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Abstract 

Background Forest trees such as poplar, shrub willow, et al. are essential natural resources for sustainable and renew-
able energy production, and their wood can reduce dependence on fossil fuels and reduce environmental pollution. 
However, the productivity of forest trees is often limited by the availability of nitrogen (N), improving nitrogen use 
efficiency (NUE) is an important way to address it. Currently, NUE genetic resources are scarce in forest tree research, 
and more genetic resources are urgently needed.

Results Here, we performed genome-wide association studies (GWAS) using the mixed linear model (MLM) to 
identify genetic loci regulating growth traits in Populus cathayana at two N levels, and attempted to enhance the 
signal strength of single nucleotide polymorphism (SNP) detection by performing genome selection (GS) assistance 
GWAS. The results of the two GWAS analyses identified 55 and 40 SNPs that were respectively associated with plant 
height (PH) and ground diameter (GD), and 92 and 69 candidate genes, including 30 overlapping genes. The predic-
tion accuracy of the GS model (rrBLUP) for phenotype exceeds 0.9. Transcriptome analysis of 13 genotypes under 
two N levels showed that genes related to carbon and N metabolism, amino acid metabolism, energy metabolism, 
and signal transduction were differentially expressed in the xylem of P. cathayana under N treatment. Furthermore, 
we observed strong regional patterns in gene expression levels of P. cathayana, with significant differences between 
different regions. Among them, P. cathayana in Longquan region exhibited the highest response to N. Finally, through 
weighted gene co-expression network analysis (WGCNA), we identified a module closely related to the N metabolic 
process and eight hub genes.

Conclusions Integrating the GWAS, RNA-seq and WGCNA data, we ultimately identified four key regulatory genes 
(PtrNAC123, PtrNAC025, Potri.002G233100, and Potri.006G236200) involved in the wood formation process, and 
they may affect P. cathayana growth and wood formation by regulating nitrogen metabolism. This study will provide 
strong evidence for N regulation mechanisms, and reliable genetic resources for growth and NUE genetic improve-
ment in poplar.
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Background
As a rapidly growing renewable biomass and derived 
energy source, poplar wood can reduce dependence on 
fossil fuels, reduce environmental pollution, and have 
great economic value [1, 2]. Nitrogen (N) availability is 
often the main factor limiting tree productivity. N defi-
ciency affects N uptake and assimilation, carbohydrate 
accumulation and distribution, and ultimately affects 
poplar growth and wood yield [3, 4]. Applying N ferti-
lizers has become the main method to improve poplar 
wood yield in agricultural production. However, poplars 
have a low rate of N uptake, and excessive N fertilizer can 
lead to resource wastage, cause environmental pollution, 
and reduce economic benefits. Improving poplar NUE 
and identifying N use-related genes will be crucial for 
wood production and environmental protection.

Currently, forest tree NUE studies tend to focus on the-
oretical studies, with few instances of functional valida-
tion [2, 5]. The lack of genes related to N use efficiency is 
the main reason for this phenomenon. In the genomics 
era, genome-wide association studies (GWAS) with high-
density marker coverage and low levels of linkage dis-
equilibrium (LD) have developed into an efficient tool to 
mine key regulatory genes of target traits in populations 
[6–8]. However, the regulatory genes of most forest traits 
are often comprised of multiple genes with small effects, 
and effects of low-frequency alleles may not be detected 
by GWAS association analysis alone [8]. While increas-
ing the sample size of the GWAS analysis population is 
feasible, it may not be desirable in certain scenarios. 
Combining GWAS with multiomics techniques will help 
to improve the accuracy and accuracy of candidate gene 
[9–11].

NUE refers to the efficiency with which plants obtain 
and use N [3, 12–14]. Poplar NUE research has pro-
gressed slowly, with fewer reports compared to model 
plants such as Arabidopsis, rice, and maize [15, 16]. Most 
studies have focused on N uptake efficiency by roots, with 
less attention given to N transport and assimilation effi-
ciencies in xylem and phloem [17–20]. Variations in NUE 
can impact wood formation, which is regulated by a tran-
scriptional regulatory network (TRN) consisting of tran-
scription factors (TF) and genes related to the secondary 
cell wall (SCW) [21]. Among them, some TFs have been 
proven to have pleiotropic effects and participate in mul-
tiple complex metabolic processes [15, 22]. Uncovering 
the mechanisms underlying xylem gene responses under 
N treatment will provide a basis for studying the regula-
tory role of xylem-related genes in nitrogen metabolism.

