After 5  days of NaCl treatment, salt-sensitive plants 
showed clear symptoms of leaf chlorosis and wilting, 

while salt-tolerant plants were similar to control plants 
(Fig.  1A). Notably, a substantial growth rate disparity 
was observed between salt-sensitive and salt-tolerant 
plants subjected to 400 mM NaCl treatment (Fig. 1B). In 
response to high salinity, there was a ssignificant differ-
ence in  Na+ contents of shoots and leaves between salt-
sensitive and salt-tolerant plants after NaCl treatment. 
Both root and shoot  Na+ increased noticeably in salt-tol-
erant plants (Fig. 1D). However,  K+ concentration did not 
significantly differ between the two accessions under salt 
stress (Fig.  1E). When exposed to high salinity,  Na+ ST 
values did not show significant changes between the two 
accessions treated with salt stress (Fig. 1C). Our findings 
suggest that salt-tolerant plants under saline conditions 
preferentially absorb more  Na+ and probably store it in P. 
vaginatum roots.

Na+‑induced root‑sourced  H2O2 activates antioxidant 
systems in salt‑tolerant plants during salt stress
To determine whether such root and shoot  Na+ accu-
mulation leads to  H2O2 production in salt-tolerant 
plants after salt treatment, we measured  H2O2 levels and 

Fig. 1 A Phenotypical difference of the two P. vaginatum accessions treated with high salinity. B‑C Leaf growth rates and ST values of the two P. 
vaginatum accessions were calculated after 5 days of salt stress. D‑E Changes in  Na+ and K.+ concentrations in the roots and leaves of salt-tolerant 
and salt-sensitive plants under salt or non-salted conditions (** significant at p < 0.001; ns, not significant; one-way ANOVA followed with two-sided 
Student’s t-test)
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activities of  H2O2-scavenging enzymes in non-salted 
and treated roots and shoots of the two accessions. A 
significant increase in  Na+-induced root-sourced  H2O2 
was detected in the tolerant plants, compared with the 
sensitive plants (Fig.  2A). CAT and  Mn2+-SOD activi-
ties significantly increased in salt-tolerant plant roots, 
unlike in the salt-sensitive plants (Fig. 2B and 2D). There 
was no significant accumulation of leaf-derived  H2O2 or 
Cu/Zn-SOD activity observed in treated leaves follow-
ing salt treatment, in comparison to either the salt-sen-
sitive plants nor their corresponding controls. (Fig. 2A 
and 2C). These results suggest that  Na+-induced  H2O2 
is tissue-specific and confers salt tolerance to P. vagina-
tum plants in response to salt stress.

Metabolome profiling highlights difference 
between non‑enzymatic metabolites from different 
 Na+‑induced  H2O2
We profiled and compared the metabolic status of 
non-enzymatic antioxidants in the roots and shoots of 

treated plants of the two accessions (Fig.  3 and Table. 
S1). After 5  days of NaCl treatment, salt-tolerant plant 
roots increased abundance of amino acids (such as pro-
line and ornithine), phenolic acids (such as caffeic acid 
and vanillylmandelic acid) and polyols (such as manni-
tol and inositol) (Fig. 3C). Instead of phenolic acids and 
polyols, high salinity resulted in a greater abundance 
of amino acids (such as proline and pipecolic acid), fla-
vonoids (such as quercitrin, orientin and luteolin), and 
alkaloids (such as putrescine, agmatine, and spermine) in 
salt-tolerant plant leaves. These results indicate that  Na+ 
induced  H2O2 could confer tissue-dependent metabolic 
changes in P. vaginatum plants.

High salinity induces lipidome adaptation in P. vaginatum 
plant roots
To investigate tissue-specific lipid metabolism associ-
ated with  Na+ accumulation in P. vaginatum plants, we 
detected the changes in salt-induced lipid species in both 
root and shoot between the two accessions. Salinity stress 

