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Abstract

Background Artemisia is important medicinal plants in China and are widely used in medicine, agriculture, and food.
Pharmacologically active components of the plants remain to be investigated.

Methods This study sought to identify and compare the chemical constituents of three species of Artemisia in Tibet
using a widely-targeted metabolomics approach and their antibacterial and antioxidant capacities were determined.

Result A total of 1109 metabolites within 10 categories were detected from the three species of Artemisia, includ-
ing lipids, amino acids, nucleotides, flavonoids, terpenes, coumarins, organic acids, and phenolic acids. 732 different
metabolites have been identified between Artemisia sieversiana and Artemisia annua, 751 different metabolites were
identified between Artemisia wellbyi and A. sieversiana, and 768 differential metabolites were differentially detected
from A. wellbyi and A. annua. Differentially identified compounds included flavonoids, phenolic acids, artemisinins and
coumarin. A. annua contained the highest relative content of artemisinin among three Artemisia. The antimicrobial
experiments showed that the three Artemisia species had strong antibiotic activities against Bacillus subtilis, Escheri-
chia coli, Staphylococcus aureus, Proteus mirabilis and Pseudomonas aeruginosa. The biochemical analysis showed that
the three species of Artemisia have strong antioxidant capacity.

Conclusions This is the first reported attempt to comparatively determine the types of the metabolites of the three
widely distributed Artemisia species in Tibet. The information should help medicinal research and facilitate compre-
hensive development and utilization of Artemisia species in Tibet.
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Background

Artemisia sp. plants belong to the Compositae families
Anthemideae and Artemisiinae [1]. There have been esti-
mated total of 344 species and 69 varieties of Artemisia in
the world; Asia contains the most types with 269 species
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and 6 varieties of Artemisia species distributed in Tibet,
accounting for a quarter of the national Artemisia spe-
cies [6]. A. wellbyi has been shown to be of higher nutri-
tional quality containing higher crude protein and crude
fat content than other herbs found in Tibetan grasslands
[7], and has the potential to become a supplementary
grass seed for ecological restoration of grasslands in the
Tibetan plateau [8]. A. sieversiana is mainly used for hay,
a reserve feed for cattle and sheep in winter [9], and an
important source of animal feed in Tibet [10]. In addi-
tion, A. sieversiana plants can be used as high-quality
roughage after silage [11]. A. annua extracts added to
feed can promote animal growth, improve the body’s dis-
ease resistance, and improve animal production perfor-
mance [12].

Artemisia contain a large class of medicines widely
used traditionally by Tibetans. Traditional Chinese
medicinal practitioners believe that this genus has anti-
bacterial and anti-inflammatory and has wide range of
health beneficial properties [13—15]. It is widely used in
malaria, hepatitis, cancer, inflammation, infection and
other diseases. In 2015, Tu Youyou was awarded Nobel
Prize in Physiology or Medicine for her discovery of the
antimalarial sesquiterpenoid artemisinin from A. annua.
Since then, artemisinin and Artemisia have attracted
worldwide attention. In recent years, Xiao [16] used a
variety of chromatographic methods to separate and
purify the compounds from the aqueous fraction of the
aerial portions of A. annua, and identified 15 compounds
based on the physicochemical properties and NMR spec-
tral data. Wang [17] et al. studied the chemical constitu-
ents of the whole plant of A. annua by chromatography
with silica gel matrix and HPLC, and purified 17 com-
pounds from the ethyl acetate extract from the ethanolic
extract of A. annua and Zhong [18] et al. extracted.and
isolated 6 flavonoids from A. annua.

Artemisia produces many medicinally important sec-
ondary metabolites that have antimicrobial and anti-
oxidant activities. External application of artesunate can
inhibit S. aureus, D. Bacillus, B. subtilis, P. aeruginosa.
Three kinds of extracts of A. annua (petroleum ether
extract I; chloroform extract II; ethanol extract III) have
antifungal effects; the antifungal activity of extract III is
close to that of clinical routine antifungal drug [19]. Arte-
misia essential oils have strong antibacterial effects on
S. aureus, S. epidermidis, E. coli, and Streptococcus, and
have strong antioxidant effects [20].

While the metabolites from A. annua have been well
characterized, the metabolites from other Artemisia sp.
and particularly those from Tibet have not been thor-
oughly identified. Presently, the types of metabolites
of Artemisia plants and the differences in metabolites
among these plants are not clear. In addition, studies on
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the metabolites of the Artemisia genus have been limited,
with low sensitivity, and relatively poor qualitative and
quantitative accuracy [21-23]. Widely targeted metabo-
lomics integrates the advantages of untargeted metabo-
lites and targeted metabolite detection techniques to
achieve high throughput, high sensitivity and broad
coverage. We used metabolomic analysis to identify
the metabolites from A. sieversiana, A. wellbyi, and A.
annua and elucidate the differential metabolite species.
The antibacterial and antioxidant capabilities were also
evaluated on the three Artemisia species from Tibet. This
study will provide new evidence for the potential medici-
nal use of the three Tibetan Artemisia species and lay
the foundation for further exploration of the active con-
stituents, their metabolic pathways, and pharmacological
mechanisms of action.