Plants typically exhibit adaptive evolution in response 
to environmental changes [23, 24], including N availabil-
ity, which also serves as a basis for selection in popula-
tion studies. The Populus cathayana natural population 
has undergone long-term natural selection in the wild, 
displaying strong  environmental adaptability and rich 
intraspecific variation. In previous research, we collected 
410 genotypic P. cathayana germplasm resources from 
34 natural populations [25, 26]. Here, we used GWAS 
to identify candidate genes that regulate the growth of 
P. cathayana under two N supplies and attempted to 
acquire genomic estimated breeding values (GEBV) by 
genomic selection (GS) to enhance SNPs signaling and 
improve GWAS mining power. In addition, we selected 
13 genotypes of P. cathayana with high N utilization to 
explore the response of poplar xylem genes to N by xylem 
RNA-seq. Integration of GWAS and RNA-seq results 
provides potential genetic resources for studying NUE in 
poplar and strong evidence for exploring the molecular 
genetic basis of the response of xylem genes to N.

Results
Population phenotypic analysis under nitrogen treatment
Different genotype of P. cathayana had differences in 
response to N, with differences in growth indicators for 
most genotypes. Under two N levels, plant height (PH) 
and ground diameter (GD) reached significant cor-
relation level with correlation coefficients of 0.80 and 
0.85, respectively. The coefficient of variation (CV) was 
between 0.20–0.31. The analysis of normality using the 
Shapiro–Wilk test showed that the phenotype data fol-
lowed a normal distribution (Figure  S1). Under ferti-
lization conditions, the average PH, average GD, and 
heritability remained basically unchanged. The maximum 
PH and maximum GD increased by 22.47% and 35.11%, 
respectively (Table  1). Among them, there are 159 gen-
otypes promote PH and 191 genotypes promote GD, 
respectively. The ratio ranges for Ratio-PH and Ratio-GD 
were 1.01–2.85 and 1.01–2.62, respectively (Supplemen-
tary Table S1). Phenotypic data analysis further indicated 
the P. cathayana population has rich genetic variation 
and high selection potential.

GWAS of population growth traits
To identify candidate genes regulating the growth and 
development of P. cathayana under N treatment, we con-
ducted GWAS analysis on genotypes significantly pro-
moted by Ratio-PH and Ratio-GD (Fig. 1a, c and Fig. S2a, 
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c). Among them, Ratio-PH was associated with 9 sig-
nificant single nucleotide polymorphism (SNP) loci, and 
Ratio-GD was associated with 10 significant loci. We also 
observed multiple clusters of SNP signals in the GWAS 
analysis and attempted to increase the size of the GWAS 
population by obtaining GEBV through GS to enhance 
the strength of the SNP signals. GEBV analysis showed 
that the predictive power of PH and GD was rPH = 0.92 
and rGD = 0.96 (Supplementary Table  S1), respectively. 
Under this condition, the GEBV-PH trait was associ-
ated with 50 significant loci, and the GEBV-GD trait was 
associated with 35 significant SNPs loci (Fig.  1b, d and 
Fig. S2b, d).

Using the candidate intervals of 20  kb upstream and 
downstream of significant SNPs, a total of 92 and 69 can-
didate genes were identified for the PH and GD traits, 
respectively, with 30 candidate genes shared between 
the two traits. The GWAS statistics are shown in Supple-
mentary Table S2 and S3, and the functional annotations 
of all genes are shown in Supplementary Table  S4. The 
candidate genes are involved in multiple metabolic path-
ways, such as amino acid metabolism and biosynthesis, 

circadian rhythm in plants, carbon fixation in photosyn-
thetic organisms, carbon metabolism, starch and sucrose 
metabolism, plant hormone signal transduction, carot-
enoid biosynthesis, and flavonoid biosynthesis (Supple-
mentary Table  S5). Based on gene function annotation 
and homology comparison, we initially identified 12 
GWAS candidate genes that may respond to N treatment 
(Table 2).

Analysis of differentially expressed genes
To explore the potential N utilization-related genes 
involved in the growth process of P. cathayana, we col-
lected the developing xylem of 13 P. cathayana genotypes 
(consisting of 5 natural populations) under two N levels 
and performed transcriptome analysis. Among the five 
natural populations we selected, the Ratio-PH and Ratio-
GD populations in the Longquan area have the highest 
values, which are 1.45 and 1.31, respectively (Supple-
mentary Table S6). Transcriptome analysis revealed that 
the expression levels of the P. cathayana gene exhibit 
strong regional pattern, and fertilization leads to differ-
ential expression of some genes. Samples from the same 

Table 1 Statistical results of growth indices of different genotypes of P. cathayana in fertilization trials

