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Abstract 

Background Tillage measures have been effectively adopted for mitigating waterlogging damage in field crops, yet 
little is known about the role of tillage measures in crop responses to waterlogging. A field experiment was per-
formed to investigate the effect of conventional planting (CK), small ridge planting (SR), big ridge planting (BR) and 
film side planting (FS) on soil available nutrients and enzymatic activity, chlorophyll contents, leaf nutrients, soluble 
protein, soluble sugar, nitrate reductase, antioxidant enzyme activity, lipid peroxidation, agronomic traits and yield of 
rapeseed under waterlogging stress conditions.

Results Tillage measures remarkably improved rapeseed growth and yield parameters under waterlogging stress 
conditions. Under waterlogging conditions, rapeseed yield was significantly increased by 33.09 and 22.70% in the SR 
and BR groups, respectively, compared with CK. Correlation analysis showed that  NO3

−-N,  NH4
+-N, and urease in soils 

and malonaldehyde (MDA), superoxide dismutase (SOD), and nitrate reductase in roots were the key factors affecting 
rapeseed yield. The SR and BR groups had significantly increased  NO3

−-N by 180.30 and 139.77%,  NH4
+-N by 115.78 

and 66.59%, urease by 41.27 and 26.45%, SOD by 6.64 and 4.66%, nitrate reductase by 71.67 and 26.67%, and signifi-
cantly decreased MDA content by 14.81 and 13.35% under waterlogging stress, respectively, compared with CK. In 
addition, chlorophyll and N content in leaves, soluble sugar and POD in roots, and most agronomic traits were also 
significantly enhanced in response to SR and BR under waterlogging conditions.

Conclusion Overall, SR and BR mitigated the waterlogging damage in rapeseed mainly by reducing the loss of soil 
available nitrogen, decreasing the MDA content in roots, and promoting urease in soils and SOD and nitrate reductase 
in roots. Finally, thorough assessment of rapeseed parameters indicated that SR treatment was most effective fol-
lowed by BR treatment, to alleviate the adverse effects of waterlogging stress.
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Background
Rapeseed (Brassica napus L.) is an important oil crop, 
as well as an important protein and energy crop [1]. In 
China, rapeseed is the most important oil crop, and 
Sichuan is one of the main rapeseed producing areas. The 
sown area and total output of rapeseed in Sichuan were 
estimated to be 1.29 million ha and 3.17 million tons, 
respectively, in 2020, ranking first in China [2]. “Looks at 
Sichuan for rapeseed” has become a consensus, and doing 
a good job in the production of rapeseed in Sichuan is 
strategically important to ensure the safety of edible veg-
etable oil in Sichuan and China. Rice-rapeseed rotation is 
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one of the main crop rotations in Sichuan. Waterlogging 
at the seedling stage of rapeseed often occurs due to con-
tinuous rain every autumn, high groundwater levels and 
large soil viscosity [3]. The seedling stage of rapeseed is 
an important period for the population, which is domi-
nated by vegetative growth. There is a close relationship 
between plant growth and rapeseed resistance and late 
yield [4]. Previous studies have shown that of rapeseed 
is an oil crop sensitive to waterlogging stress, especially 
during critical growth periods (e.g. seedling stage) [5]. 
Waterlogging at the seedling stage of rapeseed causes 
various changes in crop plants through different mor-
phological, physiological, and biochemical responses [6]. 
For example, root tissue necrosis, significant reduction of 
root biomass, and significant changes in root morphol-
ogy have been observed [3]. Moreover, chlorophyll con-
tent, photosynthetic rate, superoxide dismutase (SOD), 
peroxidase (POD), catalase (CAT) and root activity sig-
nificantly decreased [7]. Therefore, it is important to 
explore reasonable and effective cultivation measures to 
alleviate waterlogging stress in rapeseed at the seedling 
stage to realize higher rapeseed yields.

