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Abstract 

Background  Flooding is among the most severe abiotic stresses in plant growth and development. The mechanism 
of submergence tolerance of cotton in response to submergence stress is unknown.

Results  The transcriptome results showed that a total of 6,893 differentially expressed genes (DEGs) were discovered 
under submergence stress. Gene Ontology (GO) enrichment analysis showed that DEGs were involved in various 
stress or stimulus responses. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that 
DEGs related to plant hormone signal transduction, starch and sucrose metabolism, glycolysis and the biosynthesis 
of secondary metabolites were regulated by submergence stress. Eight DEGs related to ethylene signaling and 3 
ethylene synthesis genes were identified in the hormone signal transduction. For respiratory metabolism, alcohol 
dehydrogenase (ADH, GH_A02G0728) and pyruvate decarboxylase (PDC, GH_D09G1778) were significantly upregulated 
but 6-phosphofructokinase (PFK, GH_D05G0280), phosphoglycerate kinase (PGK, GH_A01G0945 and GH_D01G0967) 
and sucrose synthase genes (SUS, GH_A06G0873 and GH_D06G0851) were significantly downregulated in the sub-
mergence treatment. Terpene biosynthetic pathway-related genes in the secondary metabolites were regulated in 
submergence stress.

Conclusions  Regulation of terpene biosynthesis by respiratory metabolism may play a role in enhancing the toler-
ance of cotton to submergence under flooding. Our findings showed that the mevalonate pathway, which occurs in 
the cytoplasm of the terpenoid backbone biosynthesis pathway (ko00900), may be the main response to submer-
gence stress.
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Background
Flooding is among the most severe abiotic stresses that 
occur during plant growth and development [1]. Flood-
ing is a general term referring to excessively wet condi-
tions, that is where excess water replaces gas-spaces 
surrounding roots and/or shoots. It mainly includes four 
aspects: (1) Waterlogging or soil flooding: only the root-
zone is flooded, (2) Partial waterlogging or soil flooding: 
partial flooding of the root-zone, (3) Submergence refers 
to the entire plant being underwater (4) Partial submer-
gence: the entire root system and part of above-ground 
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organs are under water [2]. Flooding directly affects 
the diffusion of oxygen in plant tissues/soil, resulting in 
hypoxia. Hypoxia greatly disrupts respiration and pho-
tosynthesis, which leads to a reduction in the ATP sup-
ply and has deleterious effects on normal life activities 
of plants [3]. When plants are completely submerged, 
they are deprived of oxygen. Most plant species cannot 
survive prolonged submergence, but they can temporar-
ily adapt to submergence stress through the Low Oxy-
gen Quiescence Syndrome (LOQS) or the Low Oxygen 
Escape Syndrome (LOES) [4–6]. Heavy rainfall and flood 
disasters have become frequent in recent years, and there 
is an urgent need to study the submergence tolerance of 
plants and their mechanisms to maintain the effective 
adaptation of plants to climate change [7, 8].

Reactive oxygen species (ROS) are a normal product 
of plant cell metabolism. Reactive oxygen can be used 
as a signal molecule to respond to stress, and excessive 
ROS is harmful to plant cells. Under prolonged hypoxia 
condition, excessive ROS can be accumulated, causing 
membrane lipid peroxidation and altering the struc-
ture of proteins and nucleic acids [9]. Malondialdehyde 
(MDA) is one of the most important products of mem-
brane lipid peroxidation and constitutes a common 
parameter of membrane damage. Plants have evolved a 
complex set of enzymatic and non-enzymatic detoxifica-
tion mechanisms to eliminate oxidative damage caused 
by ROS [10]. Anti-oxidative enzymes of plants include 
peroxidase  (POD), superoxide dismutase (SOD), etc. 
Non-enzymatic antioxidants mainly contain a series of 
antioxidants, such as ASA-glutathione (GSH), ascor-
bic acid (ASA), lycopene, carotene, and other second-
ary metabolites [10]. Many studies have reported that 
secondary metabolites such as GSH, ASA and lycopene 
enhance plant resistance by reducing ROS [11–14].

Glycolysis is a common starting pathway of aerobic 
and anaerobic respiration in plants and is a process in 
which plants anaerobically decompose glucose into pyru-
vate under the action of a series of enzymes as energy is 
released [15, 16]. Some intermediate products of glycoly-
sis are important raw materials for the synthesis of sec-
ondary metabolites, and the final product, pyruvate, is 
very biochemically active. Under normoxia, pyruvate is 
completely oxidized to produce ATP through the TCA 
cycle. Under hypoxia, pyruvate can produce energy in 
plants through two alternative pathways. Pyruvate can 
be converted into lactic acid by lactate dehydrogenase 
(LDH) or gradually converted into ethanol by pyruvate 
decarboxylase (PDC) and alcohol dehydrogenase (ADH) 
[17]. There are many previous studies on the energy sup-
ply of plants in response to waterlogging or partial stress 
[18–22]. For example, soybean that was genetically modi-
fied with GmADH2 had an enhanced seed germination 

ability under waterlogging [19]. The PDC activity and 
resistance to hypoxia are significantly enhanced in Arabi-
dopsis by overexpression of LDH [23]. Under submerged 
conditions, plant submergence tolerance is related to 
carbohydrate accumulation and consumption [5, 22, 24, 
25]. However, it is unclear how cotton would cope with 
energy shortages under complete submergence.

