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Abstract
Background  Mountains of the world host a significant portion of all terrestrial biodiversity, and the region of 
the Qinghai-Tibet Plateau (QTP) stands as one of the most remarkable mountain regions on Earth.  Because many 
explosive radiations occurred there, the QTP is a natural laboratory which is ideal to investigate patterns and processes 
linked to speciation and diversification. Indeed, understanding how closely related and sympatric species diverged 
is vital to explore drivers fostering speciation, a topic only rarely investigated in the QTP. By combining genomic and 
environmental data, we explored the speciation process among three closely related and sympatric species, Gentiana 
hexaphylla, G. lawrencei and G. veitchiorum in the QTP region.

Results  Combining genome sizes and cytological data, our results showed that G. hexaphylla and G. veitchiorum are 
diploid, whereas G. lawrencei is tetraploid. Genetic clustering and phylogenetic reconstruction based on genomic 
SNPs indicated a clear divergence among the three species. Bayesian clustering, migrant, and D-statistic analyses 
all showed an obvious signature of hybridization among the three species, in particular between G. lawrencei and 
both G. hexaphylla and G. veitchiorum in almost all populations. Environmental variables related to precipitation and 
particularly temperature showed significant differences among the three gentians, and in fact a redundancy analysis 
confirmed that temperature and precipitation were the major climatic factors explaining the genetic differentiation 
among the three species.

Conclusion  Our study suggested that ancient hybridization, polyploidization, geological isolation and the evolution 
of different climatic preferences were all likely to be involved in the divergence of the three Gentiana species, as may 
be the case for many other taxa in the QTP region.
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Introduction
Several major mountain systems of the world are remark-
able centres of species diversity, and many of them are 
classified as hotpots of biodiversity [1–4]. The accumu-
lation of biodiversity in mountains, over evolutionary 
times, is usually associated with geological processes 
(e.g., uplift, erosion) and climatic changes (e.g., climate 
fluctuations) because they combine to generate a com-
plex topography on which a plethora of highly heteroge-
neous environments co-exist along altitudinal gradients 
[2, 5, 6]. This heterogeneity fosters for example divergent 
natural selection and adaptive radiation [7, 8], which were 
shown to partly explain the uneven distribution of biodi-
versity in species richness on Earth [9, 10]. Furthermore, 
diversification may be promoted by climate-driven cycles 
modifications of distribution ranges, via a so-called spe-
cies pump effect [3]. Indeed, depending on the climate 
state (e.g., Last Inter Glacial (LIG) or Last Glacial Maxi-
mum (LGM)), mountain ranges may act either as barriers 
or facilitators of dispersal, causing distribution ranges of 
organisms to alternate between fragmentation (isolation; 
allopatric speciation) [2, 11] and expansion (leading to 
secondary contact; hybridization) [12, 13].

The highest and largest mountain region of the world, 
the Qinghai-Tibet Plateau (QTP) region, which includes 
the QTP platform, the Himalayas and particularly the 
Hengduan Mountains (HM) [14], harbours a rich and 
probably old alpine flora [15]. The HM, also known as the 
hotspot of biodiversity “Mountains of Southwest China”, 
are characterized by deep valleys and a warm and sea-
sonally wet climate [16, 17], while the QTP platform is 
uniformly high and less rugged with a dry climate. It has 
been showed that the QTP is home to different species 
assemblages - or motifs - than the HM [18]. Each spe-
cies of these assemblages is expected to react individually 
to climate modifications according to its own ecologi-
cal preferences. Therefore, numerous case studies are 
needed to unveil and document the most common phy-
logeographical patterns as well as processes leading up 
to speciation and diversification in this topographically 
and climatically dynamic area. Several studies have tack-
led the phylogeography of a suite of QTP organisms (e.g., 
[19, 20]), but this necessary work is still ongoing (e.g., 
reviewed in Muellner-Riehl [6]).