Currently, the measures to mitigate waterlogging dam-
age or improve waterlogging tolerance in crop produc-
tion mainly include breeding and selecting crop varieties 
with strong moisture tolerance [8], ditching and drainage 
to reduce groundwater levels [9], and taking remedial 
measures such as water-fertilizer regulation [7] or chemi-
cal regulation [3] after waterlogging stress. Among them, 
the first two measures are time-consuming and labori-
ous, and the latter are costly and may affect crop quality 
and the environment. In contrast, tillage is an important 
technology to restore the growth of waterlogged crops, 
which can alleviate the damage of waterlogging stress to 
plant growth to a certain extent and is easy to implement. 
A previous study showed that the light transmittance 
of the ear layer in the ridge tillage treatment for DH605 
and ZD958 was decreased by 12 and 19% at the tasselling 
stage, respectively, compared with that of the waterlog-
ging treatment [10]. Visibly, ridge tillage effectively allevi-
ated leaf senescence and the decrease in leaf area index 
(LAI) and chlorophyll content induced by waterlogging 
and improved canopy structure, photosynthetic effec-
tive radiation, and photosynthesis of waterlogged sum-
mer maize, thus increasing grain yield by 39 and 50% for 
DH605 and ZD958, respectively, compared with water-
logging treatments [10]. Similarly, Du et al. [11] reported 
that a raised bed planting pattern significantly increased 
soil water drainage and reduced the soil water content. 
The reduced waterlogging stress promoted wheat seed-
ling establishment and root growth, accelerated stem 
and tiller development, and delayed late-season root 
and leaf senescence, resulting in 11.3 and 14.1% higher 

grain yields in Fengtai and Guohe, respectively. In addi-
tion, Suo et al. [12] recorded that ploughing to a depth of 
22 cm was superior to ploughing to a depth of 18 cm for 
waterlogged paddy rice yield.

The current study on the waterlogging of rapeseed 
mainly focused on the evaluation of seed moisture tol-
erance and the response of seedlings to waterlogging in 
terms of morphological and physiological indicators. 
Research on the control measures of waterlogging of 
rapeseed in the seedling stage is still rare, and no inves-
tigation has been carried out to reveal the mechanism of 
mitigating waterlogging damage in rapeseed by control 
measures from soil indicators and plant indicators. The 
objectives of the study were to (1) determine the effect 
of different tillage measures on soil available nutrients 
and enzymatic activity and rapeseed chlorophyll con-
tents, leaf nutrients, soluble protein, soluble sugar, nitrate 
reductase, antioxidant enzyme activity, lipid peroxida-
tion, agronomic traits and yield under waterlogging stress 
conditions; (2) compare the different tillage measures to 
alleviate the harmful effects of waterlogging stress; and 
(3) explain the mechanism by which tillage measures 
alleviate waterlogging stress.

Results
Chlorophyll and nutrient content in leaves
Tillage measures statistically (P < 0.05) affected the chlo-
rophyll (except for FS) and N contents (except for BR and 
FS) in leaves (Fig. 1A, B) but not the P and K contents in 
leaves (Fig.  1C, D). The results showed that the chloro-
phyll and nutrient contents in leaves were improved by 
the SR, BR, and FS treatments. SR treatment significantly 
increased the chlorophyll and N contents in leaves by 
18.59 and 20.54%, respectively, and BR treatment signifi-
cantly enhanced chlorophyll by 16.96% compared with 
the values of the CK treatment (Fig. 1A, B). Overall, max-
imum chlorophyll and nutrient contents in leaves were 
recorded from the plants treated with SR followed by BR 
and FS treatments compared with the CK treatment.

Available nitrogen content and enzyme activity in soil
NO3

−-N,  NH4
+-N and urease in soil were significantly 

(P < 0.05) affected by the tillage measures (Fig.  2A, B, 
D), while sucrase in soil was less affected by the tillage 
measures (Fig. 2C). Nevertheless, the available nitrogen 
content and enzyme activity in soil were enhanced by 
the SR, BR, and FS treatments.  NO3

−-N and  NH4
+-N 

were significantly impacted by the SR and BR treat-
ments, and urease was significantly influenced by the 
SR, BR, and FS treatments (Fig. 2A, B, D). The respec-
tive treatments improved  NO3

−-N by 180.30 and 
139.77%,  NH4

+-N by 115.78 and 66.59%, and urease by 
41.27, 26.45 and 19.73%, respectively, compared with 
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the values of the CK treatment. Generally, the highest 
available nitrogen content and enzyme activity in soil 
were recorded from the plants treated with SR, fol-
lowed by the BR and FS treatments compared with the 
CK treatment.