Fig. 2 A‑D Effect of high salinity (400 mM NaCl) on  H2O2 levels and activities of enzymatic players  (Mn2+-SOD, Cu/Zn-SOD and CAT) in roots and 
leaves of salt-sensitive and -tolerant plants. (* significant at p < 0.05; ** significant at p < 0.001; ns, not significant; one-way ANOVA followed with 
two-sided Student’s t-test). Abbrev: ‘R’: salt-tolerant accession; ‘S’: salt-sensitive accession; ‘T’: salt treatment; ‘C’: unsalted treatment; ‘L’: leaf; ‘R.◦’: root)
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elevated root lipidomic species accumulation in salt tol-
erant plants, including two glycolipids (i.e., MDGD, 
DGDG and SGDGs), two phospholipids (i.e., PCs and 
PEs), fatty acids (FA), and triacylglycerols (TGs) (Fig.  4 
and Table. S2). Conversely, salt-tolerant plant leaf lipid 
profiling was not affected by salt stress in P. vaginatum 
plants, as no significant changes in these lipids were 
observed in leaves of salt-tolerant plants compared to 
salt-sensitive plants (Fig.  4). These results suggest that 
 Na+ accumulation probably triggers upregulation of lipid 
metabolism to improve P. vaginatum salt tolerance.

Transcriptome profiling highlights salt 
tolerance‑associated genes are inversely related to organic 
acid and amino acid metabolism
To explore the key genes associated with salt toler-
ance in P. vaginatum plants, we conducted a com-
prehensive analysis of differentially expressed genes 
(DEGs) in the roots and shoots of both P. vaginatum 
accessions under salt stress or non-stress conditions 
(Fig.  5). In P. vaginatum plants, compared to treated 
leaves, salt-treated roots exhibited a higher number of 
regulated DEGs (Fig. 5A and Fig. 5B). Gene enrichment 

analyses revealed that DEGs from salt-treated roots 
were involved in more biological process pathways 
related to salt tolerance (Fig.  5C). Under non-stressed 
conditions, both leaves and roots showed upregula-
tion of DEGs enriched in aromatic and organic com-
pound metabolic processes (Fig. S1). Upon exposure to 
high salinity stress, DEGs from salt-treated roots were 
significantly and positively enriched in organic acid 
metabolic processes and aromatic and organic cyclic 
biosynthetic processes, while showing a downregu-
lation in amino acid transport (Fig.  5C). Conversely, 
DEGs identified from leaves were positively related to 
organic substance metabolic processes in leaves, while 
negatively enriched in processes related to amino acid 
import and transport (Fig. 5C).

Integrated analysis of transcriptome and metabolome 
highlights amino acid metabolism is essential to plant salt 
tolerance
Initially, the correlation between important metabolites 
and their corresponding DEGs on the gene-metabolite 
regulatory network was assessed using the Partial Least 
Squares (PLS) regression method (Fig. 6A). Leaf and root 
individual metabolomes and transcriptomes were well 

Fig.3 A Scatter plots of O2PLS-DA model of different samples for profiling metabolomics. Each symbol represents an independent sample in 
the score scatter plot and an independent annotated peak in the loading plot; (B) Effects of salinity (400 mM NaCl) on metabolic changes in 
salt-tolerant plants compared to salt-sensitive plants. Heat maps indicate the log2 transferred value of the fold change between salt-tolerant plants 
and salt-sensitive plants treated with or without 400 mM NaCl. C The top enriched KEGG terms of DEGs from leaves in salt-treated tolerant plants of 
P. vaginatum relative to salt-sensitive plants. Abbrev: ‘R’: salt-tolerant accession; ‘S’: salt-sensitive accession; ‘T’: salt treatment; ‘C’: unsalted treatment; 
‘L’: leaf; ‘R.◦’: root)
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separated based on the sPLS-DA model. An integrated 
pathway-level analysis was performed to combine the 
most significant metabolites with their corresponding 
DEGs in the metabolic networks. Under salt stress in 
salt-tolerant plants, activation of most metabolic path-
ways associated with amino acid metabolism played an 
important switching role in phenolic acids and flavonoids 
biosynthesis (Fig.  6B and 6C). These findings suggest 
that during salt stress, amino acids in the shoot may be 
induced for conversion to phenolic acids and flavonoids 
for transfer to the roots.

Discussion
Na+ is required for maintaining salt tolerance in seashore 
Paspalum
Globally, soil salinization is a growing challenge limiting 
agriculture. Improved knowledge of salt-tolerant mecha-
nisms can be applied to the development and use of salt-
tolerant crop plants. Plants that can tolerate repeated 

exposure to seawater are considered quite rare. The 
Seashore Paspalum (Paspalum vaginatum Sw.) is one of 
such ‘rare’ plants. Nevertheless, the precise mechanisms 
by it deals with high salt concentrations have remained 
unclear until now.