Group Trait Mean Range SD CV H2

No-fertilization PH 155.22 cm 52.00 cm-272.50 cm 44.44 0.27 0.24

GD 12.95 mm 5.16 mm-20.93 mm 2.62 0.20 0.24

Fertilization PH 154.33 cm 40.67 cm-333.75 cm 48.57 0.31 0.23

GD 12.81 mm 4.99 mm-28.28 mm 2.74 0.21 0.24

Fig. 1 Manhattan plots of GWAS association analysis. a Manhattan plot of Ratio-PH GWAS correlation analysis. b Manhattan plot of GEBV-PH GWAS 
correlation analysis. c Manhattan plot of Ratio-GD GWAS correlation analysis. d Manhattan plot of GEBV-GD GWAS association analysis. P-values are 
converted to -log10 (P-value). SNPs above red lines passed the Bonferroni correction test, and SC1-SC15 indicate SNPs signal clusters
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regional population showed high correlation, and prin-
cipal component analysis (PCA) clusters into a single 
cluster (Fig. 2a, b, c). After quality control of the 13 sam-
ple groups (Supplementary Table  S7), a total of 12,908 
differentially expressed genes (DEGs) were identified 
(Fig.  2d). The DEGs were significantly enriched in 126 
GO terms (Fig.  3a) and 119 KEGG metabolic pathways 
(Fig.  3b), including multiple N utilization-related meta-
bolic pathways such as amino acid metabolism, carbon 
and nitrogen metabolism, energy metabolism, and signal 
transduction.

Gene co‑expression network construction
To comprehensively analyze the response mechanism 
of P. cathayana to N, we conducted a weighted gene co-
expression network analysis (WGCNA) using the FPKM 
value of RNA-seq gene expression in xylem samples to 
identify hub regulatory genes. After removing outli-
ers (Fig. S3a), we divided all genes into 18 co-expression 
modules using dynamic shearing (Fig. S3b, S3c). Module-
phenotype correlation analysis of the eight traits revealed 
that plant height, ground diameter, aboveground bio-
mass, and leaf dry weight had similar correlations with 
the co-expression modules and were consistent with 
the interphenotype correlations (Fig.  4a, b, c). Among 
them, two noteworthy modules were identified: the pink 
module contained 799 genes (Supplementary Table  S8), 
which were highly positively correlated with P. cathayana 
growth indicators, and the greenyellow module contained 
745 genes (Supplementary Table S9), which were signifi-
cantly positively correlated with xylem and bark carbon 
content. Furthermore, the negative correlation between 
xylem N and C content and other indicators indicated the 

close relationship between xylem carbon and nitrogen 
metabolism and plant growth and development.

Module enrichment analysis and screening of hub genes
To elucidate the biological significance of genes in the 
modules and identify hub genes, we conducted KEGG 
enrichment analysis. The pink module exhibited signifi-
cantly enriched in 25 KEGG pathways (p < 0.05), mainly 
related to carbon and N metabolism, amino acid bio-
synthesis and metabolism of various amino acids, phe-
nylalanine and fatty acids (Fig.  4d). Subsequently, using 
Cytoscape_3.7.1, we identified eight central genes from 
the 799 genes in the pink module, including two NAC 
transcription factors, Potri.011G058400 (PtrNAC123) and 
Potri.007G014400 (PtrNAC025) (Fig.  5a). All eight hub 
genes were upregulated under fertilization conditions, 
with four genes directly or indirectly involved in the pro-
cess of N metabolism processes (Fig.  5b). The greenyel-
low module was enriched in 11 KEGG pathways, mainly 
related to the biosynthesis of cofactors, biosynthesis of 
amino acids, fatty acid anabolism, and catabolism (Fig. 4d). 
The five central genes in the module were expressed at low 
levels and exhibited less responsive to N, and the func-
tional annotation information is shown in Fig. S4.

Predicting candidate genes by GWAS and transcriptome 
analysis
To further identify the GWAS candidate genes, we over-
lapped them with DEGs, and obtained 28 overlapping 
genes (Supplementary Table  S10). Subsequently, KEGG 
enrichment analysis was performed on these overlap-
ping genes to understand their biological functions. 
The results showed that they were involved in several 

Table 2 Important candidate genes and functional annotations identified in GWAS

a  Gene models are annotated using v3.1 of the P. trichocarpa genome
b  GWAS traits used to localize candidate genes

P. cathayana id P. trichocarpa  ida Traitb Gene description

Pca02G020350 Potri.002G214100 GEBV-PH Phosphoenolpyruvate carboxylase

Pca03G006430 Potri.003G072600 GEBV-PH Alanine aminotransferase 2

Pca04G007700 NA GEBV-GD Transcription factor MYB20

Pca04G010300 Potri.004G118400 GEBV-PH Myb-like DNA-binding domain

Pca04G013090 Potri.004G140900 GEBV-PH Cytochrome P450, abscisic acid 8’-hydroxylase 4