Soluble protein, sugar, and nitrate reductase in roots
Soluble sugar and nitrate reductase were statistically 
(P < 0.05) influenced by the tillage measures (Fig.  3A, 
C), while soluble protein was less affected by the till-
age measures (Fig.  3B). The results showed that solu-
ble protein, sugar, and nitrate reductase in roots were 
increased by the SR, BR, and FS treatments. Soluble 
sugar was significantly affected by the SR and BR treat-
ments, and nitrate reductase was only significantly 
impacted by the SR treatment (Fig. 3A, C). The respec-
tive treatments promoted the soluble sugar by 15.70 
and 13.00% and nitrate reductase by 71.67% compared 
with the values of the CK treatment. In general, the 
highest soluble protein, sugar, and nitrate reductase in 
roots were registered from the plants treated with SR 
followed by BR and FS treatments compared with the 
CK treatment.

Antioxidant enzyme activities and lipid peroxidation 
in roots
Significant (P  < 0.05) effects of tillage measures were 
found for SOD and POD (except for FS) and malonal-
dehyde (MDA) content in roots (Fig.  4A, B, D), and no 
effect of tillage measures was found for the CAT activity 
in roots (Fig. 4C). The results indicated that SOD, POD 
and CAT activities were increased and MDA content was 
decreased by SR, BR and FS treatments. SOD and POD 
activities and MDA contents were statistically impacted 
by SR and BR treatments (Fig. 4A, B, D). The respective 
treatments improved the activity of SOD by 6.64 and 
4.66% and POD by 26.24 and 16.93% but reduced the 
MDA content by 14.81 and 13.35%, respectively, com-
pared with the values of the CK treatment. Overall, the 
highest antioxidant enzyme activities and the lowest 
MDA contents in roots were recorded from the plants 
treated with SR, followed by the BR and FS treatments.

Yield and agronomic traits
Tillage measures significantly (P < 0.05) influenced yield 
and agronomic traits in terms of H (except for FS and 
BR), EBH, MSH (except for FS), OEB (except for FS), 

Fig. 1 Comparative of chlorophyll, nutrient elements in rapeseed leaves under different tillage measures after release of waterlogging tolerance. 
Different small letters indicate significant differences among treatments, at P < 0.05 level. Each value is the mean ± SD of three replicate 
measurements. CK, conventional planting; SR: small ridge planting; BR: big ridge planting; FS: film side planting
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OEP and GP (except for FS and BR). The results indicated 
that yield and agronomic traits increased with SR, BR and 
FS treatments (Table 1). As expected, SR treatment sig-
nificantly enhanced all yield parameters except for MSP 
and TGW compared with CK. The respective treatments 
increased H by 8.60%, EBH by 26.96%, MSH by 16.01%, 
OEB by 31.58%, OEP by 76.87%, GP by 19.30% and yield 
by 33.09% compared with the values of the CK treatment. 
In addition, the BR treatment also significantly enhanced 
EBH by 21.47%, MSH by 15.05%, OEB by 28.07%, OEP by 
57.46% and yield by 22.70% compared with the values of 
the CK treatment. Overall, the highest yield parameters 
were recorded from the plants treated with SR, followed 
by the BR and FS treatments, compared with the CK 
treatment.

Relationships between yield and variables
Across different tillage measures, without close rela-
tionships with yield and total P, total K, sucrase, CAT 
and soluble protein (Fig.  5C, D, G, J, N), yield was sig-
nificantly negatively correlated with MDA content, but 
was positively correlated with SPAD, total N,  NO3

−-N, 
 NH4

+-N, urease, POD, SOD, soluble sugar and nitrate 
reductase (Fig. 5A, B, E, F, H, I, K, L, M, O). Among the 
traits assessed,  NO3

−-N,  NH4
+-N, urease in soils, and 

MDA, SOD, nitrate reductase in roots were the strong-
est determinants of yield  (R2 = 0.5167 ~ 0.7513). Rela-
tively, the correlations of SPAD, total N in leaves, POD, 
soluble sugar in roots with yield were much lower 
 (R2 = 0.4175 ~ 0.4412).