Results

Qualitative and quantitative analysis of the metabolites
The primary metabolites and secondary metabolites in
the samples were identified by UPLC-MS. 1109 metabo-
lites were identified from 3 species of Artemisia, includ-
ing 79 amino acids and their derivatives, 73 nucleotides
and their derivatives, 101 organic acids, 155 lipids, and
168 phenolic acids, 227 flavonoids, 40 lignans and cou-
marin, 86 alkaloids, 56 terpenes, and 124 others (Sup-
plementary 1). Metabolic profiles differed by Artemisia
species. Total ion chromatograms of the metabolite anal-
ysis were shown in Fig. 1.

Sample quality control and statistical analysis

The results showed that the contribution rate of princi-
pal component 1 (PC1) was 49.57%, and PC2 was 42.58%,
and the three groups of samples were separated in the
two-dimensional diagram (Fig. 2). The differences in
metabolites between the three Artemisia sp. are shown in
the PCA results.

Differences in accumulation patterns of metabolites
from the three Artemisia sp. were analyzed by cluster-
ing heatmaps (Fig. 3). The heat map analysis showed
the differences in substances within the plants that were
grouped into 4 clusters. The metabolites in cluster 1 were
the highest in AW group, medium in AS group, and AA
group. Metabolites in cluster 2 were highest in AS group,
moderately present in AW group, and lowest in AA
group. The different biological replicates also found to be
clustered together, both cluster analysis and PCA showed
that metabolites were significant different in the three
Artemisia sp.

OPLS-DA analysis of the differential grouping
OPLS-DA was used to analyze the AW, AS, and AA
groups in pairs to generate a score map. All the Q2 of the
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Fig. 1 Total ion chromatograms of the metabolite analysis. A QC_MS_TIC-N. B QC_MS_TIC-P

comparison groups were all higher than 0.9, indicating
that the constructed model was suitable. According to
the OPLS-DA score plot significant separation occurred
in the different comparison groups. As shown in Fig. 4,
the OPLS-DA model produced two principal compo-
nents and the contribution rate of PC1 is 76%, and the

contribution rate of PC2 is 6%. The difference between
the two groups of samples is highly significant. Among
the evaluation parameters of the OPLS-DA model, the
indicators R*X=0.878, R’Y=1, Q?*Y=0.993 were all
greater than 0.5 and QY > 0.9, suggesting that the OPLS-
DA model was correctly constructed, the prediction
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Fig. 2 Principal component analysis. A All samples principal component analysis. B AS vs AA principal component analysis (PCA). C AS vs AW
principal component analysis (PCA). D AW vs AA principal component analysis (PCA)

was reliable, and the differential metabolites could be
screened according to the VIP value analysis.

Differential metabolite screening

The results of differential metabolites can be shown using
Volcano and Wayn maps. Volcano plots visually demon-
strated the overall distribution of different metabolites

and the results are shown in Fig. 5 showing significant dif-
ferences between the three Artemisia species. The visual
display of specific metabolites and their differences were
used for functional analysis of metabolic pathways, with
upregulation in red, and downregulation in green and no
changes in gray. There were 449 different metabolites of



Liu et al. BMC Plant Biology ~ (2023) 23:208

different species identified by the multivariate statistical
analyses (Fig. 6).

Analysis of the differential metabolites

Table 1 shows the top ranking of 20 differentially
expressed metabolic components in the fold change of the
distinct metabolites in A. sieversiana and A. annua. Com-
pared with A. annua, clear differences could be seen in
A. sieversiana regarding the contents of 2,6-Dimethoxy-
benzoic acid, Blumeatin, Luteolin-6-C-glucoside, Ethyl
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maltol, Luteolin-8-C-glucoside, 4,5-Epoxyartemisinic
Acid, ageconyflavone B, Fraxidin and Chrysosplenetin.

Table 2 shows the top 20 differential metabolites in the
samples of A. sieversiana and A. wellbyi. Compared to
A. sieversiana, A. wellbyi showed higher levels of 2-Phe-
nylphenol, Reynosin, Rhamnetin, Methyl Cinnamate,
Phenyl acetate, 4-Hydroxyacetophenone, Phloretin-4’-O-
glucoside (Trilobatin), and Hispidulin-7-O-(6-O-p-Cou-
maroyl) Glucoside.
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Fig. 4 OPLS-DA score plot. A AS vs AA OPLS-DA. B AS vs AW OPLS-DA. C AS vs AW OPLS-DA

Table 3 shows the top 20 differentially expressed
metabolites in A. wellbyi and A. annua. Compared with
A. annua, A. wellbyi contains more 4,5-Epoxyartemisinic
Acid, Dihydro Artemisinin-D3, 2,6-Dimethoxybenzoic
acid, Dihydro-epi-arteannuin B, 2-Hydroxy-3-phenylpro-
panoic acid, 1-O-Vanilloyl-D-Glucose.

The medicinal important metabolites from differ-
ent species were assayed and compared by three plants
(Fig. 7). We identified a total of 227 flavonoids from the

three Artemisia species, accounting for 20.4% of the
metabolite species. These included flavonoids such as
Luteolin, Quercetin, Kaempferol, and Apigenin, which
were enriched in AW. Fifty-six terpenoid metabolites
were identified, including sesquiterpenoids with impor-
tant pharmacological effects, such as Artemisinine,
Arteannuin A, Artemisinin B, and Dihydroartemisinin.
Artemisinin was found in the highest content in A. annua,
followed by A. sieversiana. Coumarin, Isoscopoletin and
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Fig. 5 Volcano plots of the differential metabolites. A AS vs AA Volcano plot. B AS vs AW Volcano plot. € AS vs AW Volcano plot

Scoparone were in highest levels in A. wellbyi. Salicylic
acid was in the highest level in A. sieversian, while Vanil-
lic acid was found in the highest levels in A. wellbyi.