Geological and climatic dynamics are viewed as major 
factors fostering intra-specific divergence, speciation and 
ultimately diversification [14, 21], and only little is known 
about how biological processes (e.g., adaptation to envi-
ronment, hybridization) contributed to shape biodiver-
sity in the highly heterogenous environment of the QTP 
region. For example, in Circaeaster agrestis, isolation 
both by distance and by local adaptation (via adaptive 
loci related to stress resistance) have been found [20], and 
in Pinus densata, isolation-by-environment explained 

a significant portion of the genetic structure of the spe-
cies [22]. These two examples highlight the role of envi-
ronmental heterogeneity in shaping genetic structure. It 
was also shown that the molecular signatures of adaptive 
divergence were similar across two closely related genera 
in Betulaceae [23], hinting at a parallel effect of habitat 
heterogeneity on the evolution of reproductive isolation 
and speciation. Furthermore, a few studies pointed out 
the crucial role of hybridization in shaping the flora of 
the QTP region [24], but overall, its extent is probably 
vastly underestimated there [25]. For example, in the 
genus Saxifraga, the occurrence of hybridization has 
been reported numerous times in all European clades, 
whereas it remains almost undetected in the QTP region 
[26] despite the much larger number of species in the lat-
ter area.

The alpine biome of the QTP region is the centre of 
diversity and the biogeographical origin of many species-
rich taxa, including Gentiana (Gentianaceae) which is 
distributed in almost all temperate areas of the world [27, 
28]. Gentiana is composed of 13 sections [29], some of 
which being endemic or near endemic to the region of 
the QTP. This is for example the case of G. section Kudoa 
(Masam.) Satake & Toyok. ex Toyok with 25 out of 26 
species occurring there [27, 29]. Section Kudoa continu-
ously attracted biologists’ attention due to its horticul-
tural and medicinal value [27], its taxonomic complexity 
[29] and its relevance for evolutionary studies [30]. Previ-
ous phylogenetic studies showed a relatively rapid diver-
sification of section Kudoa since the Pliocene [30, 31]. 
Although ploidy levels are not known for all species in 
this section, five of them are known to be diploids and 
two are tetraploids [32–35]. In this study, we focused on 
three closely related species in G. section Kudoa, namely 
G. hexaphylla Maxim., G. veitchiorum Hemsl. and G. 
lawrencei Burkill of which distribution ranges are largely 
sympatric (Fig.  1)[27]. The three gentians are used in 
traditional Chinese and Tibetan Medicine and domesti-
cated for horticultural use. The three species can be dis-
tinguished by morphological traits such as the shape and 
arrangement of their leaves (e.g., opposite or in whorls), 
and the color and shape of their corolla [36]. All three 
species are perennials and characterized by little pre-
zygotic isolation with most visitations being from gen-
eralists such as bumblebees [37; personal observations]. 
Spatial genetic structures were investigated in all three 
species, unveiling a north-western and south-eastern 
clade in both G. veitchiorum and G. lawrencei [19], as 
well as a northern and southern clade in G. hexaphylla 
[38]. These spatial genetic structures at least partly derive 
from a combination of climate-driven range displacement 
and geological barriers [19, 38], but it remains unclear 
whether their respective environmental preferences also 
contributed to the genetic patterns observed. In addition, 
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at least one clade of G. lawrencei is likely to have expe-
rienced hybridization with G. veitchiorum in one refu-
gium shared between the two species [19]. Indeed,  as 
in Saxifraga, hybridization may be more common than 
previously thought in the QTP region for Gentiana [39–
41] given the number of cases of hybridizationdetected in 
Europe [e.g., 25, 42, 43] and the much larger number of 
closely-related species in the QTP region [27].

Here, to better understand the mechanisms at work 
in the process of speciation in Gentiana, we combined 
genomic and climatic data to detect the factors that may 
have contributed to the divergence among G. hexaphylla, 
G. veitchiorum and G. lawrencei by sampling across 
known and spatially structured populations. We spe-
cifically aimed to answer (1) Did geographical isolation 
and climate preferences foster differentiation among the 
three Gentiana species? (2) How did hybridization affect 
their divergence?

Results
Genome size
For genome size estimation, four replications were per-
formed for G. hexaphylla and G. veitchiorum, and three 
for G. lawrencei. The mean values of the genome size 
of G. hexaphylla, G. veitchiorum and G. lawrencei were 
3.18 G, 3.25 G and 5.00 G, respectively. The standard 

deviation in the three species ranged from 0.058 to 0.100 
(Table S1).