Discussion
Waterlogging is a critical agricultural hazard, resulting in 
serious crop yield reduction [13]. However, ridge tillage 
led to lower declines in one effective branches and one 
effective pods that induced by waterlogging, resulting in 
an increased grain yield compared to flat tillage, with an 
average increase in yield of 27.90% (Table 1). This result 
was similar to that of previous work [14–16]. Total N is a 
beneficial variable to assess the nutritional status of plant 
leaves, which is closely related to nitrogen utilization effi-
ciency and crop yield [17]. Our study also showed that 
ridge tillage effectively alleviated the decline in N con-
tent in leaves induced by waterlogging (Fig.  1B), which 
was conducive to supplying enough nutrients to repro-
ductive growth in later stages for waterlogged rapeseed. 
This alleviation contributed to the increase of one effec-
tive branches and one effective pods, ultimately resulting 
in an increased grain yield of waterlogged rapeseed. This 

Fig. 2 Comparative of available N, enzyme activity in soil under different tillage measures after release of waterlogging tolerance. Different small 
letters indicate significant differences among treatments, at P < 0.05 level. Each value is the mean ± SD of three replicate measurements. CK, 
conventional planting; SR: small ridge planting; BR: big ridge planting; FS: film side planting
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result was consistent with that of a previous study [15, 
18].

In this study, the ridge promoted N content in leaves 
under waterlogging conditions could be ascribed to the 
reduction in soil available nitrogen loss (Fig. 2A, B) and 
the improvement in urease activities in soils and nitrate 
reductase activities in roots, thus transporting more 
effective N into leaves. A decrease in effective N content 
in soil as one of the most substantial restricting factors 
for plant nutrition under abiotic stress have been docu-
mented by numerous other studies [19–22]. Our results 
indicated that  NO3

−-N,  NH4
+-N and urease in soil were 

significantly enhanced by ridges under waterlogging con-
ditions, compared with flat conditions, because ridges 
could decrease N denitrification, leaching and runoff and 
reduce soil nitrogen mineralization rates [21].

Chlorophyll is the main plant photosynthetic pig-
ment and plays an important role in rapeseed yield. The 
decreases in photosynthetic pigments, as one of the most 
substantial restricting factors for plant photosynthetic 
activity under abiotic stress have been documented by 
numerous other studies [23–26]. The SPAD value is a 
very powerful parameter to measure the relative chlo-
rophyll content or green degree. Our results indicated 
that SPAD in leaves was significantly increased by ridges 

under waterlogging stress compared with flat leaves 
(Fig.  1A). This result showed that ridge tillage was con-
ducive to alleviating the decline in chlorophyll content 
induced by waterlogging and thus delayed leaf senes-
cence, resulting in the improvement of photosynthetic 
performance and ultimately increasing the grain yield of 
waterlogged rapeseed.

The reactive oxygen species (ROS) scavenging system 
plays an important role in protecting cells from pho-
tooxidative damage, and diverse enzymatic antioxidants 
can maintain the equilibrium between the production 
and scavenging of ROS, thus mitigating membrane per-
oxidation and decreasing the degree of oxidative damage 
induced by abiotic stresses [27–29]. SOD is considered 
the first line of defence against ROS accumulation, which 
stimulates the transformation of  O2

− to  O2 and  H2O2 
[30]. MDA content, an important indicator, reflects the 
degree of membrane lipid peroxidation [31]. In our study, 
ridges significantly increased the POD and SOD activi-
ties and decreased the MDA content under waterlogging 
conditions, compared with flat slopes (Fig. 4A, B, D). This 
finding indicated that ridges could effectively reduce the 
damage of waterlogging to the root antioxidant system, 
remove reactive oxygen species within a certain range in 
a timely manner, help to improve soil root activity and 