Pca05G015040 Potri.005G164700 GEBV-GD Cryptochrome 1 family protein

Pca06G009220 Potri.006G102600 GEBV-PH, GEBV-GD Transcription factor bhlh140

Pca06G021060 Potri.006G236200 GEBV-PH Auxin-responsive protein IAA2

Pca12G011040 Potri.012G126500 GEBV-GD NAC domain-containing protein 7

Pca13G013120 Potri.013G148600 GEBV-GD Transcription factor MYB41

Pca17G004590 Potri.017G053500 GEBV-PH Amino acid transport and metabolism

Pca18G003350 Potri.018G036400 GEBV-GD Nitrate regulatory gene2 protein
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Fig. 2 Clustering of transcriptome samples and statistical results of differentially expressed genes (DEGs). a Principal component analysis (PCA) of 
78 samples b Sample correlation coefficients, with redder colors indicating higher correlation coefficients c Hierarchical clustering analysis of DEGs. 
d The number of upregulated and downregulated DEGs in each comparison group
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metabolic pathways, such as carbon metabolism, biosyn-
thesis of amino acids, flavone and flavonol biosynthesis, 
plant hormone signal transduction, plant-pathogen inter-
action, flavonoid biosynthesis, and MAPK signaling path-
way-plant (Fig. 6a). Furthermore, RNA-seq data was used 
to evaluate gene expression levels, which revealed that 9 
genes were upregulated and 4 genes were downregulated 
under fertilization conditions (Fig.  6b, Table  3). Of the 

upregulated genes, three genes are particularly interest-
ing: Potri.002G233100 (encoding amino acid transporter 
AVT1H isoform X1), Potri.004G140900 (encoding absci-
sic acid 8’-hydroxylase 4) and Potri.006G236200 (encoding 
the auxin-responsive protein IAA18-related). The quan-
titative real-time fluorescence PCR (qRT‒PCR) results 
basically showed consistency with the gene expression 
trends observed by RNA-seq, and the expression levels 

Fig. 3 Enrichment analysis of DEGs at two N levels. a GO enrichment bubble diagram of DEGs. Node color and size indicate the P-value and the 
number of genes corresponding to the enrichment term, respectively. b Bubble diagram of KEGG enrichment of DEGs. Node color and size indicate 
the P-value and the number of genes corresponding to the enrichment term, respectively
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of some genes were slightly different (Fig. 7). qRT-PCR and 
RNA-seq results were highly correlated (r = 0.74; p < 0.001), 
further indicating that the transcriptomic data have high 
reliability.

Discussion
Evaluation of nitrogen use of P. cathayana populations
Forest tree growth and development are highly depend-
ent on N, but research on N utilization-related genes 
in forest tree is lacking and genetic transformation has 
rarely been reported [15, 27]. Therefore, there is an 
urgent need to identify genetic resources related to N 

utilization. By long-term natural selection, the P. cathay-
ana population has resulted in a population with rich 
potential genetic resources related to NUE. However, due 
to the difficulties in collecting germplasm resources, no 
systematic evaluation of NUE in P. cathayana has been 
conducted. Different regions of P. cathayana exhibit 
varying degrees of response to N, with gene expression 
levels displaying a strong regional pattern. This pattern 
is associated with adaptive variation that has arisen from 
long-term natural selection in P. cathayana. By integrat-
ing the GEBV values for growth traits and transcrip-
tomic data, we discovered that among the 34 regional 

Fig. 4 Transcriptome sample phenotypic data analysis and module association analysis. a Analysis of differences between the eight phenotypes 
data. * indicates the genotype reached a significant difference at the 0.05 level. b Correlations between phenotypes of all samples, * indicates a 
significant correlation between phenotypes at 0.05 level, *** indicates a significant correlation at 0.001 level. c Correlations between modules and 
phenotypes were based on Pearson correlation coefficients; color depth indicates the magnitude of correlation coefficients. d Pink, greenyellow 
module KEGG enrichment chord plot, the arc length corresponding to the pathway indicates the number of enriched genes; the minimum is 3 and 
the maximum is 32
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natural populations of P. cathayana, the population in 
the Longquan area exhibited the greatest response to N. 
This information will contribute to the study of NUE in 
P. cathayana.

GS‑assisted GWAS enhances the signal strength of SNPs
Most traits involved in forest tree GWAS research are 
quantitative traits controlled by the microscopic effects 
of multiple genes, and require high data accuracy and 
population size [28, 29]. In the present study, the popu-
lation size was too small under our defined significant 
facilitation condition, resulting in insufficient GWAS 
signal intensity. Therefore, it is necessary to consider 
methods to increase the signal intensity. Previous studies 

extensively reported on GWAS-assisted GS [30–35]. On 
this basis, Spindel’s study [36, 37] confirmed the feasibil-
ity of combining the GWAS model with ridge regression 
best linear unbiased prediction (rrBLUP) to improve the 
accuracy of the GS model. Therefore, we attempted to 
extend GWAS population by using GS to improve the 
detection ability of SNPs. Our results suggest that this 
is a feasible approach, and the combination of the two 
can greatly reduce data and false positives of candidate 
SNPs.