Data preprocessing and SNP calling
Individuals of G. veitchiorum and G. lawrencei were 
newly sequenced in this study, and the raw data of 35 
individuals of G. hexaphylla were retrieved from Fu et al. 
[38]. After quality filtering, the number of reads retained 
per sample varied from 4.45 × 106 to 3.18 × 107, with a 
median value of 1.04 × 107 (Table S2). The depth per 
sample varied from 5.76 × to 26.97 ×, averaged at 12.53 
×. After filtering for MAF, linkage-disequilibrium (LD) 
and missing data, the total number of unlinked SNPs 
obtained for all samples was 143,611. When the outgroup 
was included, 144,402 SNPs were kept for downstream 
analysis.

Population genetic structure and genetic divergence
Genomic SNPs showed that G. lawrencei had a slightly 
higher genetic diversity (e.g., Ar, Ho) than G. hexa-
phylla and G. veitchiorum (Table 1). The mean Ar vs. Ho 
in G. lawrencei, G. hexaphylla and G. veitchiorum were 
1.1839 vs. 0.1626, 1.1633 vs. 0.1545 and 1.1542 vs. 0.1228, 
respectively. The Mantel test showed no-significant nege-
tive correlations between altitude and Ar (r2 = 0.042, 
p = 0.402) and Hoo (r2 = 0.042, p = 0.399), respectively. The 

Fig. 1  Distribution ranges of three Gentiana species based on locality data retrieved from GBIF and fieldwork by the authors (e.g., Fu et al. [19])
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CV errors from Admixture analyses showed lowest value 
at K = 3 (Fig. S1), indicating the three species shall be 
clustering into three groups, so the inferred three genetic 
clusters corresponded to the three species included in 
this study (Fig.  2B). Based on the clustering analyses, 
introgression was detected from G. lawrencei to G. hexa-
phylla and G. veitchiorum, and from G. veitchiorum to G. 
lawrencei. One individual in a population (Fu2016087) 
of G. hexaphylla contained almost equal genetic com-
position of G. hexaphylla and G. lawrencei, respectively. 
From the PCA plot, the first principal component (PC1), 
which explained 20.46% of all genetic variance, differenti-
ated the three species; the second principal component 
(PC2), which explained 13.25% of all genetic variance, 
differentiated the three species as well (Fig.  2  A). Gen-
erally, the pairwise FST values were much higher among 
species than within species (Fig. 3 A). Detailed pairwise 
FST values between populations were showed in Table 
S3. The weighted FST values between G. hexaphylla and 
G. veitchiorum, G. hexaphylla and G. lawrencei, and G. 
veitchiorum and G. lawrencei were 0.237, 0.187, 0.149, 
respectively. Plotting FST/(1-FST) and geographic dis-
tances among populations in the three Gentiana species 
showed a significant positive correlation in both within 
species (r2 = 0.624, p < 2.2e− 16) and between species 
(r2 = 0.089, p = 0.0007) (Fig. 3B).

Phylogenetic relationship and hybridization among 
species
Genomic SNPs data resulted in a well-supported tree 
(Fig. 4). In general, samples clustered together according 
to the species they were attributed to, except for one pop-
ulation (Fu2016070) of G. lawrencei, which was sister to 
G. veitchiorum. Gentiana hexaphylla diverged first, and 
thus was the sister lineages to both G. lawrencei and G. 
veitchiorum (Fig. 4).

Patterson’s D-statistic revealed strong signals of intro-
gression between G. lawrencei and the other two Gen-
tiana species (Fig.  5). The DBBAA values between G. 
lawrencei and G. hexaphylla showed that introgression 
was detected in most population pairs between the two 
species with p < 1 × 10− 6 (below a Bonferroni-adjusted 
P-value threshold of 0.001). The signal of introgression 
between most population pairs was also detected in pop-
ulations of G. lawrencei and G. veitchiorum (Fig. 5). Week 
signal of introgression was observed between G. hexa-
phylla and G. veitchiorum (Fig. 5).

Relationship between genomic differentiation and 
environmental variables
When all the 19 climate variables were analyzed, 16 out 
of 19 variables (except bio5, bio10 and bio14) showed sig-
nificant differences between at least two of the three gen-
tians (Fig. 6). The 16 variables could be grouped into two 
categories related to temperature (bio1–bio4, bio6-bio9, 
bio11) and precipitation (bio12–bio13, bio15–bio19). 