Fig. 3 Comparative of metabolism in rapeseed roots under different tillage measures after release of waterlogging tolerance. Different small letters 
indicate significant differences among treatments, at P < 0.05 level. Each value is the mean ± SD of three replicate measurements. CK, conventional 
planting; SR: small ridge planting; BR: big ridge planting; FS: film side planting
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delay root senescence, and ultimately alleviate waterlog-
ging damage to the growth and grain yield of rapeseed. In 
addition to the enzymatic defence system, some regula-
tory substances vigorously participate in the amelioration 
of waterlogging stress. Soluble sugar and soluble protein 
are very important for the osmoregulation process in 
plants under waterlogging stress. In this study, soluble 
sugar was also significantly increased by ridges (Fig. 3A). 
This phenomenon can be considered a portion of the 
mechanism to mitigate waterlogging damage in plants by 
adjusting the osmotic condition [32].

Growth and yield increases by ridges under water-
logging conditions are outside indicators of metabolic 

alterations in plant cells. In the past, many studies have 
indicated the effects of ridges on the growth perfor-
mance and yields of various grain crops under waterlog-
ging conditions [10–12, 14–16]. However, ridges alleviate 
the damage caused by waterlogging of crops as a result 
of the joint action of soil conditions and crop responses 
[15]. In addition, the damage range under waterlogging 
stress differed with the strength of stresses and the crop 
growth stages [33]. As noted in this study, all relevant 
results supported that ridges could be regarded as culti-
vation measures against nutrient loss and physiological 
and metabolic activity damage caused by waterlogging 
stress [19, 20], which could increase the effective N 

Fig. 4 Comparative of physiology in rapeseed roots under different tillage measures after release of waterlogging tolerance. Different small letters 
indicate significant differences among treatments, at P < 0.05 level. Each value is the mean ± SD of three replicate measurements. CK, conventional 
planting; SR: small ridge planting; BR: big ridge planting; FS: film side planting

Table 1 Comparative of agronomic traits and yield in rapeseed under different tillage measures after waterlogging tolerance

Different small letters indicate significant differences among treatments, at P < 0.05 level. Each value is the mean ± SD of three replicate measurements

H plant height, EBH effective branching height, MSH main sequence height, OEB one effective branches, OEP one effective pods, MSP main sequence pods, GP grains 
per pod, TGW  thousand-grain weight, CK conventional planting, SR small ridge planting, BR big ridge planting, FS film side planting

Treatments H (cm) EBH (cm) MSH (cm) OEB (pcs) OEP (pcs) MSP (pcs) GP (pcs) TGW (g) Yield (kg  hm−2)

CK 157.27 ± 5.63b 94.73 ± 7.10c 62.47 ± 3.90b 5.7 ± 0.3b 134 ± 11d 73 ± 6a 17.1 ± 1.4b 4.55 ± 0.08a 1354.08 ± 126.58b

SR 170.80 ± 4.73a 120.27 ± 4.64a 72.47 ± 5.75a 7.5 ± 0.6a 237 ± 18a 80 ± 2a 20.4 ± 0.3a 4.86 ± 0.21a 1802.19 ± 82.18a

BR 168.87 ± 9.20ab 115.07 ± 11.87ab 71.87 ± 5.18a 7.3 ± 1.1a 211 ± 14b 78 ± 6a 19.3 ± 1.9ab 4.71 ± 0.22a 1661.49 ± 80.05a

FS 162.07 ± 4.87ab 103.87 ± 2.50bc 67.07 ± 4.41ab 6.4 ± 0.2ab 160 ± 10c 75 ± 5a 18.6 ± 1.5ab 4.64 ± 0.17a 1399.94 ± 118.54b
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Fig. 5 Relationships between yield and the physiological metabolic traits across different cultivation measures
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content and enzymatic activity in soil, improve the capac-
ity of the antioxidant defence system, increase osmolyte 
accumulation, and decrease the MDA contents in water-
logging stress plant roots, thus ridges can be considered 
an important strategy to improve plant growth and yield 
attributes under waterlogging stress.

