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Abstract 

Background:  In nature and in cultivated fields, plants encounter multiple stress factors. Nonetheless, our under-
standing of how plants actively respond to combinatorial stress remains limited. Among the least studied stress com-
bination is that of flooding and herbivory, despite the growing importance of these stressors in the context of climate 
change. We investigated plant chemistry and gene expression changes in two heirloom tomato varieties: Cherokee 
Purple (CP) and Striped German (SG) in response to flooding, herbivory by Spodoptera exigua, and their combination.

Results:  Volatile organic compounds (VOCs) identified in tomato plants subjected to flooding and/or herbivory 
included several mono- and sesquiterpenes. Flooding was the main factor altering VOCs emission rates, and impact-
ing plant biomass accumulation, while different varieties had quantitative differences in their VOC emissions. At the 
gene expression levels, there were 335 differentially expressed genes between the two tomato plant varieties, these 
included genes encoding for phenylalanine ammonia-lyase (PAL), cinnamoyl-CoA-reductase-like, and phytoene syn-
thase (Psy1). Flooding and variety effects together influenced abscisic acid (ABA) signaling genes with the SG variety 
showing higher levels of ABA production and ABA-dependent signaling upon flooding. Flooding downregulated 
genes associated with cytokinin catabolism and general defense response and upregulated genes associated with 
ethylene biosynthesis, anthocyanin biosynthesis, and gibberellin biosynthesis. Combining flooding and herbivory 
induced the upregulation of genes including chalcone synthase (CHS), PAL, and genes encoding BAHD acyltrans-
ferase and UDP-glucose iridoid glucosyltransferase-like genes in one of the tomato varieties (CP) and a disproportion-
ate number of heat-shock proteins in SG. Only the SG variety had measurable changes in gene expression due to 
herbivory alone, upregulating zeatin, and O-glucosyltransferase and thioredoxin among others.

Conclusion:  Our results suggest that both heirloom tomato plant varieties differ in their production of secondary 
metabolites including phenylpropanoids and terpenoids and their regulation and activation of ABA signaling upon 
stress associated with flooding. Herbivory and flooding together had interacting effects that were evident at the 
level of plant chemistry (VOCs production), gene expression and biomass markers. Results from our study highlight 
the complex nature of plant responses to combinatorial stresses and point at specific genes and pathways that are 
affected by flooding and herbivory combined.
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Background
Within natural environments and in cultivated fields, 
plants often encounter diverse biotic and abiotic stressors 
such as herbivory, pathogen attack, drought, and flooding 
occurring individually, sequentially, or simultaneously 
[1–12]. To survive and reproduce, plants must appro-
priately respond to these stress factors [13]. Available 
evidence shows that the response of plants to stress com-
binations is unique and that it cannot be extrapolated 
from responses to individual stresses [4, 9, 11, 14–17]. 
When two or more stresses occur simultaneously, their 
effects can be additive, synergistic, or neutral. In some 
cases, the influence of one stress can become dominant 
[17]. The overall effect of stress combinations is further 
dependent on plant species, genotype, specific herbivore 
species, and severity of the co-occurring stresses [4, 11]. 
Numerous studies of combinatorial stresses have focused 
on interactions between abiotic and biotic stressors; for 
example: drought and herbivory [9, 18–20], drought and 
pathogen infection [10], salinity and ozone (O3) exposure 
[21], salinity and pathogen infection [21], ozone exposure 
and herbivory [22], elevated CO2 and herbivory [23], and 
high temperature and herbivory [9]. Despite the grow-
ing importance of flooding and herbivory in the context 
of climate change, the combined effects of these stressors 
are understudied.

Across North America, and in many regions of the 
world, flooding and waterlogging have become more 
frequent, severe, and economically damaging, with 
impacts on crops comparable in magnitude to drought 
and extreme temperatures [24, 25]. Waterlogging occurs 
when water is unable to drain away, leading to soil that 
is fully saturated. Flooding occurs when soil and roots 
are completely submerged under water. Both conditions 
challenge plants, due to oxygen deprivation in plant 
roots, which directly affects normal plant biochemical, 
molecular, and physiological processes [26–29]. Flood-
ing may occur simultaneously or sequentially with biotic 
stressors such as insect herbivory [5, 21, 30, 31]. The 
simultaneous occurrence of flooding stress with her-
bivory may modify plant stress responses.

Genome-wide transcriptomic profiling studies on 
plants under combinations of biotic and abiotic stresses 
have been conducted in the past. For example, Rasmus-
sen et  al., [15] analyzed differences in gene expression 
patterns in ten Arabidopsis thaliana ecotypes challenged 
by single or dual (a)biotic stress combinations. Results 
from that study showed that changes in gene expression 

in response to combined stresses could not be pre-
dicted from single-stress treatments. Nguyen et al., [19] 
reported that flooding or drought pretreatment sig-
nificantly modified the transcriptome signature of Sola-
num dulcamara plants that were already infested with 
S. exigua. Suzuki et al., [9] reviewed 33 different studies 
involving combinatorial stresses and found that simulta-
neous occurrence of different stresses generated unique 
responses, suggesting that plants dynamically respond 
to multiple co-occurring stress factors. Tamang et  al., 
[32] reported that in soybeans, drought and flooding 
resulted in stress-specific and overlapping transcrip-
tomic responses. Taken together, these studies suggest 
that transcriptomic responses/gene expression patterns 
of plants to combinatorial stresses cannot be predicted 
from responses to individual stresses.

Tomato (Solanum lycopersicum L.) is one of the most 
important vegetable crops in the world because of its 
high lycopene content, anti-oxidative properties, and as a 
source of micronutrients [33]. In 2018, globally, over 186 
million tons of tomato were produced, worth over US 
$60 billion [34]. In addition, since the completion of its 
genome, tomato has been widely used as a model plant 
for studies investigating crop plant responses to biotic 
and abiotic stress [19, 33, 35–38] including flooding [29, 
33, 39, 40]. Safavi-Rizi et  al., [33], for example, investi-
gated the effects of flooding stress associated hypoxia on 
the regulation of gene expression in tomato roots. They 
demonstrated transcriptome reprogramming in response 
to flooding stress and identified novel genes and path-
ways that potentially contribute to flooding stress toler-
ance. De Ollas et al., [29] investigated the role of abscisic 
acid (ABA) on the regulation of genetic and metabolic 
responses of tomato to soil flooding. They showed that 
ABA depletion in waterlogged tomato tissues acts as a 
positive signal, inducing several specific genetic and met-
abolic responses to flooding. In another study, Rodriguez-
Saona et  al., [41] investigated transcriptome changes in 
tomato in response to feeding by the potato aphid, (Mac-
rosiphum euphorbiae), and the beet armyworm (Spo-
doptera exigua), individually or in combination. They 
demonstrated that herbivory resulted in the upregulation 
of several defense-related genes including genes encod-
ing for threonine deaminase and numerous protease 
inhibitors. Considering the global diversity in the tomato 
germplasm and the contrasting and inherently com-
plex and unpredictable combinations of stresses, there 
is an urgent need for studies aimed to understand how 
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different tomato varieties diverge in their chemical and 
molecular response to stress combinations.