KEGG enrichment analysis

The differential metabolites of AS group and AA group
were mainly enriched in the Purine metabolism pathway,
2-Oxocarboxylic acid metabolism pathway, and Trypto-
phan metabolism pathway. The differential metabolites
of AS group and AW group were mainly enriched in
the Purine metabolism pathway, as well as Tryptophan

metabolism pathway. The differential metabolites in AW
group and AA group were mainly enriched in the 2-Oxo-
carboxylic acid metabolism pathway, Purine metabolism
pathway, and Phenylpropanoid biosynthesis pathway.
In these comparison groups, some metabolic pathways
overlap, such as Purine metabolism pathway, Tryptophan
metabolism pathway, 2-Oxocarboxylic acid metabolism
pathway (Fig. 8). Diterpenoid Biosynthesis metabolic
pathway related to differential metabolites and bioactive
components (Fig. 9).
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Fig. 6 Wayne diagram of the differential metabolite. A All samples Wayne diagram. B AS vs AA Wayne diagram. C AS vs AW Wayne diagram. D AW

vs AA Wayne diagram

Antibacterial activity of plant extracts
Table 4 shows that each extraction partition of A. siever-
siana extract inhibits E. coli, Salmonella, Streptococcus,
S. aureus, P. mirabilis, B. cereus, and P. aeruginosa differ-
ently. When the mass concentration of each extract was
200 mg/mL, Petroleum ether had better inhibitory effect
on these 7 kinds of bacteria and Petroleum ether had the
strongest inhibitory effect on S. aureus (p <0.01).
Similarly, each extraction partition of the A. wellbyi
extract has different degrees of inhibition to E. coli, Sal-
monella, Streptococcus, S. aureus, P. mirabilis, B. cereus,

and P aeruginosa (Table 5). When the mass concentra-
tion of each extract was 200 mg/mL, from the perspec-
tive of the inhibition degree of each organic relative to
various bacteria, the petroleum ether had better inhibi-
tory effect on these 7 kinds of bacteria and petroleum
ether had the strongest inhibitory effect on Streptococcus
(p<0.001).

In addition, each extraction part of A. annua extract
has different degrees of inhibition to E. coli, Salmonella,
Streptococcus, S. aureus, P. mirabilis, B. cereus, and P. aer-
uginosa (Table 6). Petroleum ether had better inhibitory
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Table 1 Significant analysis results of different metabolites (AS vs AA)

ID name FC log2FC Pvalue VIP
meta343 2,6-Dimethoxybenzoic acid 59.29223043 5.901572443 0.000453148 1.145964649
meta658 Blumeatin 5249005062 5.714354804 0.001073898 1.144602206
meta320 4,5,6-Trihydroxy-2-oxohexanoic acid 48.08724597 5590121722 0.000452661 1.146005986
meta887 Luteolin-6-C-glucoside (Isoorientin) 4486251823 5473779837 0.010383312 1.12360749
meta142 Ethyl maltol 43.70729347 5476002669 0.000129463 1.146531467
meta885 Luteolin-8-C-glucoside (Orientin) 42.63849901 5403909759 0.008163143 1.128568373
metal036 Apigenin-7-O-(2"-glucosyl)arabinoside 3857964324 5.256052698 0.014713054 1.114014763
meta512 4,5-Epoxyartemisinic Acid 37.92059039 5.244933346 0.000425748 1.146087638
meta801 ageconyflavone B 3745372773 5224856588 0.001870104 1.142787628
meta454 Fraxidin (8-Hydroxy-6,7-dimethoxycoumarin) 35.48432403 5.155703751 0.000687405 1.145381323
meta558 1-Octadecanol 0.947153315 -0.078149557 0.03584419 1.025840368
meta830 Chrysosplenetin (Quercetagetin-3,6,7,3-tetramethyl ether) 0.929398985 -0.105667858 0.002185414 1.105741857
metal05 L-Isoleucine 0.907491432 -0.140079689 0.000918592 1.119349317
meta829 5,4"-Dihydroxy-3,6,7,3"-tetramethoxyflavone 0.89770689 -0.155625006 0.003404358 1.097827481
meta108 Dimethylmalonic acid 0.896490345 -0.156907437 0.041687943 1.004257483
meta831 5,7-Dihydroxy-6,3/4;5'-tetramethoxyflavone (Arteanoflavone) 0.892933182 -0.163383385 0.00036662 1.129268958
meta832 Hymenoxin 0.892933182 -0.163383385 0.00036662 1.129268958
metal006 LysoPC 18:1 0.88961001 -0.168601589 0.007739459 1.075265358
metal06 4-Hydroxy-2-Oxopentanoic Acid 0.885009623 -0.175243707 0.044228408 1.005689678
meta487 Palmitaldehyde 0.884632045 -0.177099367 0.009399126 1.056906038

Table 2 Significant analysis results of different metabolites (AS vs AW)