Conclusions
Ridge tillage (planting rapeseed at a height of 20 cm above 
the ground) alleviated the negative effects of waterlogging 
on rapeseed by a joint action of soil conditions and crop 
responses, in which available nitrogen and urease activ-
ity in soil and nitrate reductase activity, SOD activity and 
MDA content in roots played major roles. Loss of avail-
able nitrogen was significantly reduced, urease activity 
was promoted in soil, nitrate reductase activity and SOD 
activity were significantly increased, and MDA content 
was decreased in roots by ridge tillage. In addition, ridge 
tillage also improved chlorophyll and N content in leaves, 
soluble sugar and POD in roots, and most agronomic 
traits. As a result, the grain yield of waterlogged rapeseed 
was significantly increased. Among the tillage measures, 
SR was most effective, followed by BR, in promoting the 
growth and yield attributes of rapeseed under waterlog-
ging conditions. We should consider the employment of 
ridge tillage for sustainable agriculture in the future.

Methods
Plant material and experimental site
Seeds of rapeseed (Dexinyou-12, a locally adopted high-
yielding rapeseed variety) were purchased from Chengdu 
Xingda Seed Industry Co., Ltd., Chengdu City, Sichuan 
Province, China, The field experiment was conducted 
from October 2020 to May 2021 at Jianyang Experi-
mental Station (30°40′ N, 104°55′ E; elevation 460 m), 
Sichuan Academy of Agriculture Sciences, China. This 
experimental station is located in the eastern part of 
Sichuan basin in China, which has a typical subtropi-
cal monsoon climate. The average annual air tempera-
ture was 17 °C, and the average annual precipitation was 
874 mm. According to the classification of the World 
Reference Base for Soil Resources the soil at the location 

of the field experiment can be classified as calcaric. The 
soil properties of the top 20 cm were as follows: pH: 
(1:2.5 soil: water), 6.6; organic matter, 16.3 g  kg− 1; total 
N, 0.1%; total P, 0.8 g  kg− 1; total K, 33.2 g  kg− 1; available 
N, 247.0 mg  kg− 1; available P, 25.0 mg  kg− 1; available K, 
98.7 mg  kg− 1; which were determined by the conven-
tional chemical analysis methods.

Experimental design and field management
The field experiment was arranged in a randomized com-
plete block design with four different tillage measures 
replicated three times. The four measures were (1) con-
ventional planting (CK); (2) small ridge planting (SR); 
(3) big ridge planting (BR); (4) film side planting. Spe-
cific planting plan and planting diagram were given in 
Table 2 and Fig. 6, respectively. Individual plot was 20  m2 
(4 m × 5 m) and each plot was separated by a 50-cm-wide 
ridge as a barrier. Besides, plastic film was used to iso-
late water in the 0–100 cm soil layer of each plot to avoid 
lateral water infiltration. Before planting, each treatment 
received 180 kg  ha− 1 of Meifeng compound fertilizer 
(N-P2O5-K2O:18–16-18). Rapeseed (cv. “Dexinyou 12”) 
was planted by direct seeding on 8 October 2020 and 
harvested on 1 May 2021. At the 5–6 leaf stage of rape-
seed, artificial rainfall was used until the water surface 
height was 1–2 cm above the surface soil layer of CK for 
6 days, and the irrigation amount of other treatments was 
the same as CK.

Soil sampling and analysis
Soil samples (0 ~ 20 cm) between plants by five sampling 
points were collected from each plot when waterlogging 
stress was relieved (after 6 days of CK waterlogging). 
During sampling and transportation, all the samples were 
kept in an insulated box with ice. By dividing each soil 
sample into two subsamples, one subsample was ground, 
passed through a 2-mm sieve and was air-dried for the 
analyses of sucrase and urease, and another one was 
ground, passed through a 2-mm sieve and was stored in 
a refrigerator at 4 °C for the analyses of  NO3

− and  NH4
+. 

Sucrase was measured by 3,5-dinitrosalicylic acid colori-
metric determination method [34]; Urease was measured 

Table 2 Experiment measures of rapeseed under different tillage measures

Treatments Measures

CK Conventional planting, wide line: narrow line = 50 cm: 30 cm

SR Artificial ridge, ridge wide: ridge height = 60 cm: 20 cm, and 2 rows rapeseed were planted in ridges, wide line: narrow line = 50 cm: 
30 cm.