In this study, we investigated the effects of flooding, 
herbivory and their interaction on plant growth and plant 
chemistry and performed an unsupervised exploratory 
analysis of gene expression patterns. Our study focuses 
on two heirloom tomato varieties responding to water-
logging and/or herbivory by Spodotera exigua (the beet 
armyworm) larvae. We hypothesized that: 1) the com-
bined stress of flooding and herbivory alters plant chem-
istry and negatively impacts plant growth, with a different 
effect than either of flooding or herbivory alone; and 2) 
the altered plant chemistry elicited during combinations 
of flooding and herbivory has a molecular underpinning 
detectable as differential gene expression.

Results
Volatile organic compounds
A total of 18 volatile organic compounds (VOCs) were 
detected and quantified from the headspace of the two 
heirloom tomato varieties subjected to four stress fac-
tors: (1) no flooding and no herbivory (control), (2) no 
flooding + herbivory, (3) flooding, and (4) flooding + her-
bivory. The detected VOCs, the majority of which were 
terpenoids, included the monoterpenes: α-pinene, 
o-cymene, σ-cymene, β-pinene, ( +)-4-carene, α-terpinene, 
β-phellandrene, trans-β-ocimene, p-cymene, β-ocimene, 

gamma-terpinene, and α-terpinolene; the sesquiterpenes: 
p-cresol (phenol), δ-elemene, β-elemene, caryophyllene, 
and humulene; and the alkane hydrocarbons: 1-pentade-
cane, and pentadecane. The non-metric dimensional scaling 
(NMDS) analysis of VOC emissions on Bray–Curtis dis-
similarity matrix revealed strong clustering due to variety 
(Fig. 1).

Three-way analysis of variance (ANOVA) revealed that 
total volatile organic compound emissions in the two heir-
loom varieties was influenced by flooding F[flooding] = 38.53, 
P[flooding] =  < 0.0001 and the interaction of variety, flooding, 
and herbivory F[variety*flooding*herbivory] = 11.34, P[variety*flooding*

herbivory] = 0.0017) (Table 1; Fig. 2). The highest VOCs emis-
sion rates, for both varieties, were recorded in the flooding 
treatments and the treatment involving the combinatorial 
stress of flooding and herbivory (Fig. 2). When consider-
ing the total volatile organic compounds emitted in plants 
exposed to flooding only, the Striped German (SG) variety 
emitted more volatiles than Cherokee Purple (CP) (Fig. 2).

According to the random forest (RF) analysis, that 
ranked individual compounds by their importance in con-
tributing to treatment separation and differences, the most 
important compounds were α-terpinolene, ( +)-4-carene, 
δ-elemene, α-pinene, humulene, β-phellandrene, caryo-
phyllene, o-cymene, β-pinene and p-cymene (Table 2).

Results of three-way ANOVA of the effects of flooding, 
herbivory, variety, and their interactions on plant biomass 

Fig. 1  Non-metric multidimensional scaling (NMDS) ordination constructed with a Bray–Curtis dissimilarity matrix of total volatile organic 
compounds emitted by two tomato varieties, Cherokee Purple (CP) and Striped German (SG), exposed to the following stress factors: (1) no 
flooding [No_F], (2) no flooding + herbivory [No_F_H], (3) flooding [F], and (4) flooding + herbivory [F_H]
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characteristics (root length, root wet weight, root dry 
weight, shoot diameter, shoot length, shoot dry weight, 
and shoot dry weight) revealed significant differences for 
the main effects of variety and flooding on root length, 
root wet weight, root dry weight, shoot wet weight and 
shoot dry weight (Table  3). Flooding negatively affected 
plant growth. Wet root weight and dry root weight were 
significantly reduced by flooding in both heirloom vari-
eties. Shoot dry weight was significantly reduced by 
flooding and by the interaction between flooding and 
herbivory in Striped German.

Gene expression analysis
Sequencing resulted in over 900 million high-quality 
reads (Phred score > 35 average along entire read), with 
an average of 37 million reads per library. There were 
826 genes changing in expression between either of the 
factors analyzed and their interactions (fold change > 4, 
FDR-corrected p-value < 0.01).

Differential expression between varieties and its 
interaction with flooding
To investigate specific genes that are more likely to 
be differentially expressed between the two varieties, 

Table 1  Three-way analysis of variance table of treatment effect (variety, flooding, herbivory, and their interactions) on total volatile 
emissions

Factors DF SS MS F- Value P-Value

Variety 1 8.329e + 10 8.329e + 10 0.028 0.8671

Flooding 1 1.133e + 14 1.133e + 14 38.536  < .0001***

Herbivory 1 1.698e + 11 1.698e + 11 0.058 0.8112

Variety x Flooding 1 2.535e + 11 2.535e + 11 0.086 0.7705

Variety x Herbivory 1 1.696e + 10 1.696e + 10 0.006 0.9382

Flooding x Herbivory 1 7.350e + 12 7.350e + 12 2.501 0.1216

Variety x Flooding x Herbivory 1 3.332e + 13 3.332e + 13 11.337 0.0016**

Residuals 40 1.176e + 14 2.939e + 12

Fig. 2  Total volatile organic compounds emissions in two heirloom tomato varieties, Cherokee Purple (CP) and Striped German, (SG) exposed to 
the following stress factors: (1) no flooding [No_F], (2) no flooding + herbivory [No_F_H], (3) flooding [F], and (4) flooding + herbivory [F_H]. Tukey’s 
honest significance test was used to group means. Bars represent mean ± SE. Means with different letters are different (as determined by Tukey 
HSD, P < 0.05)
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a more stringent cut off was used (fold-change > 8 p-
val < 0.01) limiting the analysis to transcripts with very 
high differential expression and looking at the contrasts 
between varieties. This resulted in a set comprising 
335 genes (Table S1) that were further used in a cluster 
analysis.