Secondary metabolites can be divided into the follow-
ing categories according to their chemical structure and 
properties: terpene-, phenol- and nitrogen-containing 
secondary compounds [26]. The terpenoid biosynthetic 
pathway is one of the main metabolic pathways in organ-
isms. Terpenoids produced by this pathway are very 
large, and more than 30,000 species have been identi-
fied [27]. There are two synthetic pathways: the meva-
lonate pathway (the MVA pathway) in the cytoplasm and 
pyruvate/glyceraldehyde-3-phosphate pathway (the DXP 
pathway) in plastids. However, which pathway plays the 
main role in the response of plants to submergence stress 
has not been reported so far. Many terpenoids have good 
antioxidant properties and are the main effective ingre-
dients (antitumor paclitaxel and antimalarial artemisinin, 
for example) of natural botanicals. Ginsenoside Re iso-
lated and extracted from American ginseng has an anti-
oxidant effect, which can remove internal and external 
oxidants of cardiomyocytes and protect them from oxi-
dative damage [28]. Studies on the improvement of plant 
submergence tolerance by scavenging ROS by terpenoids 
under submergence stress have not been reported.

Cotton is a crop that is sensitive to submergence stress. 
However, most of recent studies have focused on the cot-
ton growth and yield loss in response to waterlogging [29, 
30]. Previous studies on the mechanism of submergence 
tolerance have been limited to rice, while the mecha-
nism of submergence stress tolerance is unknown in cot-
ton. In this study, the potential mechanism of cotton in 
response to submergence stress was investigated through 
transcriptome, physiological and biochemical analyses to 
provide guidance for cotton breeding and production.

Results
Cotton morphological and cytological changes
The morphology of ZNL2067 and ZL100 was significantly 
different at the three-leaf stage after being submerged for 
3 days (Fig. 1A). ZNL2067 had no morphological changes 
and displayed upright stems and green leaves. However, 
ZL100 showed a severely damaged phenotype with with-
ered leaves, and only young leaves remained partially 
green. Compared to ZL100, ZNL2067 was more tolerant 
to submergence stress. The morphological characteristics 
of ZNL2067 and ZL100 submerged for 7 days also veri-
fied this result at the flowering and boll stages (Fig. 1B). 
Therefore, we chose ZNL2067 as a submergence-tolerant 
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plant material to reveal the underlying mechanism of 
submergence stress.

To explore the cytological changes in cotton to sub-
mergence stress, we observed the cytological char-
acteristics of cotton leaves under three treatments: 
normal growth, submergence stress, and reoxygena-
tion after submergence. Under submergence stress, the 
palisade and spongy tissues of ZNL2067 and ZL100 
became looser to facilitate oxygen exchange (Fig.  1C). 
Under reoxygenation after submergence, the palisade 
and spongy tissues of submergence-tolerant ZNL2067 

became tighter (Table  1). At the same time, ZNL2067 
was treated with short-term flooding and long-term 
submergence, and we found that ZNL2067 had advanta-
geous roots (ARs) (Fig. S1).

Changes of physiological indicators and ROS in cotton
To study the effects of submergence stress on physiologi-
cal indicators such as photosynthesis, biological yield of 
submergence-resistant cotton, we measured the changes 
in net photosynthetic rate and dry matter. The net pho-
tosynthetic rate of ZNL2067 was significantly lower than 

Fig. 1  Analysis of the morphological and cytological characteristics of ZNL2067 and ZL100. A The field phenotype of ZNL2067 and ZL100 after 3 
days of submergence in the three-leaf period; B The field phenotype of ZNL2067 and ZL100 after 7 days of submergence in the flowering and boll 
stage; C The leaf cytological characteristics of ZNL2067 and ZL100 at the three-leaf stage with normal growth, submergence stress, and recovery 
growth after submergence; PT: Palisade tissue; SpT: Spongy tissue



Page 4 of 18Sun et al. BMC Plant Biology          (2023) 23:330 

that under normal growth under submergence treatment. 
After 3 days of reoxygenation, the net photosynthetic rate 
of ZNL2067 was significantly higher than that of the sub-
mergence treatment (Fig. 2A). The dry matter weights of 
roots, stems and leaves of ZNL2067 were significantly 
lower than those of normal growth under submergence 
treatment. Under reoxygenation after submergence, 
the dry matter weight of stems and leaves of ZNL2067 
increased compared with that of stems and leaves treated 
with submergence (Fig. 2B). This showed that ZNL2067 
resumed growth after reoxygenation.