Recently, Wu et  al., (2020) found that higher salin-
ity tolerance of a P.vaginatum cultivar was associated 
with higher  Na+, which triggered our interest in under-
standing how  Na+ accumulation aids its enhanced 
tolerance[10]. Our study highlighted tissue-specific adap-
tations as perhaps common among halophytes. High ST 
values are not necessarily related to a high salt tolerance 
in a few halophytes such as Puccinellia tenuiflora [29], 
and our results suggest that P.vaginatum might be one of 
those.

As active  Na+ uptake is efficient and cheaper than 
osmolyte biosynthesis, it is the principal strategy of some 
halophytes for osmotic homeostasis under saline condi-
tions [30]. This enables halophytes to maintain cellular 

Fig.4 A‑C Changes in phospholipids, glycolipids and fatty acids in leaves and roots between salt-tolerant and salt-sensitive accessions of P. 
vaginatum under salt stress. Asterisks indicate statistical differences between the indicated treatments, calculated using the Student’s t-test with 
two sides (* significant at p < 0.05; ** significant at p < 0.001; ns not significant)
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turgor pressure and sustain growth even in saline envi-
ronments. Salt-tolerant P. vaginatum accession tends to 
accumulate  Na+ to maintain high osmotic pressure for 
water leaf adsorption [10, 31]. With a combination of 
physiological and omics evidence, we found that the  Na+ 
uptake contributes to osmotic adjustment, lipid adapta-
tion and signalling processes, thereby enhancing salt tol-
erance in P. vaginatum plants.

Na+ accumulation induces root‑sourced  H2O2 
and subsequently activates the antioxidant system
Extensive studies have shown that hydrogen perox-
ide  (H2O2) can lead to harmful effects in unfavour-
able environmental conditions [32, 33]. Nevertheless, 
several reports highlighted the involvement of root-
sourced NADPH-mediated  H2O2 in increasing plant 
salt tolerance [34–37]. In P. vaginatum plants,  Na+ 
uptake caused the accumulation of root-organised 
 H2O2 in salt-tolerant plant roots (Fig. 2A). Our results 

confirm for the first time that root-sourced  H2O2 plays 
a vital role in halophyte plant tolerance to high salinity.

SOD and CAT are essential defense mechanisms 
against oxidative stress caused by salt stress [38]. These 
two enzymes have been identified as crucial regulators 
for achieving optimal  H2O2 levels, contributing to plant 
salinity tolerance in glycophytic plants [39, 40]. How-
ever, whether  H2O2 is important for halophytes remains 
debatable, as there is limited evidence of its importance 
so far. In our study, increased root-derived  H2O2 did 
trigger higher amounts of CAT and  Mn2+-SOD (Fig. 2B 
and 2D) enzymes suggesting that it induced their activ-
ity in roots, therefore contributing to the enzymatic 
antioxidant system of salt-tolerant seashore paspalum 
in response to salt stress.

With increasing  H2O2, some amino acids that are 
important as efficient antioxidants for plants to control 
the appropriate amounts of  H2O2 under saline condi-
tions were not significantly abundant (Fig.  3B), such 

Fig. 5 A Venn diagram and (B) Volcano plot presenting the number and regulation of differentially expressed genes (DEGs) identified from 
comparative transcriptome analyses of the two P. vaginatum accessions under salt stress and non-stress conditions. C GO graphs showing the 
GO terms most enriched involved by DEGs of compound metabolic process in salt-treated leaves and roots. Abbrev: ‘R’: salt-tolerant accession; ‘S’: 
salt-sensitive accession; ‘T’: salt treatment; ‘C’: unsalted treatment; ‘L’: leaf; ‘R.◦’: root)
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as tryptophan, phenylalanine, and phenylpropanoids 
[41]. Interestingly, we observed that such amino acids 
were involved in conferring salt tolerance to P. vagina-
tum leaves (Fig.  3B). This result is consistent with the 
observation that  Na+ accumulation triggers a slight rise 
in  H2O2 generation although it was not significantly dif-
ferent between the two accessions (Fig. 1B and Fig. 2A). 
Our evidence supports that  Na+ accumulation plays an 
important role in triggering the enzymatic and non-enzy-
matic antioxidant system to obtain salinity tolerance in 
this halophytic species, especially for roots.