K-means clustering was applied to both: samples and 
genes. Clustering of samples confirmed two outlier sam-
ples that were further removed. The clustering separated 
five distinct groups of genes, designated 3.A, 3.B, 3.C, 

3.D and 3.E (Fig. 3). Clusters 3.A and 3.B contained genes 
with higher expression in CP than in SG. There were 28 
genes in cluster 3.B, a cluster showing marked and con-
sistent high differences between CP and SG. Genes in 
this cluster included two phenylalanine ammonia-lyase 
(PAL), the enzyme in charge of the first committed step 
in the phenylpropanoid pathway. Also in the cluster 
were a gene encoding cinnamoyl-CoA reductase-like 
(LOC101262601), and one encoding phytoene synthase 
(Psy1) which catalyzes the first step in the carotenoid bio-
synthetic pathway. The top GO biological process terms 
in clusters A and B combined included: cinnamic acid 
biosynthetic process (GO:0009800), L-phenylalanine cat-
abolic process (GO:0006559), trans-zeatin biosynthetic 
process (GO:0033466), glutamine family amino acid cata-
bolic process (GO:0009065), and gibberellin biosynthetic 
process (GO:0009686) (Table S2). Taken together, the 
data suggests that both varieties might constitutively dif-
fer in the production of secondary metabolites including 
phenylpropanoids and terpenoids, where CP might have 
higher constitutive production of these compounds.

Clusters 3.C and 3.E contained genes with lower 
expression in CP compared to SG (Fig.  3). Cluster 3.C 
had the most marked differences and comprised 29 
genes. Genes in cluster 3.C with the most consistent and 
larger differences between both varieties (first half in top 
of the cluster) include several uncharacterized genes. GO 
biological processes terms in clusters 3.C and 3.E were 
enriched for disparate terms ranging from photosyn-
thesis, secondary metabolism, and metabolism of high-
molecular weight sugars (Table S1, Table S2).

Cluster 3.D contains transcripts that were affected by 
the interaction of flooding and variety where the flood-
ing treatment most extremely affected varieties in oppo-
site ways, with transcripts increasing in expression upon 
flooding in CP but decreasing in SG. Cluster 3.D con-
tained 38 genes including 10 uncharacterized products 

Table 2  Ranking of volatile organic compounds (VOCs) that 
contribute to treatment differences. Random Forest was used. 
Compound rankings were determined using Mean Decrease 
Accuracy (MDA)

Rank Volatile Organic Compound Mean 
Decrease 
Accuracy

1 p-cymene 51.285543

2 β-pinene 48.739645

3 o-cymene 44.327346

4 Caryophyllene 43.056983

5 β-phellandrene 42.558952

6 Humulene 41.359839

7 α-pinene 38.821284

8 δ-elemene 37.039133

9 ( +)- 4-carene 35.596207

10 α-terpinolene 33.440834

11 α-terpinene 29.718382

12 gamma-Terpinene 22.976904

13 β-elemene 19.581877

14 Pentadecane 19.326385

15 p-cresol 13.409866

16 1-Pentadecane 12.609018

17 β-ocimene 12.549250

18 trans-β-ocimene -0.951859

Table 3  Three-way analysis of variance table of treatment effect (variety, flooding, herbivory, and their interactions) on plant growth 
characteristics

Main Factor Variety Flooding Herbivory Var*F Var*H F*H Var*F*H

Degrees of Freedom (Num, Den) 1,40 1,40 1,40 1,40 1,40 1,40 1,40

Parameter F value and P value in parenthesis

Root length (cm) 18.125 (< .0001) 27.626 (< .0001) 8.619 (0.0054) 6.214 (0.0169) 0.210 (0.6494) 0.812 (0.3729) 5.630 (0.0225)

Root wet weight (g) 30.812 (< .0001) 21.703 (< .0001) 2.044 (0.1605) 4.811 (0.0341) 0.370 (0.5466) 11.037 (0.0019) 4.921 (0.0322)

Root dry weight (g) 19.754 (< .0001) 80.200 (< .0001) 0.599 (0.4435) 2.465 (0.1243) 3.368 (0.0739) 1.941 (0.1713) 0.669 (0.4181)

Shoot diameter (cm) 0.849 (0.362) 45.660 (< .0001) 0.377 (0.542) 0.094 (0.760) 0.849 (0.362) 1.509 (0.226) 2.358 (0.132)

Shoot length (cm) 4.751 (0.0352) 78.294 (< .0001) 0.026 (0.8737) 7.233 (0.0103) 4.160 (0.0480) 8.234 (0.0065) 5.427 (0.0249)

Shoot wet weight (g) 11.243 (0.0017) 51.546 (< .0001) 0.255 (0.6166) 6.606 (0.0139) 6.311 (0.0161) 2.396 (0.1295) 3.812 (0.0579)

Shoot dry weight (g) 27.951 (< .0001) 43.579 (< .0001) 0.022 (0.8836) 11.327 (0.0017) 2.163 (0.1492) 2.740 (0.1057) 2.568 (0.1169)
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and several transcription factors. The cluster is enriched 
for biological processed related to abscisic acid (ABA). 
Genes include several negative regulators of ABA signal-
ing and genes known to respond to increased ABA in the 
cell environment. CP leaves appear to be responding to 
root flooding by repressing ABA production. SG, in turn, 
might have constitutively high ABA production or ABA-
dependent signaling (Table S1, Table S2).

Changes in gene expression due to flooding
A subset of 404 genes were identified as highly differen-
tially expressed at fold-change > 8, FDR p-value < 0.01 
(Table S1) using contrasts between flooded and non-
flooded samples. Clustering of samples successfully sepa-
rated both treatments, and clustering of genes resulted 
on three distinct gene clusters (Fig.  4). Roughly, the 
subcluster (4.A) contains 152 genes that were generally 
downregulated with flooding, this cluster is significantly 

enriched for GO biological terms in cytokinin catabolism 
and general defense response (Table S2, Table S3). The 
differences in response to flooding between both varie-
ties is evident in Cluster 4.B, with 122 genes, it includes 
genes that were downregulated in SG upon flooding. 
The top GO biological process term that was signifi-
cantly enriched in 4.B was photosynthesis and the sec-
ond was ABA signaling. Other GO biological processes 
that were enriched comprised response to water depriva-
tion (GO:0009414), and wounding (GO:009611). There 
were two zeatin O-glucosyltransferase and one zeatin 
O-xylosyltransferase (Table S2). In general, this subclus-
ter shows that varieties had different response to flooding 
stress.