Table 1  Genetic statistics for three Gentiana species in the region of the Qinghai-Tibet Plateau. Abbreviations: No., sample size; Ar, 
allelic richness; Hs, mean observed gene diversities within population; Ho, mean observed heterozygosity within population; Fis, mean 
inbreeding coefficient. Abbreviations after localities indicates provinces as follows: QH, Qinghai; SC, Sichuan; SX, Shaanxi; T, Tibet; YN, 
Yunnan
Species Voucher no. Location Latitude 

(N)
Longitude 
( E)

Altitude 
(m/a.s.l)

No. Ar Hs Ho Fis

G. lawrencei Fu2016025 Aba, SC 32.92 101.81 3500 6 1.1917 0.1748 0.1692 0.0319

Fu2016039 Seda, SC 32.30 100.28 3926 3 1.1882 0.1615 0.1830 -0.1331

Fu2016070 Daofu, SC 31.00 101.15 3548 6 1.2140 0.1938 0.1983 -0.0236

Fu2016089 Kangding, SC 30.08 101.80 4224 6 1.1959 0.1777 0.1731 0.0261

Fu2016158 Xiangcheng, SC 28.82 100.05 4628 4 1.1393 0.1394 0.1274 0.0862

Fu2017022 Chenduo, QH 33.20 97.48 4422 6 1.1600 0.1516 0.1351 0.1090

Fu2017076 Nangqian, QH 31.97 96.51 4317 6 1.1913 0.1710 0.1642 0.0395

Fu2017264 Gande, QH 34.00 99.94 4045 6 1.1912 0.1739 0.1502 0.1363

G. veitchiorum Fu2017300 Zeku, QH 34.86 100.92 4002 5 1.1599 0.1603 0.1224 0.2366

Fu2016026 Aba, SC 32.92 101.81 3500 4 1.1455 0.1409 0.1271 0.0981

Fu2017037 Yushu, QH 33.16 96.65 4287 6 1.1554 0.1563 0.1200 0.2319

Fu2017096 Dingqing, QH 31.33 95.72 3706 4 1.1579 0.1533 0.1337 0.1281

Fu2016191 Linzhi, T 29.62 94.67 4434 5 1.1523 0.1562 0.1107 0.2908

G. hexaphylla Fu2019001 Taiba, SX 33.96 107.97 3520 6 1.1511 0.1460 0.1240 0.1508

Fu2017202 Hongyuan, SC 32.65 102.23 3731 6 1.1655 0.1552 0.1647 -0.0609

Fu2016087 Kangding, SC 30.07 101.78 4224 6 1.1876 0.1714 0.1784 -0.0406

Fu2016046 Seda, SC 31.82 100.10 4483 6 1.1637 0.1536 0.1562 -0.0171

Fu2018052 Deqin, YN 28.33 99.07 4326 6 1.1592 0.1498 0.1557 -0.0390

Fu2018064 Gongshan, YN 28.07 98.75 3900 6 1.1526 0.1480 0.1479 0.0007
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Gentiana lawrencei showed significant differences with 
the other two gentians in bio1, bio4, bio6–bio9, bio11, 
bio12, bio17 and bio19. One variable (bio12; Annual Pre-
cipitation) showed significant difference among the three 
gentians, namely G. hexaphylla, G. veitchiorum and G. 
lawrencei preferred higher, intermediate, and relatively 
lower annual mean precipitation, respectively (Fig. 6).

After the Pearson correlation analysis, 10 climatic vari-
ables (bio1-bio6, bio12, bio14, bio15, bio17) were kept 
for the analysis. The results of RDA analysis showed 

that the 10 combined bioclimatic variables had vari-
ables contribution in the first two principal components 
(Fig. 7). Seven variables, bio2 (Mean Diurnal Range), bio3 
(Isothermality), bio4 (Temperature Seasonality), bio6 
(Min Temperature of Coldest Month), bio14 (Precipita-
tion of Driest Month), bio15 (Precipitation Seasonality) 
and bio17 (Precipitation of Driest Quarter) had a more 
substantial contribution on the first principal compo-
nent (PC1, 25.06%), and the remaining variables on the 
second principal component (PC2, 15.05%). Among 

Fig. 2  Genetic clustering of three Gentiana species based on genomic SNPs. (A) Results of principal coordinate analysis. (B) Bar plots showing probabili-
ties of ancestral clusters of each sample with K = 3 in Admixture
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the variables, bio3, bio4, bio6, bio12 (Annual Precipita-
tion), bio14, bio15 and bio17 were significantly differed 
(P < 0.05, Table 2). Gentiana hexaphylla differed with G. 