In order to study the effect of submergence stress on 
reactive oxygen species (ROS) in submergence-resistant 
cotton, the changes of MDA and POD were measured. 
The MDA value increased significantly after 3  days of 
submergence stress and decreased significantly after 
reoxygenation (Fig.  2C). Submergence stress promoted 
the accumulation of ROS, which in turn promoted the 
aggravation of cotton oxidative damage. The activity of 
POD was not significantly different between the different 
treatments (Fig. 2D). We speculated that ZNL2067 may 
have eliminated excess ROS after being submerged for 
3 days. Based on the above physiological and biochemi-
cal results, ZNL2067 eliminated the ROS damage and 
resisted short-term submergence stress.

Transcriptome sequencing and alignment
To investigate the molecular response of cotton to sub-
mergence stress, we analyzed the RNA-seq data during 
normal growth (Nor), submergence (Sub) and reoxy-
genation after submergence (Reo), with three biological 
replicates. We utilized 3 days of submergence treatment 
and 3 days of reoxygenation as the sampling times. We 
obtained 64.27 Mb, 72.63 Mb and 74.45 Mb of average 
valid reads, containing 6.43  Gb, 7.26  Gb and 7.45  Gb 
of average valid bases, respectively (Table 2). The valid 
read ratios of nine libraries were all above 97.40%; the 
percentages of Q20 and Q30 were above 99.98% and 

97.94%, respectively, and the GC content was at least 
44.00% (Fig.  3A). The mapped read ratio of each sam-
ple to the reference genome TM-1 (http://​ibi.​zju.​edu.​
cn/​cotton/) was more than 95% (Fig.  3B). The R2 val-
ues between samples from the same treatment were all 
above 0.886 (Fig.  3C). The mapped valid read ratio of 
each sample to the exon region of the reference genome 
was at least 85.83% (Fig. 3D). These results showed that 
the quality of the sequencing data met the experimental 
requirements.

Analysis of DEGs
To identify DEGs of cotton in response to submergence 
stress, DEGs of the Sub vs. Nor treatment were obtained 
with a fold change of ≥ 2 and FDR of < 0.01 as the screen-
ing criteria, and 6,893 DEGs were identified (Fig.  4). 
The number of upregulated genes in each treatment 
was 2,178, and the number of downregulated genes was 
4,715, respectively. These DEGs were important candi-
date genes for further research.

GO enrichment analysis of DEGs
DEGs of submergence stress were further studied by GO 
function analysis (Fig.  5). Under submergence stress, 
the biological processes of DEGs were mainly enriched 
in protein phosphorylation (GO:0006468), oxidation–
reduction process (GO:0055114), regulation of transcrip-
tion, DNA-templated (GO:0006355), defense response 
(GO:0006952), cell wall organization (GO:0071555), 
ethylene-activated signaling pathway (GO:0009873) and 
cell differentiation (GO:0030154), indicating that cotton 
responds to submergence stress by regulating protein 
metabolism, DNA synthesis speed, defense response, 
and redox reaction. The plasma membrane was the most 
enriched cell component, indicating that the cotton 
plasma membrane was very important for the response 
to submergence stress. The molecular functions of DEGs 
under reoxygenation were mainly enriched in DNA 

Table 1  Changes of leaf tissue in ZNL2067 and ZL100

Ratio of palisade tissue/sponge tissue(RPS) = (palisade tissue/sponge tissue) × 100%; Cell tense ratio(CTR) = (Palisade tissue thickness/leaf thickness) × 100%; 
SR = (Sponge tissue thickness/leaf thickness) × 100%. The significance test was performed using Duncan’s method

The difference of lowercase letters after the data indicates a significant difference

Treatment Palisade tissue 
thickness (μm)

Sponge tissue 
Thickness (μm)

leaf thickness RPS (%) CTR (%) SR (%)

2067-Nor 61.34 ± 11.16b 59.79 ± 0.80a 157.32 ± 10.12b 1.025 ± 0.18b 0.39 ± 0.01b 0.38 ± 0.03a

2067-Sub 84.35 ± 14.60a 66.85 ± 4.00b 186.70 ± 14.53a 1.265 ± 0.24b 0.45 ± 0.05a 0.36 ± 0.03a

2067-Reo 55.92 ± 2.37a 29.08 ± 3.88c 113.32 ± 5.63c 1.949 ± 0.26a 0.49 ± 0.02a 0.26 ± 0.02b

100-Nor 80.02 ± 0.97a 55.74 ± 2.37b 176.57 ± 3.76b 1.437 ± 0.05a 0.45 ± 0.01a 0.32 ± 0.01c

100-Sub 78.32 ± 1.96a 64.49 ± 4.89a 182.83 ± 4.10a 1.220 ± 0.10b 0.43 ± 0.01ab 0.35 ± 0.02b

100-Reo 56.74 ± 7.44b 55.96 ± 3.91b 142.32 ± 3.70c 1.023 ± 0.18c 0.40 ± 0.04c 0.39 ± 0.03a

http://ibi.zju.edu.cn/cotton/
http://ibi.zju.edu.cn/cotton/
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binding (GO:0003677), protein serine/threonine kinase 
activity (GO:0004674), sequence-specific DNA binding 
(GO:0043565), kinase activity (GO:0016301), transferase 
activity, transferring glycosyl groups (GO:0016757), 

protein kinase activity (GO:0004672) and ATPase activity 
(GO:0016887).