Finally, cluster 4.C contained genes that were upregu-
lated with flooding in both varieties and with no evident 
effect of herbivory (Fig.  4). Thus, this sub-cluster rep-
resents the general response to flooding. In this set of 

Fig. 3  K-means clustering analysis of genes differentially expressed between two heirloom tomato varieties (fold-change > 8 and; FDR 
p-value < 0.01). CP: Cherokee Purple, SG: Striped German. The heatmap has treatments as columns and genes as rows. The top right inset shows 
the color scale for log2 counts per million (CPM) values with purple tones for up-regulated genes and yellow tones for down-regulated genes. The 
vertical striped line on dendrogram shows the level at which the tree was cut to separate groups based on k-means. Each separate cluster was 
named according to figure number followed by and alphabetic character. Each cluster gene content is described in detail in the text
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130 genes, there were two genes encoding for enzymes 
in the first dedicated steps in the biosynthesis of ethyl-
ene: 1-aminocyclopropane-1-carboxylate synthase 3 
(ACS3) and 1-aminocyclopropane-1-carboxylate oxi-
dase homolog (ACO3), and. Increased ethylene bio-
synthesis is a well-documented process in waterlogged 
plants, including tomato [27, 39, 42]. We could also 
identify four genes in the flavonoid pathway that indi-
cate increased anthocyanin production: a putative flavo-
noid 3′5’ hydroxylase (LOC100736504), dihydroflavonol 
4-reductase (LOC544150), a flavonoid 3’,5’-methyltrans-
ferase (AnthOMT), and leucoanthocyanidin dioxyge-
nase (LOC101251607). Notably, the set also comprised 
four genes encoding enzymes in the latest oxygenation 
steps of gibberellic acid (GA) that give rise to active 
gibberellin forms: gibberellin 2-beta-dioxygenase 1 
(LOC101249786), gibberellin 2-oxidase 2 (GA2ox2), 

gibberellin 20-oxidase-3 (gene-20ox-3), and gibberel-
lin 3-beta-dioxygenase 1-like (LOC101257892). The 
most significantly enriched GO biological process term 
was “protein folding” (GO:0006457), followed by “fruit 
ripening” (GO:0009835), and anthocyanin-containing 
compounds (GO:0009718) (Table S3). Protein folding 
enrichment is the result of the presence of eight (8) heat-
shock proteins in the set. Heat-shock proteins are also 
markers of defense and response to various stresses.

Changes in gene expression due to herbivory
The response to herbivory was the weakest. Using the 
stringer criteria as in previous sections, only 36 genes 
were differentially expressed between plants respond-
ing to S. exigua feeding and no  herbivory controls. 
Clustering analysis of this set did not show clear parti-
tioning between treated and control samples. To further 

Fig. 4  K-means clustering analysis of genes differentially expressed between flooded tomato plants and non-flooded controls (fold-change > 8 and; 
FDR p-value < 0.01). CP: Cherokee Purple, SG: Striped German. The heatmap has treatments as columns and genes as rows. The top right inset shows 
the color scale for log2 counts per million (CPM) values with purple tones for up-regulated genes and yellow tones for down-regulated genes. The 
vertical striped line on dendrogram shows the level at which the tree was cut to separate groups based on k-means. Each separate cluster was 
named according to figure number followed by and alphabetic character. Each cluster gene content is described in detail in the text
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characterize the effects of herbivory, the analysis was 
repeated with the less stringent cut-off (fold-change > 4 
FDR-corrected p-value < 0.01) and separately within each 
variety.

Gene expression due to herbivory in the Cherokee Purple 
variety
Seventy-four genes were differentially expressed between 
samples subjected to herbivory and controls in CP. The effect 
of herbivory was evident in flooded samples only (Fig. 5), and 
only two gene clusters could be distinguished in this set: Clus-
ter 5.A, with 61 genes consistently downregulated upon her-
bivory, and Cluster 5.B with 13 genes that were upregulated 
with herbivory (different only in flooded samples). The top 
significantly enriched GO biological process in cluster 5.A was 

lignin biosynthesis (GO:0009809) owing the presence of tran-
scripts encoding caffeoylshikimate esterase (LOC101259602), 
cinnamyl alcohol dehydrogenase (LOC101245999), caffeoyl-
CoA O-methyltransferase (LOC101265977), among others. 
Cluster 5.A also include five transcripts encoding proteins 
from the plant GDSL esterase/lipase superfamily (CD1, 
LOC101262291, LOC101251962, LOC101266652, and 
LOC101267033) (Tables S1, S2 and S3); these hydrolytic 
enzymes have been implicated in the response to several biotic 
and abiotic stress response in plants [43].

Cluster 5.B includes chalcone synthase (CHS1) and PAL 
(LOC112941051) indicating up-regulation of the phenyl-
propanoid pathway. A gene encoding for a BAHD acyl-
transferase (gene-LOC101256185) was also present in the 
set. BAHD acyltransferase acylates phenolics compounds 

Fig. 5  K-means clustering analysis of genes differentially expressed in leaf tissue of tomato plants challenged with herbivory and controls in 
the tomato variety “Cherokee Purple” (fold-change > 4 and; FDR p-value < 0.01). The heatmap has treatments as columns and genes as rows. The 
top right inset shows the color scale for log2 counts per million (CPM) values with purple tones for up-regulated genes and yellow tones for 
down-regulated genes. The vertical striped line on dendrogram shows the level at which the tree was cut to separate groups based on k-means. 
Each separate cluster was named according to figure number followed by and alphabetic character. Each cluster gene content is described in detail 
in the text
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to change their transporting and reactivity properties. Also 
in the set was a UDP-glucose iridoid glucosyltransferase-
like, suggesting the involvement of iridoid terpenes in the 
response to herbivore in flooded samples. In addition, there 
were two heat-shock proteins in cluster 5.B.

Gene expression due to herbivory in the Striped German 
variety
Within SG, there were 112 genes differentially expressed 
due to herbivory (fold-change > 4 and FDR corrected 
p-value 0.01). Clustering effectively separated herbivory 
and no herbivory samples but only within the flooding or 
no flooding groups (Fig. 6). Cluster 6.A shows genes that 
were upregulated with flooding and herbivory together 

but not with either stress alone. Seventeen out of 37 of 
the genes in cluster 6.A code for heat shock proteins 
(46%).