veitchiorum and G. lawrencei along PC1, and the latter 
two species differed along PC2. For G. hexaphylla and 
the another two gentians, the variables that explained 

Fig. 3  (A) Heatmap of weighted Weir and Cockerham’s FST; (B) Genetic distance (FST/(1- FST)) against geolographical distance between populations of 
three Gentiana species of section Kudoa
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this differentiation were related to temperature and pre-
cipitation in months outside of the growing season, for 
example bio6 (Min Temperature of Coldest Month), 
bio14 (Precipitation of Driest Month) and bio17 (Precipi-
tation of Driest Quarter) (Fig. 7). For G. veitchiorum and 
G. lawrencei, the variables that explained the differentia-
tion were mainly related to bio5 (Max Temperature of 
Warmest Month).

Discussion
Genetic divergence among the threeGentianaspecies.

By sampling G. hexaphylla, G. veitchiorum and G. law-
rencei across populations known to be spatially struc-
tured and thus building upon previous studies [19, 38, 
44], our genomic data showed clear genetic divergence 
among the three sympatric gentians (Fig.  2). The three 
species are distinct genetic entities, as supported by 

Fig. 4  Maximum likelihood tree of three Gentiana species based on genomic SNPs. Phylogenetic support values for maximum likelihood were shown 
above branches only when they differ from 100% bootstrap support. Codes in the tips indicated the population names
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several morphological traits such as opposite or whorl 
leaves, shape of leaves, corolla and calyx lobes, as well 
as corolla color [27, 36]. Nevertheless, the differentia-
tion among the three species was not very strong as the 
FST value between species ranged from 0.149 to 0.243. 
We observed that the genetic divergence within species 
was sometimes larger than that between species and 
was sometimes associated with geographical distances 
(Fig.  3). Interestingly, a weak but significant positive 
correlation was detected between interspecific genetic 
distance and geological distance (Fig.  3B), rather than 
the expected negative correlation [45, 46]. This shows 
the impact of geographical scale on interspecific diver-
gence in the three gentians. Our findings suggest that 
both physical barriers and heterogeneous environments 
may have caused isolation and strengthened differentia-
tion among the three Gentiana species. Indeed, previous 
studies showed that intra-species genetic geographical 
patterns in G. veitchiorum and G. lawrencei were shaped 
by isolation in a southeastern and a northwestern refu-
gia [19, 44], whereas the pattern in G. hexaphylla was 

mainly shaped by geological features at the center of the 
HM [38]. Genomic data showed that adaption to het-
erogeneous environments in the QTP region could have 
produced a high intraspecific divergence [FST=0.89, 20] 
and a parallel adaptive divergence in a number plants 
taxa  [23]. Therefore, we suggest that geographical isola-
tion as well as adaption to heterogeneous environments 
could have fostered the differentiation among the three 
Gentiana species, and thus had a profound impact in 
their divergence.

Ancient hybridization and polyploidization versus 
divergence
With a remarkable number of radiations occurring in 
the alpine biome of the region of the QTP [6], of which 
many closely related species are sympatric, it is now 
crucial to gather more evidence on the role of hybrid-
ization and introgression for adaptation, speciation and 
ultimately diversification. Our analyses showed obvi-
ous gene flow among the three gentians (Figs. 2 and 5), 
which should come as no surprise since hybridization 

Fig. 5  Gene flow detected in the three Gentiana species. Heatmap summarizing the D-statistic (DBBAA) estimates and their P-values. Taxa P2 and P3 are 
displayed on the x- and y-axes. Each square represents the highest estimate of each combination of P2 and P3 population. The colour of each square 
signifies the D-statistic estimate. D-statistic tests for which p < 1×10-6 (i.e. were below a Bonferroni-adjusted P-value threshold of 0.001) are marked with a 
black asterisk. The white squares in the matrix indicate no data
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appears to be more common than previously thought in 
Gentiana. Indeed, it was observed in at least two regions 
of the world, including the QTP region [e.g., 38–40] and 
Europe (listed in Favre et al. [25]), as well as in different 
sections of Gentiana (e.g., sect. Ciminalis, sect. Gen-
tiana, sect. Cruciata, etc.). A more frequent occurrence 
of hybridization in Gentiana would also explain some 
major challenges encountered in taxonomical work and 
species identification within the genus, as for example in 
section Chondrophyllae. This is also the case for several 
taxa of G. section Kudoa, where continuous values for 

some morphological diagnostic traits were observed [27, 
36]. In this section, hybridization may even occur among 
more species, in this case suggesting a reticulate evolu-
tion in its infancy.