Analysis of N metabolism‑related pathways
Carbon and N mutually regulate each other and are 
crucial for changing plant development and growth 

Fig. 5 Pink module genes interactions network and hub genes analysis. a Visualization of the Pink module gene network, the circled parts were 
hub genes; the Potri.015G034700 gene regulates all genes except the gray circular parts. b Functional annotation of hub genes and heatmap of 
gene expression. Heatmap data were derived from normalized of gene expression in each region population in RNA-seq



Page 9 of 16Zhou et al. BMC Plant Biology          (2023) 23:182  

[38, 39]. Elucidating the expression patterns and major 
regulatory networks of N utilization-related genes 
under N treatment is of great significance for improv-
ing NUE and plant growth and development. Here, we 
extracted DEGs involved in amino acid carbon metabo-
lism, nitrogen metabolism, and biosynthesis of three 
closely related metabolic pathways. To facilitate pres-
entation, we plotted heatmaps using the average gene 
expression in each region at two N levels. Most of the 
DEGs associated with nitrogen metabolism and amino 

acid biosynthesis were upregulated under N treatment 
(Fig. S5). Previous studies have shown that gene expres-
sion levels [5, 40, 41] and enzyme activities associated 
with nitrogen metabolism differ significantly at different 
N levels [27, 42, 43]. We focused on examining the differ-
ences gene expression involved in major pathways of N 
metabolism under fertilization conditions (Fig. 8). Three 
hub genes (Potri.015G034700, Potri.012G043900, and 
Potri.015G017500) identified by WGCNA played crucial 
roles in this process. Based on the protein interaction 

Fig. 6 Overlapping genes KEGG enrichment analysis and expression heatmap. a Overlapping genes KEGG enrichment analysis. b Overlapping 
gene expression heatmap, data were derived from normalized of gene expression in each region in RNA-seq

Table 3 Overlapping genes with similar expression patterns and functional annotations

a  Gene models are annotated using v3.1 of the P. trichocarpa genome
b  Expression changes of overlapping genes
c  GWAS traits used to localize candidate genes

P. cathayana id P. trichocarpa  ida Expressionb Traitc Gene description

Pca01G017700 Potri.001G193300 up GEBV-PH Protein root UVB sensitive 1, Chloroplastic

Pca01G019120 Potri.001G209300 up GEBV-PH Basic blue protein

Pca01G030350 Potri.001G323700 down GEBV-PH CASP-like protein 1F3

Pca02G008700 Potri.002G091700 down GEBV-PH Protein NETWORKED 1D isoform X1

Pca02G021850 Potri.002G233100 up GEBV-PH Amino acid transporter AVT1H isoform X1

Pca03G006280 Potri.003G071100 up GEBV-PH 17.4 kda class III heat shock protein

Pca04G013090 Potri.004G140900 up GEBV-PH Abscisic acid 8’-hydroxylase 4

Pca05G003430 Potri.005G040700 up GEBV-GD Histone H2AX

Pca06G003320 Potri.006G040000 down GEBV-GD F-box protein At2g26850 isoform X1

Pca06G021060 Potri.006G236200 up GEBV-PH Auxin-responsive protein IAA2

Pca08G006730 Potri.008G075200 up GEBV-GD Wound-induced protein 1

Pca14G009260 Potri.014G111000 up GEBV-GD Uncharacterized protein LOC7455383

Pca17G004580 Potri.017G053400 down Ratio-GD F-box/LRR-repeat protein 14
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Fig. 7 Real-time fluorescence quantification versus RNA-seq data comparison results. Three biological replicates and three technical replicates were 
performed for each genotype, Log2 normalized relative expression and combined with RNA-seq data to verify the accuracy of RNA-seq

Fig. 8 Expression changes in various enzyme-related genes during N metabolism at two N levels. NRT: nitrate transporter; NR: nitrate reductase; 
NiR: nitrite reductase; GS: glutamine synthetase; GOGAT: glutamate synthase; effectively expressed genes (FPKM value > 1) associated with enzymes 
in N utilization were screened based on gene annotation information, and heatmaps were drawn based on the difference multiplicity  Log2FC
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network of N utilization-related genes that we con-
structed, we identified the important regulatory role of 
Potri.012G043900 (Fig. S6). This gene has catalytic activ-
ity and is involved in processes such as nitrate reduction, 
N compound metabolism, and glutamine biosynthesis.