Cluster 6.B shows genes that were mildly downregu-
lated by herbivory in flooded samples, including genes 
in primary metabolism, development, and photosynthe-
sis (Table S3). Herbivory did not have apparent effects 
in non-flooded plants. Cluster 6.C contained 18 genes 
that were downregulated with herbivory in flooded sam-
ples but upregulated by herbivory alone. Among them 
were 2 genes encoding zeatin, O-glucosyltransferases, 
a GDSL esterase/lipase (see previous section), and sev-
eral proteinases and proteinase inhibitors. Cluster 6.D, 
with 7 members, contains genes that were upregulated 

Fig. 6  K-means clustering analysis of genes differentially expressed in leaf tissue of tomato plants challenged with herbivory and controls in 
the tomato variety “Cherokee Purple” (fold-change > 4 and; FDR p-value < 0.01). The heatmap has treatments as columns and genes as rows. The 
top right inset shows the color scale for log2 counts per million (CPM) values with purple tones for up-regulated genes and yellow tones for 
down-regulated genes. The vertical striped line on dendrogram shows the level at which the tree was cut to separate groups based on k-means. 
Each separate cluster was named according to figure number followed by and alphabetic character. Each cluster gene content is described in detail 
in the text



Page 10 of 18Ngumbi et al. BMC Plant Biology          (2022) 22:536 

with herbivory, at a higher extent in non-flooded plants 
compared to flooded plants (Tables S1, S2, S3) Cluster 
6.D included on gene encoding for a heat shock protein 
(hsc70), a thioredoxin (LOC101244843), and two pepti-
dase/proteinase inhibitors (mcpi and LOC101246961).

Discussion
Identifying plant varieties and cultivars that can tolerate 
co-occurring biotic and abiotic plant stressors is criti-
cal to maintaining crop productivity in the context of a 
changing climate. Understanding how plants prioritize 
and respond to combinatorial stresses at the physiologi-
cal and molecular levels and identifying the key genes 
and traits that underly adaptive responses remains a fun-
damental task for crop improvement and breeding of cli-
mate-resilient crops. To date, our knowledge about how 
crop plants like tomato respond to the combinatorial 
stress of flooding and herbivory remains limited. Avail-
able studies show that plant responses to combinatorial 
stresses are complex and hard to predict. In this study, we 
investigated volatile production levels and gene expres-
sion in two varieties of tomato plants following exposure 
to flooding, herbivory, and their combination.

Volatiles produced by plants undergoing biotic and abi-
otic stressors have been widely documented. Individu-
ally, biotic or abiotic stress factors, such as herbivory [20, 
44–46], elevated O3 [21], drought [20, 45, 47], and salin-
ity [47, 48], are known to alter volatile emissions. Much 
less is known about how volatiles that mediate ecologi-
cal interactions among plants, insects and their natural 
enemies are influenced by concurrent stress factors. Fur-
thermore, results from the few studies that investigated 
the influence of combinatorial stresses on plant volatile 
emissions are variable. For instance, the combination of 
drought and feeding by the potato aphid increased vola-
tile emissions in tomato [20]. Ngumbi and Ugarte [31] 
reported an increase in VOC emission in maize exposed 
to flooding and herbivory by the fall armyworm, Spodop-
tera frugiperda. By contrast, Tariq et  al., [18] reported a 
decrease in the emission of volatiles when Brassica olera-
cea plants were subjected drought and root herbivory. In 
our study, we showed that individually, flooding induced 
greater total  volatile emissions in one of the tomato 
varieties (SG), with no effect in CP. Herbivory alone sig-
nificantly decreased VOC emissions in CP, with no sig-
nificant effect in SG. Combined flooding and herbivory 
significantly increased VOC emissions in both varieties 
compared to the controls. These results are in agree-
ment with studies that have reported increased emissions 
of volatiles in response to interacting biotic and abiotic 
stresses in plants of agricultural importance including 
tomato and maize [20, 30, 31]. There is evidence that the 
induction of volatile emissions in plants undergoing stress 

is part of a programmed plant response to alleviate and 
mitigate the negative consequences of stress [4, 49, 50]. In 
our study, we identified 18 volatiles, mainly terpenoids, 
including α-pinene, o-cymene, β-pinene, ( +)-4-carene, 
β-phellandrene, caryophyllene and humulene. Increased 
amounts of these compounds were detected in plants 
exposed to the combined stress of flooding and her-
bivory. These VOCs have been reported to play impor-
tant ecological and physiological functions that ultimately 
increase plant fitness by attracting natural enemies of 
insect herbivores and relieving plants of ongoing oxida-
tive stresses [51]. Plants that are exposed to heat, high 
temperatures, or drought, for example, have been docu-
mented to increase volatile emissions; released volatiles 
act as thermoprotectants and help in stabilizing chloro-
plast membranes [52, 53]. Alternatively, these induced 
volatiles serve as signal molecules that activate regulatory 
genes involved in stress tolerance and plant defense [54]. 
The ecological roles of the volatiles we identified to be 
increased in the combinatorial stress treatments remains 
to be determined.

In our study, most of the released volatiles, were 
mono- and sesquiterpenes. We did not collect green leaf 
volatiles. There are several possible reasons that could 
have contributed to the lack of detection of green leaf 
volatiles across the treatments. The quality and qual-
ity of the blend of volatiles that is released by stressed 
plants can be influenced by many factors including the 
method used to collect headspace volatiles, the time of 
sampling, the herbivore used to elicit volatile organic 
compound production, the genotype or variety of plant 
used, and the microbiome of the plant [44, 55–57]. It 
is possible that the tomato varieties we used in this 
study, Cherokee Purple and Striped German, may not 
be  prolific emitters of green leaf volatiles. It is also pos-
sible that because we sampled volatiles 48  h after the 
herbivore was introduced, we missed the short window 
in which green leaf volatiles are emitted. Future stud-
ies will investigate time-dependent volatile emissions in 
tomato plants experiencing flooding, herbivory and the 
combinatorial stress of flooding and herbivory. Moreo-
ver, in our study, in the treatments that involved her-
bivory by S. exigua, we did not detect a strong response 
in volatile emissions and gene expression.  The varieties 
used in this study may have high levels of constitutive 
defenses. In this study, we did not starve the insects 
before allowing them to feed on experimental tomato 
plants to induce herbivore-induced volatiles and gene 
expression. In future, we will starve insects for 6  h 
before placing them on plants.