In our study, signatures of gene flow were detected 
especially between G. lawrencei towards both G. hexa-
phylla and G. veitchiorum in almost all populations 
(Fig.  5), indicating that their history of hybridization 
could date back to the origin of these species. Support-
ing this fact is for example the higher genetic diversity 
index in G. lawrencei, and the lower FST value between 

Fig. 6  Comparison of climate variables among three Gentiana species. Climate variables had no significant difference were not shown. ***, P < 0.001; **, 
P < 0.01; *, P < 0.05; NS, no significant. Bio1, annual mean temperature; Bio2, Mean Diurnal Range; Bio3, isothermality; Bio4, Temperature Seasonality; Bio6, 
min temperature of coldest month; Bio7, Temperature Annual Range; Bio8, Mean Temperature of Wettest Quarter; Bio9, Mean Temperature of Driest Quar-
ter; Bio11, Mean Temperature of Coldest Quarter; Bio12, annual precipitation; Bio13, Precipitation of Wettest Month; Bio15, Precipitation Seasonality; Bio16, 
Precipitation of Wettest Quarter; Bio17, Precipitation of Driest Quarter; Bio18, Precipitation of Warmest Quarter; Bio19, Precipitation of Coldest Quarter  
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G. lawrencei and the other two species. In fact, previous 
studies have already detected some cases of hybridization 
between G. lawrencei and G. veitchiorum in a refugium 
shared by the two species [19]. Furthermore, species dis-
tribution models showed that the three species have had 
a large overlap of potential distribution through time, 
which increased since the LIG [19, 38], rendering hybrid-
ization and introgression progressively more likely in the 
last few thousand years.

Hybridization may be followed by allopolyploidization, 
sometimes setting up the base for the emergence of new 
taxa, as seen for example in birch trees [47]. Whether 
this has been the case in section Kudoa or elsewhere in 
the genus is still difficult to verify, but it is possible since 
30.43% of Gentiana species (28 out of 92) for which kary-
ological data are available are in fact polyploids. For the 
hybridizing species investigated here, karyological stud-
ies showed that G. veitchiorum is diploid (2n = 2x = 24, 
[32, 34]), whereas G. lawrencei is tetraploid (2n = 4x = 48, 
[33, 34]). In this study, we estimated that the respec-
tive genome sizes of G. veitchiorum, G. lawrencei and G. 
hexaphylla are 3.25 G, 5.00 G and 3.18 G. These results 
thus suggest that G. hexaphylla – of which ploidy level is 
still technically unknown - is likely to be a diploid, pos-
sibly with ca. 24 chromosomes. Including G. hexaphylla, 
two out of six species in section Kudoa are tetraploids 
[32–35]. Taking their background of hybridization into 
account, it is not impossible that allopolyploidization 

participated in the divergence of the three Kudoa species 
investigated in this study. Yet, a more complete investiga-
tion on hybridization and allopolyploidization including 
all species of that section may be needed.

Did climatic preferences contribute to divergence?
When comparing climatic preferences of G. hexaphylla, 
G. veitchiorum and G. lawrencei, we found significant 
differences regarding some components of precipita-
tion and temperature. For example, G. hexaphylla and 
G. veitchiorum appear to occur in areas with more pre-
cipitation, higher temperature, and smaller temperature 
annual range than G. lawrencei (Fig. 6). In particular, G. 
hexaphylla prefers habitats with more precipitation than 
the other two species, consistent with its range limited to 
the HM, which are characterized by a wetter climate than 
other areas in the QTP region. Our phylogenetic analy-
sis showed that G. veitchiorum and G. lawrencei diverged 
from G. hexaphylla (Fig.  4), and that divergence among 
G. hexaphylla, G. veitchiorum and G. lawrencei occurred 
in the Pleistocene [31], in parallel with the local climate 
becoming progressively cooler and drier [15, 48, 49]. 
These results showed that divergence among the three 
gentians shall be correlated to the evolution of climate 
preferences and corresponding habitat shifts under past 
climate modifications.