ID name FC log2FC Pvalue VIP
meta457 leptodactylone 2098.044111 11.16830122 0.000658719 1.136363247
meta292 2-Phenylphenol 695.9556598 9452316134 0.000857311 1.135926275
meta1080 Kaempferol-3-O-glucuronide-7-O-glucoside 260.7202297 8.032066997 0.000207022 1.137393473
meta509 Reynosin 180.4945683 7590661888 0.00049123 1.136692587
meta699 Rhamnetin 171.7958993 7428149316 0.001807675 1.133774131
meta245 Methyl Cinnamate 166.001074 7.369354404 0.005199968 1.126144979
metal28 Phenyl acetate 141.0923468 7.140225355 0.000409622 1.136936725
metal27 4-Hydroxyacetophenone 132.057566 7046389289 0.000467111 1.136799161
meta870 Phloretin-4"-O-glucoside (Trilobatin) 116.6382363 6.872666598 0.001473688 1.134503716
metal066 Hispidulin-7-O-(6"-O-p-Coumaroyl)Glucoside 101.3643666 6.660846975 0.00221286 1.132860912
meta518 2'-Deoxyadenosine 0.92000847 -0.120357828 0.003712148 1.085479595
metal03 L-Norleucine 0.902622552 -0.147206635 0.037241852 1.032235691
meta95 Methylenesuccinic acid 0.896792686 -0.156727072 0.021977362 1.064697458
meta30 Choline 0.889313656 -0.169740252 0.014778116 1.039332245
meta517 5'-Deoxyadenosine 0.875511585 -0.191768476 0.00033984 1.12704499
metal25 D-Threonic Acid 0.862693861 -0.213120012 0.003678779 1.082133103
metal68 L-Lysine 0.857318872 -0.220749306 0.042877212 1.043971536
metall 2-Picoline; 2-Methylpyridine 0.845431376 -0.242313779 0.00015257 1.130152104
meta425 2,4-Di-Tert-Butylphenol 0.843832195 -0.246279225 0.017183353 1.062294717
meta571 5-Linolenic Acid 0.841495433 -0.249102924 0.002070563 1.095440959

effect on these 7 kinds of bacteria and Petroleum ether  Antioxidant activity of plant extracts
had the strongest inhibitory effect on P mirabilis The ethyl acetate extraction of A. sieversiana plant
(p<0.001). showed the strongest antioxidant capacity, followed by
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Table 3 Results of significant analysis of differential metabolites (AW vs AA)

ID name FC log2FC P value VIP
meta512 4,5-Epoxyartemisinic Acid 62.59060834 5.978035681 0.000396981 1.12391407
meta603 Dihydro Artemisinin-D3 5844296782 5.868553484 0.001311209 1.121909911
meta320 4,5,6-Trihydroxy-2-oxohexanoic acid 5548803958 5.796662565 0.000453023 1.123824104
meta343 2,6-Dimethoxybenzoic acid 50.71522251 5.664407742 0.000481078 1.123775734
meta515 Dihydro-epi-arteannuin B 49.45390688 5626853015 0.001641491 1.12116944
meta347 2,4"-Dihydroxy-6'-methoxyacetophenone 49.19940265 5.628548044 0.000423625 1.12383703
meta267 2-Hydroxy-3-phenylpropanoic acid 43.829726 5460712568 0.000143227 1.124460681
meta’26 1-O-Vanilloyl-D-Glucose 43.20138137 5435199222 0.000165642 1.124461282
meta541 Desacetylovatifolin 3750735506 5.248507934 0.000965767 1.12242661
meta580 6,8-Dihydroxy-2-(2-phenylethyl)chromone 35.02656827 5.138595933 0.001278014 1.121844737
meta45 L-Proline 0.913415501 -0.13075193 0.003557826 1.075326895
meta281 3-Hydroxymandelate 0.908275906 -0.138657846 0.00665388 1.073830351
meta996 LysoPC 18:3 0.903803105 -0.146214419 0.009882893 1.054823822
meta222 2,5-Dihydroxybenzoic acid; Gentisic Acid 0.902969605 -0.147416322 0.007845477 1.045813655
meta333 D-Galactose 0.89573659 -0.159165607 0.012356376 1.028504697
meta224 3,4-Dihydroxybenzoic acid (Protocatechuic acid) 0.893907626 -0.162065364 0.008748309 1.092246215
meta262 6-Methylmercaptopurine 0.879599454 -0.185488325 0.011825769 1.088580171
meta1006 LysoPC 18:1 0.879548747 -0.185375484 0.003178125 1.099689086
metal05 L-Isoleucine 0.866973414 -0.205630476 0.007541698 1.083742832
meta335 D-Mannose 0.85013354 -0.233521474 0.017000245 1.054597848

n-butanol extraction and petroleum ether extraction. In
contrast, the dichloromethane extraction of A. annua
plant had the strongest antioxidant capacity, followed
by petroleum ether partition and n-butanol partition.
The dichloromethane extraction of A. wellbyi had the
strongest antioxidant capacity, followed by the n-butanol
extraction and the ethyl acetate extraction. The water
extracts of the three plants had the weakest antioxidant
capacity. Among the three species, the dichlorometh-
ane extraction of A. annua has the strongest antioxidant
capacity (Fig. 10A).