Biomass measurements showed that flooding det-
rimentally impacted plant growth, in agreement with 
previous studies that have investigated the impact of 
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flooding on plant growth characteristics [35, 58–60]. In 
general, below-ground tissues were affected by flood-
ing but not by herbivory, whereas above-ground tissues 
were affected by flooding alone and flooding combined 
with herbivory. Reduced plant growth is a direct result 
of shutting down of primary plant processes such as pho-
tosynthesis, and alterations in soil nutrients availability 
[61, 62]. Ultimately, reduced plant growth leads to poor 
quality crops and a reduction of crop yields. Our results 
showing that flooding negatively impacts plant growth 
add to the growing body of evidence documenting the 
detrimental impacts of flooding and further emphasize 
on the need for more research to understand the nega-
tive impacts of flooding on agricultural crops including 
tomato.

Gene expression analyses indicate that some key dif-
ferences between the two heirloom tomato varieties 
reside in secondary metabolism pathways. CP had higher 
constitutive levels of genes encoding Phenylalanine 
ammonia-lyase (PAL). PAL converts L-phenylalanine 
to trans-cinnamate and ammonia is the first committed 
step in the phenylpropanoid pathway, redirecting large 
amounts of fixed carbon from primary to secondary 
metabolism [63, 64]. Phenylpropanoid derived metabo-
lites including anthocyanins, flavonoids, isoflavonoids, 
phytoalexins, lignans and terpenoids have important 
functions in plant resistance mechanisms against biotic 
and abiotic stress, in signal transduction and communi-
cation between plants and other organisms, and as regu-
lators of primary and secondary metabolism [63, 65–70]. 
Differential PAL gene expression patterns in response to 
biotic and abiotic stressors can result in plant phenotypes 
that differ in their stress adaptive responses and stress 
tolerance levels [68, 71, 72]. Psy1, also showing higher 
expression in CP, catalyzes the first step in the carote-
noid biosynthetic pathway. Our results showed that CP 
may have increased constitutive production of phenyl-
propanoid compounds and terpenoids. Huang et al., [68] 
demonstrated that wild type Arabidopsis plants and pal 
mutants that differed in their pal gene expression pat-
terns exhibited remarkable differences in their adaptive 
responses and sensitivity to biotic and abiotic stressors.

Our goal was to characterize the interactions between 
different stressors. We identified a group of genes that 
responded to flooding in different ways in the two varie-
ties. In general CP plants subjected to flooding showed a 
down-regulation of ABA production, SG, in turn appears 
to have constitutively higher expression of genes in either 
ABA biosynthesis or in downstream ABA signaling. 
Abscisic acid (ABA) is an important phytohormone that 
regulates plants growth and development [73] and has 
been reported to be a key regulator of plant responses 
to abiotic stresses [74] because its accumulation controls 

multiple gene response networks, ultimately leading to 
tolerance and adaptation to abiotic stress [28, 29, 73, 75–
77]. Genes involved in ABA biosynthesis and catabolism 
could be activated or decreased by abiotic stress [78, 79]. 
Studies on the role of ABA in modulating plant responses 
to flooding report variable results. For instance, using 
wild type and ABA-deficient tomato plants, [29] demon-
strated that flooding reduced ABA content in wild type 
tomatoes and suggested that depletion of ABA serves as a 
positive signal that leads to the induction of several spe-
cific genetic and metabolic responses to flooding. Similar 
results have been reported in other plants including in 
Arabidopsis, soybeans, and tomato [42, 80–84]. In con-
trast, an increase in ABA content and levels in response 
to flooding has been reported in leaves of alfalfa and 
pea [85, 86]. In our study, consistent with [29], we docu-
mented different expression patterns of genes associated 
with ABA signaling in the two tomato varieties. Results 
from our study further confirm the involvement of ABA 
in plant responses to flooding stress.

Flooding alone affected several hormonal pathways 
and photosynthesis. Consistent with our biomass data, 
the downregulation of photosynthesis genes in plants 
undergoing flooding stress has been documented, with a 
subsequent impact on plant growth [19, 29, 87]. Reduced 
photosynthesis in plants actively going through flooding 
stress can be correlated with the production of reactive 
oxygen species (ROS) and cell damage [88–90]. High 
concentrations of ABA and increased xylem pH have 
been correlated with reduced stomatal conductance [91]. 
High foliar concentrations of auxins [92] and ABA [93] 
may build up and create an accumulation message in leaf 
tissues of flooded plants due to stomatal closure, result-
ing from root oxygen deficiency initiating loss of root 
hydraulic conductance, or from an increase in pH [94]. 
Crosstalk between plant stress-response pathways likely 
reduces fitness costs, by reducing production of redun-
dant hormones. Indeed, studies have shown gibberellic 
acid (GA) mediates gene expression of jasmonic acid (JA) 
[95], while JA and salicylic acid (SA) mediate immune 
response [96].

In our study, flooding  initiated down-regulation of 
cytokinin-related genes, in addition to up-regulation 
of ethylene biosynthesis and multiple gene encoding 
enzymes used in the latest oxygenation steps of GA, 
which give rise to active  gibberellins. Consistent with 
our results, flooding has been shown to depress cytokinin 
activity  [97, 98], and lead to accumulation of ethylene 
[99, 100]. Ethylene is likely critical for plants to initiate 
signals that prolong their survival under abiotic stress 
[101]. For example, epinasty (downward leaf growth), 
a response to flooding in tomato, arises in response to 
signals from oxygen‐deficient roots and upregulation 
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of 1‐aminocyclopropane‐1‐carboxylic acid (ACC), the 
immediate precursor of ethylene [102]. Ethylene-medi-
ated ROS signaling is critical in regulating hormonal 
pathways that lead to adaptive formation of lysigenous 
aerenchyma, used for gas diffusion in roots during flood-
ing [103]. Submergence-induced accumulation of ethyl-
ene has also been implicated in upregulation of internode 
elongation [100]. GA regulates plant growth and abiotic 
stress tolerance through mediating growth and stress 
responses to abiotic stress [104]. One mechanism, dem-
onstrated in Arabidopsis under salinity stress by [105] 
showed growth-repressing DELLA proteins promoted 
survival, through downregulation of root-hair growth 
and reduction of reactive oxygen species (ROS) levels. In 
deep-water rice, Kuroha et  al., [106] reported increased 
GA production upon plant waterlogging, underlying the 
adaptation of rice to periodic flooding. Plausibly, a simi-
lar signaling mechanism is utilized by heirloom tomato 
plants. Finally, flooding upregulated eight genes encod-
ing heat-shock proteins Broadly, heat shock proteins are 
regarded as dynamic biomolecules that help plants to 
counter biotic and abiotic stresses [107] via several mech-
anisms including enhancing membrane stability and 
detoxifying the ROS by positively regulating the antioxi-
dant enzymes system.