We analyzed the redox reaction genes: 106 genes were 
upregulated and 127 genes were downregulated, and 

Fig. 2  Changes in physiological indicators before and after submergence in ZNL2067. A The net photosynthetic rate change of ZNL2067. B The 
dry matter weight change in ZNL2067. C The MDA activity of ZNL2067. D The POD activity of ZNL2067. Data shown are the mean ± SD (n = 3). Nor: 
normal growth; Sub: submergence; Reo: reoxygenation after submergence. The significance test was performed using Student’s t-test. *: P < 0.05, **: 
P < 0.01 and ***: P < 0.001. Error bars are the standard deviation (SD) of three biological replicates in each treatment group

Table 2  Summary of sequence reads after filtering

Samples Raw read (Mb) Raw base (Gb) Valid read (Mb) Valid base (Gb) Valid ratio (%) Q20 (%) Q30 (%) GC content (%)

Normal growth 64.64 6.56 64.27 6.43 97.91 99.98 97.98 44.00

Submergence 74.31 7.43 72.63 7.26 97.74 99.98 97.94 44.17

Reoxygenation 76.37 7.64 74.45 7.45 97.48 99.98 97.98 44.00



Page 6 of 18Sun et al. BMC Plant Biology          (2023) 23:330 

most of them were concentrated in thioredoxin, POD, 
glyceraldehyde 3-phosphate (GA-3P) dehydrogenase, 
etc. (Fig.  6A). In defense responses, 134 genes were 
upregulated and 198 genes were downregulated. Most 

of the genes were concentrated in ethylene transcription 
factor, 1-aminocyclopropane-1-carboxylic acid syn-
thase, and E3 ubiquitin protein ligase (Fig. 6B).

Fig. 3  Sequencing quality analysis. A Sequencing quality statistics. B Reads comparison statistical analysis. C Pearson’s correlation coefficient 
(R2) between different samples. D Reads comparison region distribution. The colors red, light blue and light green represent exons, introns and 
intergens, respectively. Nor: normal growth; Sub: submergence; Reo: reoxygenation after submergence

Fig. 4  Statistical analysis (A) and volcano plot (B) of DEGs in response to submergence treatments. Nor: normal growth; Sub: submergence. Red 
represents the up-regulated genes, blue represents the down-regulated genes, and green represents the total number of DEGs
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KEGG pathways of DEGs
To determine the main enriched pathways of cotton 
in response to submergence stress, DEGs under sub-
mergence stress were analyzed by KEGG enrichment 
analysis. In the submergence treatment (Sub vs. Nor), 
3203 DEGs were assigned to 131 pathways in the KEGG 
database. Starch and sucrose metabolism (ko00500), 
plant hormone signal transduction (ko04075), MAPK 
signaling pathway (ko04016), phenylpropanoid bio-
synthesis (ko00940), galactose metabolism (ko00052), 
glycolysis/gluconeogenesis (ko00010), carotenoid biosyn-
thesis (ko00906), glutathione metabolism (ko00480), and 
terpene metabolism were significantly enriched terms 
(Fig.  7). These pathways were related to plant signal 
transduction, carbohydrate metabolism and secondary 
metabolism in plants under abiotic stress.

DEGs analysis of the respiratory metabolism pathway
Respiratory metabolism not only provides energy for 
life activities but also provides raw materials for the 
synthesis of secondary metabolites. To further study 
the response of respiratory metabolism to submergence 
stress, DEGs of the glycolytic pathway and the citric 
acid cycle (EMP-TCA) were further studied through 
the KEGG pathway (Fig.  8). In the glycolysis path-
way, we found that ADH and PDC were significantly 
upregulated in the submergence treatment but signifi-
cantly downregulated in the reoxygenation treatment. 
ADH and PDC play important roles in the response 
to submergence stress. In the submergence treatment, 
6-phosphofructokinase (PFK) and phosphoglycerate 

kinase (PGK) were significantly downregulated. At the 
same time, we found that the sucrose synthase genes 
(SUS) (GH_A06G0873 and GH_D06G0851) (Fig. S2) 
were significantly downregulated. ZNL2067 may reduce 
the rate of carbohydrate decomposition by reducing 
the expression of PFK, PGK, and SUS to prolong the 
survival time under submergence stress. Interestingly, 
there were no significant differences in the expres-
sion levels of citrate synthase (CS), aconitate hydratase 
(ACO) and other TCA-related genes between submer-
gence and control treatment. We speculated that the 
impact of submergence stress on the TCA cycle was not 
obvious, and its specific mechanism needs to be further 
verified.