DPPH is a stable free radical, soluble in polar solvents
such as methanol and ethanol, and has a large absorp-
tion at 515 nm. When antioxidants are added to the
DPPH solution, a decolorization reaction occurs, so
the change in absorbance can be used to quantify the
antioxidant capacity of antioxidants with Trolox as a
control system. The petroleum ether part of A. siever-
siana had the strongest scavenging ability to DPPH free
radicals, followed by methylene chloride and n-butanol,
and the ethyl acetate part had the weakest scavenging
ability to DPPH free radicals; The petroleum ether part
of A. annua plant had the strongest scavenging ability
to DPPH free radical, followed by ethyl acetate part,
and the dichloromethane part has the weakest scaveng-
ing ability to DPPH free radical; The scavenging ability
of DPPH free radical was the strongest in the dichlo-
romethane part of A. wellbyi followed by the n-butanol

part and the ethyl acetate part, and the water extract
had the weakest scavenging ability on DPPH free radi-
cal. Among the three species, the petroleum ether part
of A. sieversiana has the strongest scavenging ability to
DPPH free radicals (Fig. 10B).

The dichloromethane extraction of A. sieversiana
plant had the strongest scavenging ability to ABTS
free radical, followed by petroleum ether partition, and
the ethyl acetate part had the weakest scavenging abil-
ity to ABTS free radical. The petroleum ether part of
A. annua plant had the strongest scavenging ability to
ABTS free radicals, followed by the methylene chloride
part, and the n-butanol part had the weakest scaveng-
ing ability to ABTS free radicals. The ethyl acetate part
of A. wellbyi plant had the strongest scavenging ability
to ABTS free radical, followed by n-butanol part, and
the petroleum ether part had the weakest scaveng-
ing ability to ABTS free radical. Among the three spe-
cies, the dichloromethane site of A. sieversiana had
the strongest scavenging ability to ABST free radicals
(Fig. 10C).

H,0,/Fe*" generates hydroxyl radicals through the
Fenton reaction, and salicylic acid can effectively cap-
ture the generated hydroxyl radicals and react with
them to form a colored substance, 2,3-dihydroxyben-
zoic acid. After the substance is removed, the colored
substances will be reduced, so that the ability of the
sample to scavenge hydroxyl radicals can be judged
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Fig. 7 Peak area integration of the main medicinal functional metabolites of the three Artemisia species. A Artemisinin metabolites. B Flavonoid

metabolites. C Phenolic acid metabolites. D Coumarin-class metabolites

according to the value of the absorbance value. The
dichloromethane part of A. sieversiana plant had the
strongest scavenging ability to hydroxyl radicals, fol-
lowed by water extract, and the petroleum ether part
has the weakest scavenging capacity to hydroxyl
radicals; The water extract of A. annua plant had the
strongest scavenging ability to hydroxyl free radicals,
followed by the dichloromethane part, and the petro-
leum ether part had the weakest scavenging ability; The
water extract of A. wellbyi has the strongest scavenging
ability, followed by ethyl acetate, and petroleum ether

had the weakest scavenging ability. Among the three
plants, the water extract of A. serrata had the strongest
scavenging ability (Fig. 10D).

Discussion

In this study, we used widely targeted metabolomics to
analyze the primary and secondary metabolites of three
Artemisia species collected from Tibet, and identified
1109 metabolites in 10 categories. This compares to the
total of 535 metabolites identified using non-targeted
metabolomics to analyze three species of Artemisia [24].
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Fig. 8 KEGG enrichment bubble chart on specific characteristics of the important metabolites. A AS vs AA KEGG enrichment bubble chart. B AS vs

AW KEGG enrichment bubble chart. C AS vs AW KEGG enrichment bubble chart
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Fig. 9 Diterpenoid Biosynthesis

Table 4 The inhibition zone diameters of A. sieversiana extract against tested bacteria (mm)

Bacteria for test

Petroleum ether layer Chloroform layer Ethyl acetate layer N-butyl layer Water layer

DMSO Positive controls

Bacilus cereus 21604085 16.70+1.18 17134123 12874045 9174021 - 15.7240.58
Staphylococcus aureus 23834139 21174269 180740217 13104181 10074012 - 2047 41.09
Streptococcus 19174025 14104053 17134053 11474037 10934031 - 17534073
Proteus mirabilis 246341117 19534£076"" 19304059 1203420257 9434041 - 1830089
Salmonella 22374066 210341437 14334£031™ 13134087 9874033 - 22434153
Escherichia coli 22104236 15704091 20604088 18304071 9504024 - 20404098
Pseudomonas aeruginosa 2247 £071"" 190040.14° 20574093" 14434041 10674095 - 20.7040.90
Notes: “p<0.05, “p<0.01, ""p<0.001

Table 5 The inhibition zone diameters of A. wellbyi extract against tested bacteria (mm)

Bacteria for test

Petroleum ether layer Chloroform layer Ethyl acetate layer N-butyl layer Water layer

DMSO Positive controls

Bacilus cereus 2655+1.05"
Staphylococcus aureus 23834139"

Streptococcus 29504064
Proteus mirabilis 291041217
Salmonella 227541037
Escherichia coli 252340657

Pseudomonas aeruginosa 24354245

21724048

2117 4£269
21504041

%

225540447

11.70+£1.39

21804066

12.5041.00

11.10£0.98 12154072
180740217 13104181
1150060 11.80£0.56
12304103 11.904095
11.1540.34 11.00£0.64
12704072 11.03+£038
11654068 10.05+£0.04

