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Introduction
Cardamine hupingshanensis, also known as Carda-
mine enshiensis, is a unique selenium hyperaccumula-
tor in China that can accumulate more than 1000  mg 
kg-1selenium [1]. C. hupingshanensis was first discovered 
in Yutangba, Enshi, Hubei Province, China, and Huping 
Mountain, Shimen, Hunan Province, China. Se hyperac-
cumulators growing in high-selenium environments for 
a long time have strong selenium tolerance, detoxifica-
tion and enrichment abilities and have evolved unique 
molecular mechanisms. Therefore, Se hyperaccumulators 
have become an important resource for basic theoretical 
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Abstract
Background ATP sulfurylase (ATPS) is a crucial enzyme for the selenate assimilation pathway in plants.

Results In this study, genome-wide and comparative analyses of ATPS in Cardamine hupingshanensis, including 
sequence and structural analyses, were performed. The expression of ChATPS gene family members in C. 
hupingshanensis under selenium (Se) stress was also investigated, and our results suggest that ChATPS1-2 play key 
roles in the response to Se stress. Nine ATPS genes were found from C. hupingshanensis, which share highly conserved 
sequences with ATPS from Arabidopsis thaliana. In addition, we performed molecular docking of ATP sulfurylase in 
complex with compounds ATP, selenate, selenite, sulfate, and sulfite. ChAPS3-1 was found to have stronger binding 
energies with all compounds tested. Among these complexes, amino acid residues Arg, Gly, Ser, Glu, and Asn were 
commonly present.

Conclusion Our study reveals the molecular mechanism of C. hupingshanensis ATP sulfurylase interacting with 
selenate, which is essential for understanding selenium assimilation. This information will guide further studies on the 
function of the ChATPS gene family in the selenium stress response and lay the foundation for the selenium metabolic 
pathway in higher plants.
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research on selenium. A chromosome-level genome 
assembly was performed for C. enshiensis, which consists 
of 443.4 Mb in 16 chromosomes with a scaffold N50 of 
24  Mb [2]. Hi-C analysis of chromatin interaction pat-
terns was performed, and genes with compartmental 
changes after selenium treatment were involved in the 
metabolism of selenium compounds [2]. Zhou et al. iden-
tified the biological pathways and candidate genes of the 
selenium tolerance mechanism by transcriptomics [3]. 
Differential expression analysis identified 25 genes in four 
pathways that are significantly responsive to selenite in C. 
hupingshanensis seedlings [3], including the ATPS genes 
and research targets in this paper.

Selenium is an essential element in humans and ani-
mals that plays a vital role in human health [4, 5]. Long-
term severe selenium deficiency is the main cause of 
Keshan disease and Kashin-Beck disease [6]. Selenium 
deficiency increases the risk of cancer complications, and 
appropriate selenium supplementation can help reduce 
oxidative stress, thereby reducing the incidence of cancer 
complications [7]. In addition, an appropriate concen-
tration of selenium plays an insulin-like role, but when 
the concentration of selenium is too high, it will aggra-
vate insulin resistance and lead to type II diabetes [8]. 
Selenium mediates redox signalling and affects oxidative 
stress, inflammation and lipid metabolism and plays a 
certain role in improving the immune level of the human 
body, alleviating heavy metal toxicity, antiaging, prevent-
ing cardiovascular and cerebrovascular diseases, and 
relieving reproductive disorders [9]. In addition, recent 
studies have shown that the level of selenium in patients 
with COVID-19 is lower than that in healthy people 
[10]. Compared with selenium-deficient areas, selenium-
enriched areas have a higher cure rate and lower mortal-
ity [11]. Moderate selenium supplementation may help 
prevent the deterioration of new coronary pneumonia 
patients [12].