Integrating transcriptome data and GWAS to predict 
candidate genes
NUE affects the wood yield, and NUE regulatory genes 
have been shown to have multiple effects [15, 16, 22, 44, 
45]. In order to explore potential NUE-related genes in 
the process of wood formation, we identified a WGCNA 
co-expression module closely related to nitrogen metab-
olism based on transcriptome data. The hub genes of this 
module include four genes directly or indirectly involved 
in nitrogen metabolism and two NAC transcription fac-
tors (PtrNAC025 and PtrNAC12). Previously, Chen et al. 
[5] constructed a four-layer transcriptional regulatory 
network (TRN) for poplar wood formation. This net-
work, with PtrSND1 as the top-level regulatory factor and 
PtrMYB74 and PtrMYB21 as second-level regulatory fac-
tors, regulate the expression of 17 target genes and their 

downstream genes involved in secondary cell wall bio-
synthesis during wood formation [21, 46, 47]. One of the 
candidate genes we identified, PtrNAC025 (also known 
as VND6-C1), has strong interactions with the PtrSND1 
family of regulators at the top layer of this TRN [48, 49]. 
The candidate gene PtrNAC123 is located at the third 
layer of this TRN, and its regulated downstream gene 
PtrCCoAOMT1 (Potri.009G099800) has been reported to 
be highly responsive to N [50], while the PtrCCoAOMT1 
gene is also located in the module we identified regulated 
by two candidate NAC genes.

Integrating GWAS and multi-omics data has improved 
the accuracy and precision of candidate gene selection to 
some extent, and has been widely used in maize, soybean 
and poplar [10, 51, 52]. In this study, two GWAS candi-
date genes, Potri.002G233100 and Potri.006G236200, 
were identified by integrating GWAS and transcriptome 
data (Fig.  9). Potri.002G233100 encodes amino acid trans-
porter family protein, and its homologous gene in Arabi-
dopsis thaliana, AT5G16740 is closely associated with the 
transmembrane amino acid transport [53]. Potri.006G236200 
encodes auxin-responsive protein IAA18-related, and its 

Fig. 9 GWAS and transcriptome data network graph. The size of the dots represents the degree of gene association. The WGCNA core genes are 
the 8 core genes identified in the pink module, and the NUE-related genes are important genes in the nitrogen metabolism, carbon metabolism, 
and amino acid biosynthesis pathways
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homologous gene in Arabidopsis thaliana, AT3G16500 
encodes phytochrome-associated protein 1, which may 
regulate the expression of genes associated with the 
growth hormone response [54].

Conclusion
Here, we presented the first genome-wide study on the 
response of P. cathayana population to N and clarify the 
differences in N response among different populations 
of P. cathayana, with the Longquan area showing the 
greatest response. Differences in N utilization efficiency 
affect the expression levels of  NUE-related genes in the 
xylem, thereby influencing carbon metabolism and fixa-
tion, and ultimately impacting the growth and develop-
ment of poplar trees. Based on this, by integrating the 
GWAS, GS and xylem transcriptomic data we identi-
fied the important regulatory role of Potri.012G043900 
in nitrogen metabolism, and we preliminarily suggested 
that PtrNAC123, PtrNAC025, Potri.002G233100, and 
Potri.006G236200 may affect poplar growth by regulat-
ing nitrogen metabolism levels in addition to their known 
functions. This study provides new genetic resources and 
strong evidence to explore the molecular genetic basis of 
NUE in forest trees, and attempts to validate the func-
tions of these genes in subsequent research.

Materials and methods
Plant material and experimental design
The P. cathayana population included 408 genotypes 
from natural populations in 34 different regions of China. 
In early April 2021, stem cuttings were used for clonal 
propagation in the greenhouse, with 30 plants of each 
genotype. After one month of growth, they were trans-
planted to the Yuquan Mountain Nursery of the Chinese 
Academy of Forestry. They were used for field fertiliza-
tion experiments in a completely randomized block 
design, with a total of four blocks, two N-applied and two 
non-N-applied. Each block included three plants of each 
genotype, with a spacing of 30  cm × 50  cm. N-applied 
blocks were fertilized four times with 4  g/plant/15  days 
(CON2H4, N content ≥ 46.0%), and non-N-applied 
blocks were left untreated. The test plots were brown 
soils with 1.275  g/kg total N, 0.797  g/kg total P and 
16.0 g/kg total K.

Population phenotype data determination and analysis
After growth ceased in October, the PH and GD of 
each tree were measured, and the phenotypic data were 
tested for normality using SPSS 20.0 software. The mean 
(Mean), standard deviation (SD), coefficient of variation 
(CV) and heritability  (H2) of PH and GD were calculated 
for each genotype under fertilized and unfertilized con-
ditions. Based on the trait measurements, we calculated 

the trait ratios of PH and GD at two N levels for GWAS 
analysis. To identify phenotype-associated SNPs, we 
selected significantly promoted genotypes for GWAS 
analysis. Among them, there were 159 and 191 genotypes 
for Ratios-PH and Ratios-GD, respectively.