9.904+0.38

10.07£0.12
11.974+049
10.20+£0.34
11.85+0.72
12.73+£047
11.50+1.01

- 15.72+£058
- 2047 £1.09
- 17.53£0.73
- 18304089
- 2243£1.53
- 20.4040.98
- 20.704£0.90

Notes: "p < 0.05, "p < 0.01, ""p < 0.001
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Table 6 The inhibition zone diameters of A. annua extract against tested bacteria (mm)

Bacteria for test

Petroleum ether layer Chloroform layer Ethyl acetate layer N-butyl layer Water layer

DMSO Positive controls

Bacilus cereus 26554205 9724046
Staphylococcus aureus  24.6542.23" 11.1540.50
Streptococcus 20.7040.74" 9174031
Proteus mirabilis 310041417 10.55+0.64
Salmonella 21754106 11.9043.39
Escherichia coli 23234075 8804036
Pseudomonas aeruginosa 25.354 445" 11.00£0.00

13.10+£1.98 1215+£092 930+£028 - 15.72+£058
10.6540.21 1095+£007  11.55£191 - 2047 £1.09
10.50+0.70 8.80+0.36 10.57+£059 - 17.53£0.73
11.30£1.13 1090085 920£0.14 - 18.30+0.89
11.25+0.64 1130184 985+092 - 2243£1.53
10.70£0.72 9.834+0.35 9.73£057 - 20.4040.98
11.95+0.64 11.65+£092 1080£1.84 - 20.70£0.90

Notes: "p < 0.05, "p < 0.01,"p < 0.001

The main metabolites identified here were flavonoids,
phenolic acids, lipids, amino acids and their derivatives,
organic acids, alkaloids, and terpenes. The important
pharmacologically active compounds are flavonoids, phe-
nolic acids, artemisinins and coumarin compounds.

The metabolites of three Artemisia species were iden-
tified by widely-targeted metabolomics technology, and
a total of 227 flavonoids were obtained. Flavonoids were
the most abundant metabolites, accounting for 20.4% of
the total metabolites. Flavonoids are widely present in
Artemisia and are an important class of natural organic
compounds [25]. Zhang [26] et al. identified 10 flavonoids
from A. sphaerocephala. Among them, the representative
quercetin has a wide range of pharmacological effects in
antioxidant, anti-inflammatory and antibacterial, anti-
tumor [27-29]. In addition to these documented com-
pounds, we also detected 42 sesquiterpenoids from these
3 species of Artemisia, such as artemisinin, artemisinin
A, artemisinin B, artemisinic acid, dihydroartemisinic
acid, etc. Previous studies have found that artemisinin
compounds such as ATS can inhibit BIL-1, IL-6, IL-17a
and other inflammatory cytokines, suggesting that they
play the roles of anti-inflammatory, anti-angiogenesis,
inhibiting autoimmune arthritis and treating rheuma-
toid arthritis [30]. Phenolic acids have significant effects
in anti-inflammatory, anti-allergic, vascular protection,
antioxidant activity, anti-tumor, anti-bacterial and fun-
gal and liver protection [31] Coumarin compounds have
good physiological and pharmacological activities in
antiviral, antifungal, anti-tumor, and anti-inflammatory
aspects [32].

The antibacterial experiments of the three A. species
showed that the different polar solvent extracts from the
three A. species had strong antibacterial activities. Zohra
[33] et al. used an aqueous extract of A. annua against
3 Gram-negative bacteria and 3 Gram-positive bacte-
ria were evaluated for bacteriostatic activity. Although
the antibacterial activity of ACAE is lower than that of

ampicillin, at a concentration of only 50 mg/mL, it has
the strongest inhibition zone (13 mm) with good inhibi-
tion against S. aureus. The study by Darwish [34] et al.
showed that the methanol extract of this plant has high
antibacterial activity. Widely targeted metabolomics
results revealed the presence of derivatives such as fla-
vonoids, terpenoids, phenols and alkaloids. In addition,
alkaloids, flavonoids, phenols, and terpenes in various
plant extracts have all been shown to be effective anti-
biotics. Our results are also consistent with these stud-
ies showing that these 3 Artemisia species have efficacy
against clinical pathogens.

The antioxidant activity test showed that the three
species of Artemisia have strong antioxidant capacity
in vitro. The antioxidant activity experiments of A. siever-
siana essential oil by Li [35] et al. showed that the IC,, of
A. annua essential oil on DPPH free radicals, ABTS™ and
hydroxyl radicals were lower than vitamin (, indicating
that A. sieversiana essential oil had strong in vitro anti-
oxidant capacity, which is stronger than V. This flavo-
noid purified product has scavenging ability for hydroxyl
radicals, antioxidant activity to grease, that is stronger
than citric acid. It has stronger antioxidant activity on
vegetable oils than ascorbic acid, and slightly weaker than
ascorbic acid on animal fats and oils. The residue of A.
annua is rich in flavonoids and has strong antioxidant
activity, which is a natural antioxidant. Our findings are
consistent with some studies [36] showing that 3 Artemi-
sia species have antioxidant effects, and their antioxidant
properties may be related to the phenolic and flavonoid
content of Artemisia.