Selenium is also considered to be a beneficial trace 
element for plants. Low doses of selenium can improve 
photosynthesis, promote plant growth [13–15], and con-
tribute to the homeostasis of essential nutrients [16], 
while slightly higher concentrations are toxic. The dis-
tinction between selenium deficiency and selenium poi-
soning is very close, and because of this narrow gap, both 
selenium deficiency and selenium poisoning are wide-
spread problems worldwide [17]. Although excessive 
accumulation of selenium can lead to phytotoxicity, low 
doses of selenium still have stimulatory effects on plants. 
Food sources of selenium are abundant, such as sea-
food, meat, cereals, vegetables, and nuts, while selenium 
from edible plants is a significant source of selenium for 
humans [18–20]. Therefore, researchers still hope that 
plants can accumulate selenium to restore the soil envi-
ronment and alleviate the problem of selenium deficiency 

in selenium-deficient areas. Additionally, it can be used 
as a selenium supplement to assist in the treatment of 
diseases.

The metabolism of selenium in plants is mainly carried 
out through the metabolic pathway of sulfur in Fig. 1 [17, 
21]. SeVI in plant roots is transported to leaf chloroplasts 
for metabolism, while SeIV can be metabolized in roots 
[21]. Excess SeIV can also be converted into SeVI by sul-
fite oxidase for metabolism [3]. Then, ATP sulfurylase 
(ATPS) catalyses the combination of selenate and ATP to 
form 5’-adenosine phosphoselenate (APSe) and release 
pyrophosphate (PPi) [1, 21]. When APSe is phosphory-
lated by adenosine phosphosulfate kinase (APK) to gen-
erate 3’phospho-adenosine-5’phosphoselenate (PAPSe), 
which provides a donor molecule for the selenylation of 
biomolecules, all possible hydroxyl groups of selenide 
molecules can be catalysed by cytoplasmic sulfotrans-
ferases [3]. When APSe is catalysed by adenosine phos-
phosulfate reductase (APR) to generate SeIV, SeIV can be 
combined with glutathione (GSH) to generate GS-SeO3

-1, 
which is then combined with a molecule of GS-SeO3

-1. 
The combined GSH generates GS-Se-SG, which is further 
reduced to GS-SeH and cleaved to HSe-1. Glutathione 
S-transferase promotes GS-SeH to form phytochela-
tins ((PC)2 - Se) [22–24]. The cysteine synthase complex 
catalyses the synthesis of selenocysteine (Sec) from HSe-1 
and O-acetylserine [25]. There are five metabolic paths 
for Sects.  [26, 27]. (1) selenocystathione, selenohomo-
cysteine (SeHcys) and selenomethionine (SeMet) are 
sequentially generated. (2) Methylselenocysteine (MeSec) 
is generated under the catalysis of selenocysteine meth-
yltransferase. MeSec can be converted to dimethyldis-
elenide (DMDSe) by an as yet uncharacterized enzyme. 
(3) Zerovalent selenium is generated under the catalysis 
of NifS-like protein or selenocysteinelyase. (4) The SeH 
group of Sec is oxidized to generate alanine selenate or 
pyruvate selenate [3] or generate other water-soluble 
small molecules containing C-Se-C [28]. (5) Participa-
tion in the synthesis of selenoproteins or replacement of 
cysteine into proteins to form damaged or deformed sele-
noproteins, oxygen proteins and nitroproteins, which can 
be further removed by the proteasome [29, 30].

ATP sulfurylase is a key catalytic enzyme in selenium 
metabolism, acting as the first step in the metabolic 
pathway. The activation reaction of selenate, catalysed 
by ATPS to form APSe, is a rate-limiting step in the sele-
nium metabolic pathway [31]. ATPS has been found in 
bacteria, fungi, algae and a variety of higher plants. ATPS 
plays an important role not only in sulfur metabolism 
but also in abiotic stress of various heavy metal ions [32, 
33]. The catalytic substrate of SpATPS2 in Stanleya pin-
nata can be either sulfate or selenate, which can help 
plants accumulate selenium [34]. Experiments have 
shown that transgenic ATPS-overexpressing mustard 
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plants accumulated more organic selenium and were 
more tolerant to selenium than wild-type mustard plants 
[35, 36]. Genome-wide identification of the ATP sulfu-
rylase gene family has been conducted in many species 
[37–39], while few reports have focused on the func-
tions of this gene family in C. hupingshanensis. Therefore, 
carrying out bioinformatics analysis of the key catalytic 
enzyme ATPS gene in the selenium metabolism path-
way is preliminarily important to explore the mechanism 
of selenium accumulation and selenium tolerance in C. 
hupingshanensis.