DEG analysis of the terpene metabolism pathway
We analyzed the terpene metabolism-related KEGG 
pathway in response to submergence stress. The KEGG 
pathways enriched by DEGs mainly included terpenoid 
backbone biosynthesis (ko00900), monoterpene biosyn-
thesis (ko00902), diterpene biosynthesis (ko00904), ses-
quiterpenoid and triterpenoid biosynthesis (ko00909), 
and carotenoid biosynthesis (ko00906). Studies have 
found that the accumulation of some secondary metabo-
lites enhances the ability to eliminate ROS [31–33]. We 
further analyzed the terpenoid biosynthetic pathway and 
found that secondary metabolism-related genes were 
significantly enriched (Table 3, Fig. 9). ZNL2067 mainly 
responded to submergence stress through the MVA path-
way, not the DXP pathway. In the MVA pathway, there 
was no downregulation of DEGs.

Fig. 5  GO term enrichment analysis of DEGs from the Sub vs. Nor group
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Identification of transcription factors (TFs)
TFs play a vital role in plant resistance to adversity 
stress. Many TFs were differentially expressed under 
submergence, and most TFs belonged to the bHLH, 

ERF, NAC, MYB, WRKY, C2H2, B3, bZIP and C3H 
families (Fig.  10A). A total of 3,958 TFs were specifi-
cally expressed under submergence. Among them, there 
were 1,150 upregulated genes and 2,808 downregulated 

Fig. 6  Heatmap of genes associated with the defense response (A) and redox (B) in submergence treatment. Nor: normal growth; Sub: 
submergence
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genes (Fig.  10B). In the bHLH, ERF, NAC, and MYB 
families, 121, 119, 113, and 105 genes were upregulated, 
and 251, 210, 199, and 329 genes were downregulated. 
The ethylene transcription factors RAP2-4, RAP2-1, 
ERF114, ERF073, ERF025 and ABR1 were significantly 
upregulated under flooding stress (Fig.  11). These TFs 
may play important roles in the response to submer-
gence stress.

Ethylene response and biosynthesis
Plants adjust their response to submergence by alter-
ing the balance between phytohormone synthesis and 
transportation [34]. The rapid synthesis of ethylene is 
one of the important ways for plants to actively cope 
with waterlogging or submergence stress [22, 35–39]. 
In this study, 8 DEGs related to ethylene signaling and 
3 ethylene synthesis genes were identified (Fig.  11). 

Fig. 7  Statistics of DEGs in different KEGG pathways

Fig. 8  Heatmap of DEGs of the respiratory metabolism pathway. Nor: normal growth; Sub: submergence; Reo: reoxygenation after submergence



Page 10 of 18Sun et al. BMC Plant Biology          (2023) 23:330 

Table 3  DEGs in the terpenoid metabolic pathways under submergence treatment

KEGG Pathway Gene ID Description Log2FC(Sub)

Terpenoid backbone biosynthesis GH_D06G2411 Acetyl-CoA acetyltransferase, AACT​ 0.68

GH_A12G2448 Hydroxymethylglutaryl-CoA synthase, HMGS 0.70

GH_D02G2102 Hydroxymethylglutaryl-coenzyme A reductase, HMGCR​ 0.71

GH_D02G2632 Hydroxymethylglutaryl-coenzyme A reductase, HMGCR​ 1.53

GH_A11G3372 Mevalonate kinase, MVK 0.82

GH_D13G0113 Diphosphomevalonate decarboxylase, MVD2 0.70

GH_A13G0114 Diphosphomevalonate decarboxylase, MVD2 0.81

GH_A13G0921 Isopentenyl phosphate kinase, IPK 0.61

GH_D01G0916 Farnesyl pyrophosphate synthase 2, FPPS2 0.80

GH_D08G1041 1-Deoxy-D-xylulose-5-phosphate synthase, DXS -0.59

GH_A08G0948 1-Deoxy-D-xylulose-5-phosphate synthase, DXS -0.62

Fig. 9  Analysis of the terpenoid biosynthesis pathway and heatmap of DEGs related to monoterpenes, diterpenoids and sesquiterpenes. Nor: 
normal growth; Sub: submergence
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The ACO and ACS genes were significantly upregu-
lated under submergence and reoxygenation treatment 
(Fig.  11), indicating that the ACO and ACS genes had 
stronger ethylene synthesis activity under submergence 
and reoxygenation conditions.