We found that A. sieversiana and A. wellbyi collected
from Tibet, are likely to have the same antibacterial and
antitumor properties as widely reported A. annua. It
has great potential medicinal value in pharmacological
effects such as antiviral and anti-inflammatory [37, 38],
therefore, we have reason to believe that Artemisia sp.
have an extensively application prospect on medicine and
feed additives in Tibet in future.
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Fig. 10 Antioxidant activity of the three Artemisia species. A FRAP assay. B Scavenging capacity of DPPH free radicals. C Scavenging activity against

ABTS free radical. D Determination of hydroxyl radical scavenging capacity

Conclusions

This study identified and quantified the metabolites from
three Artemisia species collected from Tibet using widely
targeted metabolomics technology. The types of screened
and identified differential metabolites were mainly flavo-
noids, phenolic acids, artemisinins and coumarins. The
antibacterial experiments showed that the three Artemisia
species had strong antibacterial activities against B. subtilis,
E. coli, S. aureus, P. mirabilis and P. aeruginosa. The antioxi-
dant activity test showed that the three species of Artemisia
have strong antioxidant capacity in vitro, these wide ranges

of beneficial effects suggest great potential for these com-
ponents for future therapeutic applications.

Materials and methods

Plant materials

Samples of A. sieversiana, A. wellbyi and A. annua were
collected from Jinbei, Caina Township, Qushui County,
Lhasa City, Tibet Autonomous Region in July 2020 (east
longitude 90°53’ 58.60", north latitude 29°26’ 6.03", ele-
vation 3581 m). Official permits for collection of these
native plants were not required because these plants are
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not included in the list of national key protected plants,
however permission for collections was obtained from
the Lhasa Forestry and Grassland Administration. The
formal identification of the plant material was performed
by Professor Zhaoyang Chang of College of Life Science,
Northwest A&F University based on morphological
characters. The specimens of A. sieversiana, A. wellbyi,
and A. annua have been deposited at Herbarium, Insti-
tute of Botany, Chinese Academy of Sciences (voucher
# PE01890226, PE01890481, PE01997408, respectively).
Sample collection of Plants were from each 10 m x 10 m
sampling site; 3 plants were collected diagonally with
a total of 9 plants/site. All samples were dried, crushed,
passed through a 40-mesh sieve (with an aperture of
0.425 mm), put into a paper bag, and stored in a desic-
cator at room temperature for later use. One g each of 9
samples were wrapped in tin foil, snap frozen in liquid
nitrogen for storage, transported in dry ice to Biomarker
Technology Co., Ltd. for analysis.

Chemical reagents and instruments

Methanol (Merck, Germany), acetonitrile (Merck, Ger-
many), formic acid (Merck, Germany), pipette (Thermo
company, USA), freeze dryer (Scientz company, Ger-
many), grinder (Retsch company, Germany), UPLC
(SHIMADZU, Japan), Tandem mass spectrometry (ABI,
USA), column (Agilent, Germany), industrial alco-
hol, petroleum ether, ethyl acetate, dichloromethane,
n-butanol, dimethyl sulfoxide, peptone, beef extract, agar
powder, sodium chloride, etc. Pressure steam sterilizer
(Shanghai Boxun), electronic balance PTX-FA110 (Sar-
torius, Germany), ultra-clean workbench (Suzhou puri-
fication), refrigerator (FRESTECH SC-208A), water bath,
microwave oven (Foshan Midea), rotary steamer.

Widely targeted metabolomics experiment

Metabolite extraction

The main processing steps are as follows: the biologi-
cal samples are freeze-dried in vacuum (Scientz-100F),
and the dried samples are ground in a grinder (MM 400,
Retsch) at 30 Hz for 1.5 min to powder. Dissolve 100 mg
of powder sample in 1.2 mL of 70% methanol, mix it with
vortex every 30 min for 30 s each time for 6 times, and
store it at 4 °C overnight. The sample was centrifuged at
12,000 rpm for 10 min. Suck the supernatant through the
hole diameter of 0.22 p M and stored for UPLC-MS/MS
analysis.

The LC/MS system for metabolomics analysis is com-
posed of Waters Acquity I-Class PLUS ultra-high per-
formance liquid tandem Waters Xevo G2-XS QT of
high resolution mass spectrometer. The column used is
purchased from Waters Acquity UPLC HSS T3 column
(1.8 pm 2.1*100 mm). Positive ion mode: mobile phase
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A: 0.1% formic acid aqueous solution; mobile phase B:
0.1% formic acid acetonitrile. Negative ion mode: mobile
phase A: 0.1% formic acid aqueous solution; mobile phase
B: 0.1% formic acid acetonitrile. Injection volume 1pL.
Waters Xevo G2-XS QTOF high resolution mass spec-
trometer can collect primary and secondary mass spec-
trometry data in MSe mode under the control of the
acquisition software (MassLynx V4.2, Waters). In each
data acquisition cycle, dual-channel data acquisition can
be performed on both low collision energy and high col-
lision energy at the same time. The low collision energy
is 2V, the high collision energy range is 10-40 V, and the
scanning frequency is 0.2 s for a mass spectrum. The
parameters of the ESI ion source are as follows: Capillary
voltage: 2000 V (positive ion mode) or -1500 V (negative
ion mode); cone voltage: 30 V; ion source temperature:
150 °C; desolvent gas temperature 500 °C; backflush gas
flow rate: 50L/h; Desolventizing gas flow rate: 800L/h.