When associating environmental variables with genetic 
structure to evaluate the impact of environmental het-
erogeneity on genetic divergence in the three gentians, 
we indeed found association between species divergence 
and environmental variables. In this study, we found a 
significant association between genetic variation and 
temperature variables (bio3, bio4, bio6) as well as precip-
itation (bio14, bio15, bio17) (Fig. 7; Table 2). The results 
suggested that temperature and precipitation were the 
important drivers of genetic variation among G. hexa-
phylla, G. veitchiorum and G. lawrencei, as detected in 
several plants in different continents [20, 50, 51]. Due to 
elevation-dependent warming, high-mountain environ-
ments experienced more rapid changes in temperature 
than environments at lower elevations [52]. Therefore,  
considering the ongoing climate warming, temperature 
appears to be a key driver for adaptation of the three gen-
tians in the future. Studies about trees in the QTP region 
showed that altitude, rather than other environmental 
factors, was the key factor affecting genetic diversity (e.g. 
[53, 54]), but it is not the scenario we observe in the three 
herbaceous gentians, although a limited number of popu-
lations were tested in this study. Finally, since our analy-
sis did not include other environmental variables, such as 
soil characteristics, composition and structure, we can-
not rule out that habitat adaptation to these environmen-
tal variables played a significant role in promoting genetic 
divergence in the three gentians, as was probably the case 

Table 2  Results of the Redundancy analysis (RDA) based on 
seven un-related environmental variables
Environmental variables Con-

strained 
propor-
tion (%)

P

Bio1 1.20 0.087

Bio2 2.40 0.097

Bio3 1.51 0.011 
*

Bio4 1.48 0.009 
**

Bio5 1.24 0.051

Bio6 1.94 0.001 
***

Bio12 1.42 0.010 
**

Bio14 3.36 0.001 
***

Bio15 2.61 0.001 
***

Bio17 3.23 0.001 
***

Bio1, annual mean temperature; Bio2, Mean Diurnal Range; Bio3, isothermality; 
Bio4, Temperature Seasonality; Bio5, max temperature of warmest month; 
Bio6, min temperature of coldest month; Bio12, annual precipitation; 
Bio14, precipitation of driest month. Bio15, Precipitation Seasonality; Bio17, 
Precipitation of Driest Quarter. *, P < 0.05; **, P < 0.01; ***, P < 0.001
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in European gentians [25]. Considering soil characteris-
tics would now be necessary to investigate speciation and 
diversification further in the QTP region, especially since 
rudimentary knowledge on edaphic preferences of QTP 
species remains vastly unavailable in Gentiana and many 
other genera.

Materials and methods
Studying species and sampling
We chose six, five and eight populations of Gentiana hex-
aphylla, G. veitchiorum and G. lawrencei, respectively, 
to represent their ranges and the main genetic clades 
found in two earlier studies [19, 38]. In total, this study 
included 35, 24 and 42 individuals of G. hexaphylla, G. 

veitchiorum and G. lawrencei, respectively. Information 
about geographical locations and voucher specimens are 
list in Table 1. All voucher specimens were deposited in 
the herbarium of Luoyang Normal University.

Genome size estimation
We used flow cytometry to estimate the genome size 
of each of the target species using dry material and fol-
lowing the procedure described in Doležel et al. [55]. 
We used a LB01 lysis buffer to isolate the nuclei for the 
dried material. One individual of each species was mea-
sured three to four times in order to estimate the genome 
sizes. The cotton (Gossypium hirsutum, TM-1, 2.5 G) 

Fig. 7  Redundancy analysis showed the relationship between the independent climate variables and genetic divergence among three Gentiana species. 
The colored points represented individuals of the three species
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or tobacco (Nicotiana tabacum, Yanyan 97, 4.5 G) were 
used as standards.

Library construction, sequencing and SNP calling
Total genomic DNA was extracted from dry leaves 
using a Dzup plant genomic DNA extraction kit (San-
gon, Shanghai, China). For RAD library construction 
and sequencing [56], each sample was digested with the 
restriction enzyme EcoRI, followed by ligation, puri-
fication and size selection as described in Fu et al. [38]. 
Paired-end reads 150 bp in length were generated using 
the Illumina Novaseq 6000 (Tianjin, China). Raw reads 
were filtered and trimmed with Trimmomatic v0.32 [57] 
with default parameters to remove adaptor sequences 
and low-quality reads and sites, and then checked for 
quality with FastQC v0.11.2.