BR Artificial ridge, ridge wide: ridge height = 140 cm: 20 cm, and 4 rows rapeseed were planted in ridges, wide line: narrow line = 50 cm: 
30 cm.

FS Wide line: narrow line = 50 cm: 30 cm, and polyethylene film plastic mulch (colorless, transparent, 0.008 mm thick) covered the wide line, 
which was depressed.
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by phenol-sodium hypochlorite indophenol colorimetry 
method [34]; The  NO3

−-N and  NH4
+-N were extracted 

with 2.0 M KCl and measured by a continuous flow ana-
lyzer (Flowsys, Systea Inc., Italy) [35].

Plant sampling and analysis
When waterlogging stress was relieved, the chlorophyll 
content in the leaves was directly measured with a SPAD-
502 Plus chlorophyll meter (Konica Minolta Holdings, 
Inc.), a single leaf was measured three times and 5 ~ 7 
plants was measured in each plot [36]. After that, plant 
samples divided into leaves and roots were collected 
and cleaned. Leaves were dried at 70 °C for 48 h to con-
stant weight and then finely ground into powder to pass 
through a 0.2 mm sieve, to determine the total N and P 
values using the flow analyzer (Flowsys, Systea Inc., Italy) 
and the total K values using the flame photometer (Model 
410, Sherwood, England) [35].

For antioxidant enzyme extractions, 0.5 g of fresh 
roots was homogenized with 50 mM potassium phos-
phate buffer (pH 7.8), containing 1 mM EDTA, 3 mM 
2-mercaptoethanol, and 2% (w/v) polyvinyl-poly-pyr-
rolidone. The filtered homogenate was then centri-
fuged at 15,000 g for 30 min at 4 °C, and the resulting 
supernatant was used to evaluate the activity of super-
oxide dismutase (SOD), catalase (CAT), and peroxi-
dase (POD). All enzyme activities were measured at 
25 °C by an UV-B spectrophotometer (UV-B 2501, 

Shimadzu, Japan). SOD activity was assayed by moni-
toring the inhibition of photochemical reduction of 
nitro blue tetrazolium (NBT) using the method of 
Beauchamp and Fridovich [37]. One unit of SOD activ-
ity was defined as the amount of enzyme required to 
cause 50% inhibition of NBT reduction. POD activity 
was determined as described by Hemeda and Kelin 
[38] using guaiacol as a substrate. One unit of POD 
activity was defined as the amount of enzyme that 
increased the absorbance at 470 nm by 0.001 absorb-
ance unit per min. CAT activity was estimated by 
monitoring the disappearance of  H2O2 at 240 nm [39]. 
Membrane lipid peroxidation was recorded by the 
spectrophotometric determination of malondialde-
hyde using thiobarbituric acid [36]. The soluble pro-
tein content was measured as described by Bradford 
[40] and bovine serum albumin was used as a standard. 
Total soluble sugar was estimated from the glucose 
standard curve according to Dubois et al. [41] Nitrate 
reductase was determined according to Su [42].

Rapeseed were harvested from each pot at maturity 
in May 2021 to determine the grain yield and other 
yield-related agronomic traits, including plant height 
(H), effective branching height (EBH), main sequence 
height (MSH), one effective branches (OEB), one effec-
tive pods (OEP), main sequence pods (MSP), grains 
per pod (GP) and thousand-grain weight (TGW) were 
determined simultaneously.

Fig. 6 Planting diagram of rapeseed under different tillage measures
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Statistical analysis
One-way analysis of variance (ANOVA), with differ-
ent tillage measures as the one fixed factor, was used to 
assess variations in each indicator. Differences between 
all treatments were detected using least significant dif-
ference (LSD) testing at the 0.05 significance level. Pear-
son’s correlations were used to analyzed the correlations 
among indicators. All statistical analyses were conducted 
using SPSS version 17.0 (SPSS Inc., Chicago, IL, USA).
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