Verification of RNA‑seq data
To assess the reliability of the transcriptome data, we 
performed RT-qPCR using the same RNA-seq samples. 
Thirty DEGs were selected for RT-qPCR validation, 
including 14 upregulated and 16 downregulated genes 

Fig. 10  DEGs associated with TF activity in response to submergence stress. A The number of enriched TF families. B The number of DEGs in 
different transcription factor families

Fig. 11  Heatmap analysis of DEGs related to ethylene response and biosynthesis. Nor: normal growth; Sub: submergence
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(Table S1). The results of RT-qPCR for the 30 DEGs were 
consistent with the RNA-seq data (Fig. S3), indicating 
that the two sets of RNA-seq data were reliable (Fig. 12).

Discussion
With the current climate change, flooding events are 
becoming challenging problems, with severe impacts on 
global ecosystems [40, 41]. Therefore, research on the 
mechanism of plant water tolerance has always been an 
important agricultural issue. In this study, RNA-seq tech-
nology was used to reveal the transcriptome changes in 
cotton in response to submergence. We studied the mor-
phological changes in ZNL2067 and ZL100 after sub-
mergence and reoxygenation (Fig.  1). Physiological and 
biochemical measurements revealed that ZNL2067 with-
stood short-term submergence stress (Fig. 2). Therefore, 
ZNL2067 was chosen as the research material to examine 
the mechanism of submergence stress.

Respiratory adaptation
Energy deficiency and respiratory depression caused by 
hypoxia are some of the most serious problems faced by 
flooded plants. Previous studies have shown that plants 
obtain the necessary energy supply to cope with energy 
shortages caused by flooding by accelerating glyco-
lysis and ethanol fermentation [42]. As the submergence 
time increases, the accumulation of anaerobic metabo-
lites eventually leads to plant death [43]. RAN-seq data 
showed that the expression of 6-phosphofructase kinase 
(PFK, GH_D05G0280), phosphoglycerate kinase (PGK, 
GH_A01G0945 and GH_D01G0967) and sucrose syn-
thase genes (SUS, GH_A06G0873 and GH_D06G0851) 

was significantly down-regulated. This may indicate 
that ZNL2067 can delay the rate of carbohydrate break-
down by reducing the transcriptional expression levels 
of PFK, PGK and SUS genes. At the same time, alcohol 
dehydrogenase (ADH, GH_A02G0728) and pyruvate 
decarboxylase (PDC, GH_D09G1778) were significantly 
upregulated expressed. TCA is a ubiquitous metabolic 
pathway in aerobic organisms that is distributed in mito-
chondria [44–46]. There was no significant difference in 
the genes involved in the citric acid cycle (TCA) under 
submergence and normal growth. This indicated that 
TCA can still maintain basic energy metabolism after 
submergence for 3 days, which may be related to the for-
mation of ARs and the removal of active oxygen.

ROS scavenging through the terpene biosynthetic pathway
Secondary metabolites are closely related to respiratory 
metabolism. Many intermediate products in the process 
of respiration are used as raw materials for plants to syn-
thesize secondary metabolites, and pyruvate, GA-3P and 
acetyl-CoA are important upstream raw materials for the 
synthesis of the terpene biosynthesis pathway [47]. Tran-
scriptome data indicated that the expression of pyruvate, 
glyceraldehyde 3-phosphate and acetyl-CoA genes was 
changed by submergence stress, which in turn regulated 
the metabolic pathways of terpenoids. Hypoxia under 
submergence stress increases plant ROS levels [33, 48, 
49]. The accumulation of ROS results in serious dam-
age, such as lipid peroxidation, protein oxidative dam-
age and DNA oxidative damage, to plant cells [50, 51]. 
We found that MDA values increased significantly after 
3 days of submergence stress and decreased significantly 

Fig. 12  Correlation analysis between RT-qPCR and RNA-seq data. A Submergence (Sub); B Reoxygenation after submergence (Reo)
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after reoxygenation (Fig. 2C). Plants eliminate ROS accu-
mulation mainly through secondary metabolites and 
antioxidant enzyme systems [14, 33]. We discovered 
the KEGG pathways of some secondary metabolites, 
including sesquiterpenoid and triterpenoid biosynthesis, 
terpenoid backbone biosynthesis, monoterpenoid bio-
synthesis, and diterpenoid biosynthesis. In the terpenoid 
backbone biosynthesis pathway, the mevalonate pathway 
that occurred in the cytoplasm was the main pathway 
employed in response to submergence stress. DXS is an 
important rate-limiting enzyme in the pyruvate/glyc-
eraldehyde phosphate pathway. Its expression was sig-
nificantly downregulated under submergence stress. We 
further studied the changes in key genes in the terpene 

metabolism pathway, such as TPS, 2-OGD, and SM. The 
expressions of these three genes were significantly up-
regulated under submergence stress (Table S2). TPS is a 
key gene in the synthesis of terpene compounds [52]. SM 
is a gene that regulates cholesterol synthesis  [53]. Caro-
tene and lycopene are tetraterpenes, sterols and squalene 
are triterpenes, and these tetraterpene compounds have 
strong antioxidant properties [54, 55]. The results showed 
that there was no significant difference in POD activity 
among the treatments (Fig.  2D). This is consistent with 
the results of previous studies [56]. We speculated that 
ZNL2067 may have eliminated excess ROS after being 
submerged for 3  days. Therefore, we hypothesized that 
genes related to terpenoid metabolic pathway may play 