SNPs quality control and GWAS analysis
Based on the whole-genome resequenced SNPs data, 
we obtained a total of 575,472 SNPs data after using the 
quality control of Plink 1.9 software (minor allele fre-
quency > 0.05, missing genotype < 0.05 and  r2 > 0.20). To 
reduce false positives of significant SNPs in GWAS asso-
ciation analysis, Q matrix and K matrix were controlled 
in GEMMA (0.98.3) software [55] and mixed linear model 
(MLM). Using GEMMA (0.98.3) software to calculate 
Kinship (K matrix), GTAC software to calculate PCA (Q 
matrix). Manhattan and Q-Q plots were drawn using the 
package "CMplot" package in R. The significance threshold 
for SNP markers was corrected by Bonferroni P = 0.05/n, 
where n indicates the number of valid independent SNPs. 
The GWAS model was Y = Wα + xβ + u + e, where Y is an 
n-vector of quantitative traits (or binary disease labels) 
for n individuals; W is a n × c matrix of covariates (fixed 
effects), it should contain a first column with an intercept 
of all 1 s; α is a c-vector of the corresponding coefficients 
including the intercept; x is an n-vector of marker geno-
types; β is the effect size of the marker; u is an n-vector of 
random effects; and e is an n-vector of errors.

GS‑assisted GWAS analysis
In the GWAS analysis, we found the presence of multi-
ple signaling clusters of SNPs, which may have been false 
negatives after Bonferroni correction. To further iden-
tify phenotype-associated SNPs, we attempted to use 
the GEBV obtained from GS by the rrBLUP method and 
to use them for GWAS to expand the breeding popula-
tion and enhance the signal strength of SNPs. The qual-
ity control conditions of genotype data for GS analysis 
are the same as those for GWAS analysis. First, we used 
the significantly promoted genotypes as the reference 
population, and the remaining genotypes as the valida-
tion population. Based on the ratios of the PH and GD 
traits at two N levels in the reference population, genome 
selection analysis was performed using the R package 
"rrBLUP" to obtain the GEBV value of each genotype. 
The predictive ability (rgy) was estimated as the correla-
tion between the observed and the GEBV (r (y, GEBV)) 
[56]. The GS model in the R package "rrBLUP" was 
Y = Xb + Za + e, where Y is the phenotypic measure of 
the trait being analyzed; X and Z are incidence matrices 
for the vectors for parameters b and a, respectively; b is a 
vector of fixed block effects; a is a vector of random addi-
tive effects, and e is the random residual effect.
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Identification of significant SNPs and candidate genes
Here, to reduce the false positives of SNPs loci, we 
defined two categories of loci significantly associated 
with phenotypes as the final significant SNPs loci. The 
first category of SNPs are the significant SNPs co-local-
ized with two GWAS results; the other category is SNP 
clusters (SCs) that reached a significant level in the GS-
assisted GWAS. The preassembled P. cathayana genome 
in the laboratory was used as the reference genome, and 
genes within 20 kb upstream and downstream of signifi-
cant SNPs were screened as candidate genes.

Transcriptome sample collection and RNA‑seq 
To investigate the pattern changes in xylem gene 
expression at two N levels and to explore potential N 
utilization-related genes, 13 growth promoting geno-
types (A1, A2, A3, B2, C1, C2, C2, C3, D1, E2, E3) were 
selected from five natural populations (Lantian A, 
Yixian B, Longquan C, Fengning D, Youyu E). In mid-
August, the stem bark at the breast diameter of the 
selected genotypes was peeled off, and the develop-
ing xylem was scraped from the xylem surface using a 
razor blade and immediately frozen in liquid N. Three 
biological replicates were performed for each genotype 
in the N-applied and non-N-applied blocks, respec-
tive. The Illumina NovaSeq™ 6000 high-throughput 
sequencing platform was used to perform RNA-seq 
on the library. After quality control of the offline data, 
Populus trichocarpa 3.1 was used as the reference 
genome (http:// plants. ensem bl. org), and Hisat2 soft-
ware was used for sequence alignment analysis [57].

Functional enrichment analysis of DEGs
To investigate the differences in response of different 
genotypes of P. cathayana to N and the regulatory mech-
anisms, we used fragments per kilobase million (FPKM) 
values to evaluate gene expression levels, and used fold 
change | log2FC |> 1 and significance level p < 0.05 as 
the screening standard for DEGs. Functional enrich-
ment analysis of the DEGs were performed using Gene 
Ontology (GO) [58] and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) [59] databases, with a significance 
level of p < 0.05.