Antibacterial assays

Extraction of active components from plants

The dried plant samples (100 g) were ground, soaked in
industrial alcohol, extracted under reflux at 60 °C for 3 h,
concentrated by rotary evaporation under reduced pres-
sure in water bath held at 55 °C. The total ethanol extracts
were obtained by heating and drying for 12 h. Thirty g of
the ethanol extract was dissolved in 800 mL water, and
was extracted in 1-L flask with petroleum ether, chloro-
form, ethyl acetate and n-butanol. The extracts were con-
densed under vacuum and dried at 55 °C. The extracts
of each extraction were dissolved in dimethyl sulfoxide
separately, prepared into a solution in a concentration of
200 mg/mL, filtered through a 0.22 um filter, and stored
at 4 °C for later use.

Medium preparation

Nutrient agar medium (1000 ml containing 3.0 g beef
extract, 10.0 g peptone, NaCl 5.0 g and 20 g agar (pH
7.2-7.4).

Baceterial liquid preparation

E. coli, Salmonella (G™), P. mirabilis (G™), B. cereus (G™),
S. aureus (G%), Streptococcus (G"), P aeruginosa, (G™).
The above strains were provided by the Microbiology
Laboratory of Northwest A&F University. Under asep-
tic conditions, single colonies of activated E. coli, Sal-
monella, Streptococcus, S. aureus, P. mirabilis, B. cereus,
and P aeruginosa after activation were picked with an
inoculation loop and inoculated into the liquid medium,
respectively, at a constant temperature of 37 °C. Culti-
vated for 24 h. Use sterilized liquid medium to adjust the
concentration of each bacterial solution equivalent to 0.5
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McFarland turbidity standard (about 1.5 x 10® CFU/mL)
for use.

Agar well diffusion assay

A sterilized filter paper sheet, 6 mm dia. was soaked in a
drug extract for 1 h. The bacterial suspension to be tested
(0.5 mL) was spread evenly onto the surface of the solid
medium. The filter paper of the extract was layered onto
the bacteria-containing plate under sterile conditions; a
sterile filter paper soaked in DMSO was used as the nega-
tive control, and the ceftazidime drug sensitive tablet was
used as the positive control. The leaching solution treat-
ment and control were incubated (37 °C, 12 h); inhibition
zone of the filter paper was measured. The experiment
was repeated 3 times. If the diameter of the inhibition
zone is greater than or equal to 18 mm, the bacteria is
rated as highly sensitive, 12 to 18 mm as moderately sen-
sitive, 7 to 12 mm as low sensitivity, and less than 7 mm
as insensitive.

Determination of antioxidant activity

FRAP assay

Sample (1 ml) was mixed with 2.5 mL of phosphate buffer
(0.2 moL/L, pH 6.6) and 2.5 mL of 1% K;Fe(CN),, and
heated in a water bath (50 °C, 20 min). After incubation,
2.5 mL of 10% (w/v) trichloroacetic acid was added and
the samples were centrifuged (15,000 x g, 10 min) and
2.5 mL of the supernatant was aspirated and mixed with
2.5 mL of H,O and 0.5 mL of 0.1% FeCl;. The absorbance
was measured with a spectrophotometer (700 nm).

Scavenging capacity of DPPH free radicals

To 2.0 mL of each solution to be tested, 2 mL 0.04 mg/mL
of DPPH solution (with ethanol as a solvent) is added,
mixed.

Scavenging activity against ABTS free radical

The ABTS working solution was carefully transferred
into the first reagent tube, the tube cover was rotated,
shaken well, and placed at temperature for 14-16 h.
Take 10 uL ABTS and dilute the diluent (first 20 diluted
in pure water) and record the dilution ratio. Fully mix,
microabsorption values were measured at 734 nm.

Determination of hydroxyl radical scavenging capacity

Two mL of the samples to be tested was mixed with
1.4 mL 6 mmol/L H,0,, then 0.6 mL 20 mmol/L sodium
salicylate and 2 mL 1.5 mmol/L ferrous sulfate added.
Samples were thoroughly mixed; for the blank group, the
sample was replaced with ultrapure water. The absorb-
ance value of H,0, was measured in the same way and
recorded as A background. OH free radicals. The formula
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for calculating the clearance rate=[A blank—(A sam-
ple—A background)] / A blank x 100%.

Data analysis

After identification of distinct compounds and pathway
analysis using KEGG database, t-test was used to calcu-
late the difference significance p-value of each compound.
R package was used for the OPLS-DA modeling was per-
formed using R package and the reliability of the model was
tested with 200 times permutation.

Abbreviations

AS Artemisia sieversiana

AW Artemisia wellbyi

AA Artemisia annua

UPLC Ultra Performance Liquid Chromatography
MS/MS Tandem mass spectrometry

MRM Multiple reaction monitoring

PCA Principal component analysis

KEGG Kyoto Encyclopedia of Genes and Genomes
PC1 First principal component

OPLS-DA  Orthogonal projections to latent structures-discriminant analysis
VIP Variable importance in projection

DPPH 2,2-Diphenyl-1picrylhydrazyl

FRAP Ferric reducing antioxidant power
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