Fig. 13  Hypothetical model of cotton responding to submergence stress. Line with blocked end indicates inhibitory effects, and arrow indicates 
positive stimuli. Under normoxia, pyruvate is completely oxidized to produce ATP through the TCA cycle to maintain the normal growth and 
development of cotton. Under hypoxia condition, cotton can obtain the energy needed for temporary survival by increasing the transcriptional 
expression levels of ADH and PDC genes; the genes related to the regulation of terpenoid biosynthesis pathway were up-regulated possibly to 
eliminate ROS and improve the tolerance of cotton to submergence stress
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an important role in ROS scavenging under submergence 
stress.

Specific expression of TFs
TF families, such as bHLH, ERF, NAC, MYB, WRKY and 
bZIP, were significantly differentially expressed under 
submergence stress. Studies have shown that overex-
pressing bHLH4 and bHLH6 increased the accumulation 
of Phaenopsis volatile monoterpenes [57]. The expres-
sion level of AaERF1/2 increased under the induction of 
jasmonic acid and promoted the accumulation of arte-
misinin in Artemisia annua [58]. Artemisia annua NAC1 
binds to the ADS promoter and upregulates its expres-
sion to increase the artemisinin content and enhance the 
drought stress tolerance of plants [59]. Soybean MYBZ2 
is an inhibitor of vinblastine synthesis [60]. Overexpres-
sion of CrWRKY1 significantly promoted the synthesis of 
indole alkaloids in Catharanthus roseus [61]. Artemisia 
annua AaAPK1 phosphorylates bZIP1 to achieve post-
transcriptional regulation of artemisinin synthesis [62]. 
In the absence of oxygen, plant cysteine oxidase (PCO) 
cannot destroy the ERF-VII transcription factor, leading 
to the activation of hypoxia response gene (HRG) tran-
scription [63]. Five ERF-VII genes (HRE1, HRE2, RAP2.2, 
RAP2.3, and RAP2.12) are considered to be the key 
regulators of hypoxia tolerance in Arabidopsis [64, 65]. 
The gene ZmEREB180 positively regulates the growth 
and development of ARs and the level of ROS in maize 
(Yu, et  al. 2019). We found that the ethylene transcrip-
tion factor RAP2 was significantly upregulated under 
submergence stress. This may be one of the reasons why 
ZNL2067 was resistant to submergence.

Conclusions
The physiological and transcriptional changes in cot-
ton under submergence and post-submergence reoxy-
genation stress were investigated to explore the response 
mechanism of cotton to flooding stress. Under nor-
moxia, pyruvate is completely oxidized to produce ATP 
through the TCA cycle to maintain the normal growth 
and development of plants [66, 67]. Based on the results 
of RNA-seq analysis, cotton could slow down the rate of 
carbohydrate degradation and obtain the energy required 
for survival by reducing the transcription levels of SUS, 
PGK and PFK genes and increasing the transcriptional 
expression levels of ADH and PDC genes under hypoxic 
conditions. At the same time, the genes related to the 
regulation of terpenoid biosynthesis pathway were up-
regulated possibly to eliminate ROS and improve the tol-
erance of cotton to submergence stress. Based on these 
results, we derived a hypothetical model of the cotton 
response to submergence (Fig. 13).

Material and methods
Materials and design
The experiment was conducted in a modern solar green-
house (N: 39°10 ’, E: 114°35 ’) at the Institute of Cotton 
Research of the Chinese Academy of Agricultural Sci-
ences (ICR, CAAS) in 2020. The submergence identifi-
cation pools (2  m × 20  m) in modern solar greenhouses 
are separated by concrete walls to prevent the soil mois-
ture in the different pools from infiltrating each other. 
Three treatments were designed: complete submergence 
(3d), reoxygenation after submergence (3d) and normal 
growth. In the submergence treatment, the entire plant 
was completely submerged during the cotton three-leaf 
period. In the control treatment, water was well main-
tained (the soil moisture was 60–70%). Each treatment 
had three independent biological replicates.

The experimental materials were planted in single rows 
with a length of 2 m and a spacing of 20 cm. When the 
soil temperature was above 15 °C, the seeds were evenly 
planted in the identification pool and watered well. After 
7 days, weak and deformed seedlings were removed, and 
20–30 cotton seedlings with uniform growth and robust 
growth were retained in each plot. When the seedlings 
reached three true leaves, we submerged them all in 
water, keeping the water level 1–3  cm higher than the 
seedlings. When the average water temperature was 25℃ 
and the average temperature was 36℃, the time of sub-
mergence treatment for 3 days. Water was then drained 
and growth was normal for 3d.