Bioinformatics analysis of ATPS in 31 higher plants 
found that 84% of ATPS were located in the chloroplast, 
and the rest were located in the cytoplasm [38]. ATPS1-4 
are found in Arabidopsis, mainly localized in the chloro-
plast [40], and selective translation enables Arabidopsis 
ATPS2 to be expressed in the cytoplasm as well [41, 42]. 
In plants, ATPS is a homodimer formed by the polym-
erization of two 48-kDa monomers [43]. Gene structure 
analysis ATPS contains 4–6 exons, and all ATPS con-
tain the N-terminal domain PF14306 [PUA_2: PUA-like 
(pseudouridine synthase and archaeosine transglycosyl-
ase) domain] and C-terminal catalytic domain PF01747 
(ATP-sulfurylase as catalytic domain) [38]. X-crystal dif-
fraction analysis of soybean ATPS revealed that Arg248, 
Asn249, His255, and Arg349 play important roles in the 

enzymatic transition state [43]. ATP sulfurylase contains 
two highly conserved motifs: the HXXH motif and PP-
loop [43, 44]. They contain several highly conserved his-
tidine and arginine residues, all of which have functional 
side chains. ATPS exists in both allosteric and nonallo-
steric forms [45].

In this study, we aimed to screen and identify the 
substrate affinity of major members of the C. huping-
shanensis ATPS family that respond to selenite stress 
genome-wide. First, we identified and analysed ATPS 
genes in C. hupingshanensis using a bioinformatic 
approach. The protein domain, gene structure, conserved 
protein motif and evolutionary tree of C. hupingshanen-
sis ATPS gene family members were analysed to clarify 
the physicochemical properties and basic functions of C. 
hupingshanensis ATPS members. Second, qRT-PCR was 
used to screen the main gene from the ATPS family of C. 
hupingshanensis that reacted to selenite stress. Finally, 
molecular docking simulations were used to investigate 
the affinity between ATPS and the substrate.

Results
Identification and analysis of ATPS genes in C. 
hupingshanensis
We used the protein sequence of Arabidopsis ATPS 
in the C. hupingshanensis genome file to search the C. 

Fig. 1 Diagram of plant selenium metabolism. Numbers denote known enzymes. (1) sulfite oxidase, (2) ATP sulfurylase, (3) adenosine phosphosulfate ki-
nase, (4) sulfotransferase, (5) adenosine phosphosulfate reductase, (6) glutathione S-transferase, (7) cysteine synthase, (8) cystathionine-gamma-synthase, 
(9) cystathionine-beta-lyase, (10) methionine synthase, (11) S-adenosylmethionine synthetase, (11) SAM-dependent methyltransferase, (13) adenosyl-
homocysteinase, (14) selenocysteine methyltransferase, (15) NifS-like protein or selenocysteinelyase, (16) selenocysteinelyase. Met cycles: First, SeHcys 
may be converted to SeMet via methionine synthase, and SeMet is subsequently converted to SeAM by S-adenosylmethionine synthetase. Se-Adenosyl-
L-selenomethionine (SeAM) is catalysed by SAM-dependent methyltransferase to generate Se-Adenosyl-L-selenohomocysteine (SeHcysAM), and then 
adenosylhomocysteinase catalyses the conversion of SeHcysAM to SeHcys
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hupingshanensis genome file (the Genome Warehouse 
BIG Data Center accession number PRJCA005533) with 
BLASTp to identify potential ChATPS genes in C. hup-
ingshanensis. Nine ChATPS gene family members were 
identified from the genome of C. hupingshanensis. They 
were designated ChATPS1-1 to ChATPS4-2 according 
to the homologous AtATPS. Detailed information about 
each gene, including gene name, nucleotide length, iso-
electric point, predicted protein molecular weight and 
protein subcellular localization, is given in Table 1 and 
S1.