Gene co‑expression network analysis
To further identify genes related to N utilization, we 
measured 8 traits related to N utilization as WGCNA 
associated traits, including PH, GD, aboveground bio-
mass, leaf weight, xylem carbon content, xylem N 
content, bark carbon content, and bark N content. 
Aboveground biomass  was determined after air drying, 
and leaf weight was the dry weight of each leaf. The C and 

N content was determined using an elemental analyzer 
after grinding the stem segments and bark. Before con-
structing the co-expression network, we removed genes 
with a total FPKM expression of less than 30 in all sam-
ples, and removed outliers by clustering analysis. The soft 
threshold function was used to calculate the weights, and 
then the modules were divided according to the dynamic 
hybrid shearing method, with a minimum of 150 genes 
per module. Modules with similar expression patterns 
(similarity = 0.75) were merged, and the merged modules 
were associated with traits using association analysis. 
Finally, Cytoscape 3.7.1 software was used to visualize the 
gene interaction network and screen hub genes.

Identification of GWAS candidate genes and real‑time 
fluorescence quantitative PCR validation
The combination of GWAS and WGCNA significantly 
enhances the capacity to identify core genes. To further 
identify the core genes in the GWAS candidate genes, 
we first homology-matched the P. cathayana genome 
with the reference genome and then overlapped the 
GWAS-identified candidate genes with the DEGs. Based 
on the transcriptome expression data, we evaluated the 
candidate gene expression patterns under fertilization 
conditions and further screened the candidate genes by 
combining gene annotation and enrichment results. To 
verify the reliability of RNA-Seq analysis and the expres-
sion levels of candidate genes, qRT-PCR analysis was 
performed with β-actin as an internal reference gene, and 
one genotype was randomly chosen in each of the five 
regions. Primers were designed using Primer Primer 6.0 
software, and primer information for the four differen-
tially expressed genes and the eight candidate genes were 
shown in Supplementary Table S11. Three technical rep-
licates and three biological replicates were used for each 
genotype, and  2−ΔΔCt was used to calculate the relative 
expression. The reaction system and reaction procedure 
refer to the description of TB Green® Premix Ex Taq™ II 
(TaKaRa, Dalian, China).

Abbreviations
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PCA  Principal component analysis
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qRT‒PCR  Quantitative real-time fluorescence PCR
rrBLUP  Ridge regression best linear unbiased prediction
SNP  Single nucleotide polymorphism
TRN  Transcriptional regulatory network
WGCNA  Weighted gene co-expression network analysis
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Additional file 1: Fig. S1. Normality test of phenotypic data. (a) Normal 
distribution of PH in the N-applied area. (b) Normal distribution of GD 
in the N-applied area. (c) Normal distribution of PH in the no-N-applied 
area. (d) Normal distribution of GD in the no-N-applied area. Fig. S2. 
QQ plots of GWAS association analysis. (a) QQ plot of Ratio-PH GWAS 
correlation analysis. (b) QQ plot of GEBV-PH GWAS correlation analysis. (c) 
QQ plot of Ratio-GD GWAS correlation analysis. (d) QQ plot of GEBV-GD 
GWAS association analysis. Fig. S3. WGCNA quality control results. (a) 
Sample clustering tree; outlier samples C12 and D12 were eliminated. (b) 
Determination of the soft threshold; the soft threshold used in this study is 
β = 9. (c) Cluster tree and network heatmap, divided into 18 co-expression 
modules. Fig. S4. Greenyellow module gene interaction network and hub 
gene analysis. (a) Greenyellow module gene network visualization. (b) Hub 
gene function annotation and expression heatmap. Heatmap data were 
derived from normalized gene expression in each region population in 
RNA-seq. Fig. S5. Heatmap of DEG expression in N metabolism-related 
pathways. (a) Heatmap of carbon metabolism pathways. (b) Heatmap 
of N metabolism pathways. (c) Heatmap of the amino acid biosynthesis 
pathway. Heatmap data were derived from the normalized gene expres-
sion in each region population in RNA-seq. Fig. S6. The protein interaction 
network diagram of the N metabolism-related genes; the pink mark 
indicates the hub gene.

Additional file 2: Supplementary Table S1. GS anlysis of phenotypic 
data and GEBV values. Supplementary Table S2. GWAS analyzes statisti-
cal information. Supplementary Table S3. GWAS association loci and 
candidate gene information. Supplementary Table S4. Functional anno-
tation information of GWAS candidate genes in the P. cathayana genome. 
Supplementary Table S5. KEGG enrichment results of GWAS candidate 
genes. Supplementary Table S6. The average Ratio-GD and Ratio-PH 
of the 34 regional Populus cathayana populations. Supplementary 
Table S7. Transcriptome sample quality control results. Supplementary 
Table S8. Gene ID and functional annotation of the pink module. Supple‑
mentary Table S9. gene ID and functional annotation of the greenyellow 
module. Supplementary Table S10. GWAS and transcriptome results 
overlap gene ID and expression level. Supplementary Table S11. qRT-
RCR primer sequences.
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