Since RAD-seq study employing reference-based 
approaches was recommended [58], we mapped the raw 
reads against the chromosome-level genome of Genti-
ana dahurica (PRJNA799480; [59]), the closest available 
genome, with bwa-men v2.2.1 [60], and produced the 
sequence alignment/map format files with SAMtools v1.9 
[61]. We marked the PCR duplications with sambamba 
v0.8.1 [62], and called variations with freebayes v0.9.21 
[63] with default parameters. Only SNPs were retained in 
vcftools 0.1.13 [64] for downstream analysis. SNPs with 
a minor allele frequency (MAF, less than 5%) and miss-
ing frequency of more than 0.8 among individuals were 
removed using vcftools v0.1.13 [64]. Linkage-disequilib-
rium SNP pruning was performed in vcftools to excludes 
variants from each pair closer than 100  bp. We used 
PGDSpider v2.1.1.5 [65] to convert the final VCF file into 
different formats to perform further analyses.

Genetic diversity and population genetic structure
We computed allelic richness (Ar), observed heterozy-
gosity (HO), gene diveristy (HS), and Wright’s inbreed-
ing coefficient (FIS) using the R package hierfstat [66]. To 
assess the levels of genetic differentiation among popu-
lations, we estimated pairwise FST among populations 
using the Weir and Cockerham method [67] in R package 
hierfstat [66]. A Mantel test was performed in R v. 4.0.1 
[68] to check the correlation between genetic diversity 
(Ar and HO) and altitude in each species. The pairwise 
FST was graphically displayed with package pheatmap 
(https://cran.r-project.org/web/packages/pheatmap/) 
using R. We plotted FST/(1-FST) against pairwise geo-
graphic distances among populations to illustrate the 
range-wide isolation by distance (IBD) pattern in R.

For exploring the genetic clusters, we used a Bayesian 
clustering method implemented in Admixture [69] based 
on the identified SNPs, with assumed clusters (K) from 
1 to 20. The cross-validation (CV) procedure performed 
10-fold CV (--cv = 10). The CV errors were plotted in R 

to assess the model complexity for the data. Graphi-
cal representation of individual cluster assignments was 
performed using DISTRUCT v1.1 [70]. The same data 
set was used to perform a principal component analy-
sis (PCA), with ten main principal components (PCs) 
extracted in PLINK v1.90 [71], and visualized using R.

Phylogenetic analysis
We constructed a phylogenetic tree based on the genomic 
SNPs using maximum likelihood (ML) in IQ-TREE 
v.1.6.8 [72] with 1000 ultrafast bootstraps [73]. The best-
fitted substitution model was chosen in ModelFinder v2 
[74]. The Python script ‘vcf2phylip’ (https://github.com/
edgardomortiz/vcf2phylip) was used to transfer the SNPs 
data for tree building. Gentiana waltonii (specimen no. 
Fu2020030) was served as the outgroup.

Hybridization analysis
We tested for introgression among the three Gentiana 
species using Patterson’s D-statistic [75]. The D-statistic 
uses asymmetry in gene tree topologies to quantify intro-
gression between either of two lineages which share a 
common ancestor (P1 and P2) and one other lineage (P3) 
that diverged from the common ancestor of P1 and P2 
earlier. We calculated Patterson’s D-statistic for all pos-
sible population trios using the Dtrios function of Dsuite 
v0.5.r44 [76] with default parameters. We fixed G. walto-
nii as the outgroup. We assessed significance of each test 
using 100 jackknife resampling runs, and visualized the 
D-statistic estimates in R.

Environmental data analysis
We obtained 19 climate variables based on the average 
values from 1950 to 2000 for G. hexaphylla, G. veitchio-
rum and G. lawrencei from WorldClim (https://www.
worldclim.org) using the R package raster [77] at 30 arc-
second resolutions. Significant differences among the 
three species for these environmental factors were visual-
ized in R.

Highly correlated variables (Pearson’s correlation coef-
ficient > 0.8, p < 0.01) were detected in SPSS and removed 
to reduce the number of predictors. We used the func-
tion rda from the R package vegan [78] to perform the 
redundancy analysis (RDA) in order to identify poten-
tial environmental factors driving genomic differentia-
tion. We used the function anova.cca from the R package 
vegan to check the significance of each predictor.
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