Na+ uptake is associated with tissue‑specific lipid 
metabolism
Na+ accumulation is commonly thought to decrease 
lipid contents [24] through lipid peroxidation caused by 
 Na+-induced ROS in glycophytic plants under salt stress 
[42, 43], while studies have provided evidence that mem-
brane lipid alterations are essential for maintaining mem-
brane homeostasis in halophytes under salt stress [19, 20].

In agreement with previous reports, we found that 
salt-tolerant P. vaginatum plants are prone to increase 
their lipid contents to improve salt tolerance (Fig.  4). 

The increase was particularly noticeable for galactolip-
ids (DGDGs) and phospholipids (PCs and PEs), and their 
overall increase has been linked to membrane fluidity 
and permeability maintenance during osmotic stress [44]. 
Furthermore, the importance of increased DGDGs, PCs, 
and PEs contents to plant stress tolerance has been con-
firmed [24, 45]. We observed an obvious upregulation of 
DGDGs, PCs and PEs in salt-tolerant plants in response 
to salt stress, indicating that  Na+-induced lipid metabo-
lism is required for improved plant tolerance to salt stress 
in the halophytic grass P. vaginatum (Fig. 4).

Na+‑induced upregulation of amino acid metabolism 
is the central hub for root‑shoot coordination
As mentioned, several amino acids act as antioxidants in 
the homeostasis of root-dependent  H2O2 in salt tolerant 
accession (Fig.  3B). Additionally, some amino acids, such 
as arginine, are essential precursor molecules for the syn-
thesis of secondary metabolites, including polyamines, 
phenolic compounds, and alkaloids associated with salt 
tolerance [46]. For example, the strongly decreased arginine 
could contribute to polyamines synthesis during salt stress 
in the leaves of salt-tolerant P. vaginatum plants (Fig. 3B), 

Fig. 6 A Scatter plots of the sparse PLS-DA model on the first two components using significant metabolites and DEGs based on comparison 
analysis. B‑C Complex dynamic regulatory networks of important metabolites involved in amino acid metabolism and their corresponding genes 
in roots of salt-tolerant P. vaginatum accession (The KEGG figures produced under the permission from Kanehisa Laboratories). Solid red or green 
circles represent either increased or decreased changes in metabolite abundance and gene expression. Abbrev: ‘R’: salt-tolerant accession; ‘S’: 
salt-sensitive accession; ‘T’: salt treatment; ‘C’: unsalted treatment; ‘L’: leaf; ‘R.◦’: root)
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and phenylalanine can serve as precursors for phenolic 
compounds and alkaloids synthesis to minimise salt stress-
induced oxidative stress [47, 48]. This result is consistent 
with our transcriptome profiling study, in which the gene-
metabolite regulatory network has an essential role for 
amino acids in important secondary metabolites synthesis. 
Additionally, we identified several DEGs in leaves mapped 
into GO terms called ‘Amino acid transport” and “Amino 
acid import’, indicating that amino acids produced in leaves 
may act as important contributors for polyamines and phe-
nolic compounds required for root salt tolerance.

Conclusion
Overall, variation in salinity tolerance among differ-
ent P. vaginatum genotypes was closely linked to  Na+ 
accumulation in the roots. Under saline conditions, salt-
tolerant plants exhibit preferential  Na+uptake, which is 
likely stored in their roots. During salt stress, the pres-
ence of  Na+-induced root-sourced  H2O2 activates anti-
oxidant systems in salt-tolerant plants. This activation is 
tissue-specific and plays a crucial role in conferring salt 
tolerance. Furthermore,  Na+ accumulation likely serves 
as a trigger for the upregulation of lipid metabolism, 
thereby enhancing P. vaginatum salt tolerance. Addition-
ally, DEGs related to salt tolerance are inversely related 
to organic acid and amino acid metabolism. Overall, this 
study provides insights into the molecular mechanisms 
underlying P. vaginatum salt tolerance.
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