We studied herbivory by looking at the effects upon 
feeding of leaf tissue by Spodoptera exigua, a leaf chewing 
caterpillar. The effects of herbivory were mild, and only 
flooded plants had measurable response to herbivory 
in both varieties, with a very small set of genes upregu-
lated by herbivory alone in only one of the varieties (SG). 
This indicates that flooding might weaken some aspects 
of the plant stress response while priming others. In CP, 
several stress response proteins were downregulated by 
herbivory (in flooded plants) but key genes in the phe-
nylpropanoid pathway were upregulated. Among the few 
genes that were upregulated in CP flooded plants was 
also an UDP-glucose iridoid glucosyltransferase-like, sug-
gesting the involvement of iridoid or iridoid-like terpenes 
in the response to herbivore in flooded CP plants. In SG, 
a disproportionately large number of heat-shock proteins 
were upregulated by flooding and herbivory together. 
Heat shock proteins are one of the important and sig-
nificant molecular chaperones that play key roles in abi-
otic and biotic stress tolerance by actively participating 
in protein quality control, enhancing membrane stabil-
ity, regulating diverse signaling pathways, and detoxify-
ing the ROS [53, 107–114]. In agreement with previous 
studies, including studies done on maize, soybeans, and 
tomato, that have revealed the upregulation of various 
heat shock proteins by flooding, our results revealing an 
upregulation of heat shock protein genes, suggest that 
these proteins likely play a significant role in protecting 

proteins from denaturation and degradation and detoxi-
fying ROS during flooding stress [115]. Studies on flood-
ing in plants including maize, soybean and tomato have 
revealed that pathways involving various heat shock pro-
teins are triggered and upregulated by flooding [90, 115]. 
Heat shock protein responses to biotic and abiotic stress 
and their combinations are shaped by the type of the 
insect herbivore, plant type and variety, and plants devel-
opment stage when stress factors are applied [107].

Finally, as we were able to identify some specific VOCs 
and gene pathways that seem to be important in the plant 
response to flooding and the combination of flooding and 
herbivory, we should consider some of the factors and 
limitations that could have affected the results and pre-
vent generalizations. For example, in our study the plants 
were first exposed to flooding before being exposed to 
herbivory, this order is not trivial since the plants can 
prime a defense response based on the first stress they 
encounter. In addition, is likely that the responses of 
the plants to a chewing insect are different from those 
to insects with different feeding strategies. Finally, the 
chemical profiling method for this study focused on 
volatile compounds; many, if not most, phenylpropa-
noid compounds that are part not only of the response 
to the stresses but as part of the constitutive differences 
between the two tomato varieties are not volatiles. With 
those considerations, this study sheds light into combina-
torial stress responses and addresses our initial hypoth-
eses; that the combined effects of flooding and herbivory 
differ from either stress alone, and that different tomato 
varieties can have better tolerance to those stressors.

Conclusions
We demonstrated that flooding and the combination 
of flooding and herbivory elevated VOCs production, 
the majority of which were terpenes. Gene expression 
data demonstrated an upregulation of genes involved 
in the phenylpropanoid and terpenoid production 
pathways in at least one of the tomato heirloom vari-
eties  (CP) in response to these stresses. Plant vola-
tiles mediate numerous plant and insect interactions 
[116]. How stress combinations alter plant VOCs can 
be better explained by looking at the genetic under-
pinning of the response to those stressors. Our study 
highlights the importance of studying combinatorial 
stresses and sheds light on key pathways that might be 
mediating this response as well as the complex dynam-
ics that might at play during combined stresses. How 
these documented changes in gene expression patterns 
and plant chemistry affect plant and insect interactions 
deserves further investigation.
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Methods
Tomato plant varieties
Two organic heirloom tomato (Solanum lycopersicum L.) 
varieties were used in this study; Cherokee Purple (CP) 
and Striped German (SG). We selected the heirloom vari-
eties based on results from an unpublished survey by our 
lab of most popular tomato varieties grown organically 
by farmers in Central Illinois. Moreover, heirloom crops 
are prized by farmers, chefs and consumers for their 
diverse coloration, distinct flavor, and culinary quali-
ties [117–120]. After performing numerous exploratory 
flooding experiments on four different tomato varieties 
commonly grown by Central Illinois farmers, we selected 
two heirlooms, Cherokee Purple (CP) and Striped Ger-
man (SG) as most suitable to greenhouse experiments. 
CP grows relatively short vines, and produces a flattened, 
medium-large fruit, that is dusty pink with dark shoul-
ders at approximately 72 days; the fruit has a rich, sweet 
flavor. SG grows medium-tall vines, and produces a flat, 
medium-large fruit, with variable shoulder ribbing in 
yellow and red at approximately 78 days; the fruit has a 
complex fruity flavor and smooth texture. Our selection 
was also informed by previous studies which indicate the 
broad genetic diversity found in heirloom tomato culti-
vars are better able to resist fungal pathogens [121], bac-
terial diseases [120, 122], and can maintain nutritional 
quality and yields under abiotic stressors such as drought 
[123] and salinity [124]. Seeds were obtained from John-
ny’s seeds (Johnny’s Seeds, Winslow, Maine, USA). Seeds 
were germinated in seed trays (planting trays (model 
1020), in 72-cell trays; 25 × 51  cm) containing potting 
soil (Berger BM2 Seed Germination & Propagation Mix; 
Berger, Saint-Modeste, Quebec, CA). Seedlings were 
grown at the greenhouse facilities of the University of 
Illinois at Urbana-Champaign plant care facility (PCF) at 
25 °C ± 5 °C, 50 ± 5% relative humidity and 14L:10D pho-
toperiod for two weeks.

Insect herbivore
The beet armyworm, Spodoptera exigua (Lepidoptera: 
Noctuidae), a generalist herbivore caterpillar, was used as 
the herbivore species in this study. S. exigua caterpillars 
were purchased from Benzon Research (Carlisle, Penn-
sylvania, USA) and maintained in a constant temperature 
incubator at 26 °C and exposed to a 16L:8D photoperiod 
until the start of the experiments.