Observation of the internal structure of leaf tissue
Paraffin sections were used to observe the changes in leaf 
tissue in ZNL2067 and ZL100 from three treatments. 
After stress treatment, the leaves were quickly cut into 
5  mm × 10  mm pieces, and then fixed with FAA fixing 
solution. The slices were made by paraffin sectioning 
method and sliced with a microtome (RM2016) with a 
thickness of 5 μm. Then stained with safranine and solid 
green, and sealed with neutral gum. Finally, a light micro-
scope (NIKON ECLIPSE E100) was used to observe and 
take photos. We used CaseViewer software to observe 
longitudinal Sects.  (200 ×) of paraffin sections of leaves. 
Palisade tissue thickness, spongy tissue thickness, and 
leaf thickness were measured, and palisade tissue/spongy 
tissue ratio, CTR and SR were calculated. Three repli-
cates were measured for each treatment, and 5 readings 
were taken for each replicate.

Dry matter determination
10 representative cotton plants were randomly selected 
from three treatments, separated by roots, stems, and 
leaves, placed in an oven. First, they were dried at 
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105℃ for 30  min and then at a temperature of 75 ℃ to 
a constant weight. Finally, the dry matter weight was 
calculated.

Net photosynthetic rate determination
The photosynthetic parameters of the main stem func-
tional leaves of ZNL2067 were measured by a Li-6400 
portable photosynthesis meter (produced by LI-COR, 
USA) on the day of submergence for 3  days and reoxy-
genation for 3 days. Three replicates were measured for 
each treatment, and 10 readings were taken for each 
replicate.

MDA and POD measurements
0.1 g of leaf tissue was weighed in three treatments, and 
1 mL of extract was added to homogenize in an ice bath. 
After centrifugation at 8000  g for 10  min at 4 ℃, the 
supernatant was removed and placed on ice with three 
biological replicates for each sample. Samples were taken 
to determine the activity of POD and MDA, and a POD 
assay kit and MDA assay kit (#A084-3–1, #A003-3–1, 
Jiancheng Bioengineering Institute, Nanjing, Jiangsu, 
China) were used to measure the enzyme activity.

cDNA library construction and sequencing
Representative samples of ZNL2067 were randomly 
selected from the Nor, Sub and Reo treatments. RNA 
was separately extracted from roots, stems, and leaves, 
and then, equal amounts of RNA from roots, stems, and 
leaves were mixed. Each treatment was repeated three 
times independently.

We isolated and purified total RNA using TRIzol 
(Invitrogen, Carlsbad, CA, USA). RNA was quantified 
using NanoDrop ND-1000 (NanoDrop, Wilmington, 
DE, USA), and the RNA integrity was assessed using 
a Bioanalyzer 2100 (Agilent, CA, USA) with a RIN 
of > 7.0. The cDNA library was built utilizing the meth-
ods of Fan et  al. [68]. The average insert length in the 
cDNA library was 300 ± 50  bp. Finally, we performed 
2 × 150  bp paired-end sequencing (PE150) on an Illu-
mina NovaSeq™ 6000 (LC-Bio Technology CO., Ltd., 
Hangzhou, China).

Identification of differentially expressed genes (DEGs)
We used StringTie (version: stringtie-1.3.4d.Linux_
x86_64) to assemble the mapped reads for each sample 
[69]. All transcriptomes from the samples were merged 
to reconstruct a comprehensive transcriptome using the 
gffcompare software (version: gffcompare-0.9.8.Linux_
x86_ 64). We estimated the expression levels of all tran-
scripts using StringTie and Ballgown and determined 
mRNA expression levels by calculating FPKM values. The 
differentially expressed mRNAs and genes were selected 

with log2fold change (FC) > 1 or log2 (FC) < -1 and p 
value < 0.05 by R package edge R [70]. We used TBtools 
software to display heatmaps [71].

Gene Ontology (GO) and KEGG pathway enrichment 
analyses
We performed GO enrichment analysis of DEGs using 
the GOseq R package [72], and the length bias of DEGs 
was corrected. GO terms (p value < 0.05) were considered 
significantly enriched by DEGs. KOBAS77 software was 
used to test the statistical enrichment of DEGs in KEGG 
pathways. All DEGs were compared against the GO and 
KEGG [73–75].

Real‑time quantitative PCR (RT‑qPCR) validation 
and analysis
We selected thirty DEGs to validate the reliability of the 
transcriptome database. Thirty pairs of primers were 
designed using the Primer 6.0 software (Table S1), and 
RT-qPCR was performed [68]. The Actin gene was used 
as a reference.

Data Processing
SPPS(Ver.21) and EXCEL software were used for statis-
tical analysis. One-way analysis of variance (ANOVA) 
or Duncan’s method was used to compare the signifi-
cant levels of differences between different treatments 
(α = 0.05).
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