Experimental design
Two weeks after germination, seedlings were trans-
planted into individual plastic pots (12.5  cm high, 
16.5  cm diam) (Hummert International, Earth City, 
Missouri, USA) containing field-collected soil (Drum-
mer silty clay loam) from Champaign County, Illinois, 

USA. One tomato seedling of each variety was trans-
planted into an individual pot. Plants were grown for 
three weeks at 25 ± 5  °C, 50 ± 5% relative humidity and 
14:10-h (L/D). Three weeks after transplanting, plants 
were randomly assigned into four treatment groups:  1) 
no flooding + no herbivory, 2) flooding + no herbivory, 
3) no flooding + herbivory, and 4) flooding + herbivory. 
Flooding was imposed by placing the pots containing 
tomato plants within a secondary larger white plastic 
bucket (16.5 cm high, 21.5 cm diam) (Consolidated Plas-
tics, Stow, Ohio, USA) and filling it with water up to 5 cm 
above the soil surface. Plants in the no  flooding treat-
ments were watered regularly to maintain field capacity.

For the treatment factors involving insect herbivory, 
preliminary experiments showed that third instar S. exi-
gua larvae acclimate and start feeding within 12 to 24 h 
of placement on a plant. Two third instar caterpillar lar-
vae per plant were introduced three days post-flooding 
and allowed to feed for 48  h prior to volatile collection 
and collection of samples for gene expression analysis.

RNA sequencing and analysis
Samples were taken from 40-day old tomato plants that 
were subjected to flooding for 5  days and/or herbivory 
for 2 days. Plants that were subjected to both treatments 
were exposed to herbivory on the last 2 days of the 5-day 
flooding period. Control samples consisted of 40-day old 
tomato plants with no flooding or herbivory. Samples 
were obtained by cutting the tip of the leaflet closest to 
the stem from the second true leaf, using sanitized micro-
dissecting scissors (re-sanitized for each sampling). Sam-
ples were individually collected in sealable plastic sleeves, 
sleeves were heat sealed, and immediately flash-frozen by 
submerging in liquid nitrogen.

Total RNA from each sample was extracted using a 
Nucleospin® RNA kit (Macherey–Nagel, Düren, Ger-
many) according to the manufacturer’s protocol. There 
were three biological replications per treatment (flood-
ing or herbivory) across two tomato varieties. The RNA 
was sequenced as single reads on one S1 lane for 101 
cycles on a NovaSeq 6000 (Illumina, San Diego, CA). 
After sequencing, reads were pre-processed, mapped 
to the tomato reference genome (SL3.0) using STAR 
aligner [125], and quantified for differential expression 
with the EdgeR Bioconductor package [126]. Clusters 
for all sets were generated with the K-means method 
in R (v. 4.1.1) using the Hartigan and Wong algorithm 
[127] with a maximum of 100 iterations and 10 initial 
random sets. The number of clusters (k) to partition the 
data was visually determined after generating heatmaps 
and dendrograms with the Complex Heatmap pack-
age from R Bioconductor [128]. Gene ontology analy-
ses were performed using topGO with the ‘elim’ and 
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‘weight’ algorithms to prevent redundant GOs from 
inflating the significance [129].

Collection and analysis of headspace volatiles
Aboveground headspace volatiles were collected using 
the solid phase micro-extraction (SPME) technique. 
Exhaustive preliminary experiments showed that the 
SPME method gave reliable and consistent results, that 
were comparable to other dynamic headspace vola-
tile collection techniques. For the treatments without 
herbivore damage, plants were wrapped with an odor-
blocking oven bag (Arcadia INTL, El Monte, California, 
USA) and wrapped for one hour to allow for volatile 
concentration. After one hour, a SPME fiber (65  µm 
polydimethdimethylsiloxane-divinylbenzezne (PDMS/
DVB) fused silica, and stainless-steel fiber (Millipore 
Sigma®, Milwaukee, Wisconsin, USA) was inserted into 
each bag for 40  min, withdrawn, and then run imme-
diately through coupled gas chromatography-mass 
spectrometry (GC–MS) for volatile identification and 
analysis. For the treatments involving herbivore dam-
age, two third instar S. exigua larvae were allowed to 
feed on each tomato plant for 48 h before volatile col-
lection. After 48 h with larvae still feeding, plants were 
wrapped with an odor-blocking oven bag, and similar 
headspace volatile collection protocols as described in 
treatments without herbivore damage were used.

Volatiles were identified using GC–MS, Hewlett-Pack-
ard (HP) 6890 GC (Hewlett-Packard, Sunnyvale, Califor-
nia, USA) in splitless mode, interfaced to an HP 5973 mass 
selective detector (MSD) with helium carrier gas. The GC 
oven was programmed as follows: inject at 40 °C, hold at 
40 °C for 2 min, and then increase by 5 °C/min to 200 °C, 
for a total of 40  min. Injector and transfer line tempera-
tures were 200 °C. Peak identification was performed using 
the NIST 98 library and by comparing published GC pro-
files of tomato headspace volatiles [130]. The structures 
of identified compounds were further confirmed by using 
synthetic standards that are commercially available pur-
chased from Millipore Sigma® (St. Louis, Missouri, USA).

Plant growth parameters
At the end of the experiment, shoots and roots were har-
vested. Fresh shoot and root weight was recorded, and 
the shoots and roots were placed in paper bags, oven 
dried at 70 °C for 3 days, and their dry weights recorded.

Statistical analyses
Statistical analyses were performed in R software ver-
sion 4.1.2 (R Core Team, 2021). Figures were produced 
using ggplot2 v.3.3.5 [131]. To visualize differences in total 

volatile organic compound emissions among treatments, 
non-metric dimensional scaling (NMDS) was used on 
a Bray–Curtis dissimilarity matrix using the metaMDS 
function of the vegan package v.2.5–7. The influence of 
variety, flooding, herbivory and their interactions on gene 
expression patterns, plant volatile organic compound 
emissions and plant growth characteristics were analyzed 
and compared using a three-way analysis of variance 
(ANOVA) followed by Tukey–Kramer HSD at P < 0.05. 
To identify the set of important volatile compounds that 
distinguish among treatment combinations, Random For-
est (RF) algorithm for classification as outlined in [132, 
133] was used. The RF analysis was performed using the 
package “randomForest” within the R environment using 
the function randomForest [134]. The model ran for 1,000 
iterations for variable selection. VOCs importance was 
ranked with mean decrease in accuracy (MDA), where a 
higher MDA indicates higher importance in classification. 
The RF analysis generates the average out-of-bag (OOB) 
error, with a low OOB error suggesting a greater ability of 
the variable to differentiate treatment factors.
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