As illustrated in Table  1, the length of the nucleotide 
sequences of the identified ChATPS genes ranged from 
618 to 1473 base pairs. All of these genes contain 4 
introns. The protein sizes of ChATPS members ranged 
from 180 aa (ChATPS 2 − 1) to 490 aa (ChATPS 2–3). 
Accordingly, the MW of ChATPS members spanned 
from 20149.25 Da to 54720.22 Da. In addition, the theo-
retical isoelectric points of the ChATPS members ranged 
from 5.8 to 8.61. As predicted by the online servers Sig-
nalP-5.0 and TMHMM-2.0, all ChATPS proteins have 
no signal peptide and no transmembrane region. We 
predicted the subcellular localization of the protein by 
aligning with the N-terminal mature peptide homologous 
sequences of chloroplast ATP sulfurylases from Spinach 
and Arabidopsis, combined with an online server [40, 46, 
47]. Preliminary prediction of the subcellular locations of 
the members showed that ChATPS members are located 
in the extracellular region, two of which are located in the 
cytoplasmic region, and the remaining 7 are located in 
the chloroplast. The gene coding sequences and protein 
sequences of the ChATPS family members are listed in 
Table S2.

Phylogenetic analysis of ATPS genes in C. hupingshanensis
The protein sequences of 39 ATPSs were used, includ-
ing 24 from monocotyledons, 4 from dicotyledons and 
9 from C. hupingshanensis. We constructed a maximum 
likelihood (ML) phylogenetic tree by MEGA with default 
parameters (Fig.  2). We classified ATPS proteins into 
classes I, II, III, and IV based on bootstrap values and 
phylogenetic topology (Fig. 2).

Moreover, among the four categories, the second cat-
egory is farther away from the other three categories, 
forming a relatively independent branch, suggesting 
that there may be functional differentiation between 
ChATPS2 and ChATPS1/3/4. Among them, 3 out of 9 
ChATPS genes were distributed in class II. Arabidop-
sis thaliana, Brassica rapa, Brassica napus and Brassica 
oleracea have only one ATPS gene in Class I, Class III and 
Class IV. However, C. hupingshanensis has two ChATPS 
genes in class I, class III and class IV.
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Analysis of the protein motif, conservative domain, Gene 
structure and sequence alignment of the ChATPSs
Genes have differentiated their regulatory and coding 
regions due to evolution usually based on gene duplica-
tion. As a result, amino acids may be replaced or altered, 
and the function of genes may be altered to suit differ-
ent growth conditions. A simpler neighbour-joining phy-
logenetic tree was constructed from the ATPS protein 
sequences of C. hupingshanensis and A. thaliana to ade-
quately recognize the protein motif, conserved domain 
and gene structure (Fig. 3).

On the basis of the annotated genome structure infor-
mation, with the exception of ChATPS2-1, the homolo-
gous genes from different groups had the same number of 
introns/exons and a similar distribution. This result indi-
cates that the ChATPS gene is extremely conserved in terms 
of structure and function.

The conserved motifs and conserved domains of AtATPS 
and ChATPS were analysed using the online software 

MEME and the server NCBI CDD to deeply explore the 
evolutionary relationship between members of different 
groups of ChATPS. Similar to the gene structure distribu-
tion results, the distribution of conserved motifs was con-
served in different groups of genes. All ATPS contained 
all motif types, except for ChATPS2-1, in which motifs 
4, 5, 6, 8, 9 and 10 were absent. While motifs 1, 2, 3 and 7 
were correlated with the ATP-sulfurylase domain structure 
(PF01747), motifs 4, 5, 8 and 9 were associated with the 
PUA_2 (PF14306) domain structure.

Conserved amino acid residues and chromosomal 
distribution and analysis of ChATPS genes
The distribution of ChATPS genes on the 16 chromosomes 
of the C. hupingshanensis genome is relatively random 
(Fig. 4). With the exception of chromosome 8, which con-
tains two ChATPS genes (ChATPS2-2 and ChATPS2-3), 
each of the remaining ChATPS genes is located on a sepa-
rate chromosome. Notably, most of the ChATPS genes are 

Fig. 2 Phylogenetic relationships and structures of 39 ATPS genes. The phylogenetic tree of ATPS from C. hupingshanensis (Ch), Arabidopsis thaliana (At), 
Camelina sativa (Cs), Brassica rapa (Br), Brassica napus (Bn), Brassica oleracea (Bo), Oryza sativa (Os) and Zea mays (Zm). Colours represent different groups 
(Group I in yellow, Group II in blue, Group III in pink and Group IV in green). The genes ChATPSs (with red) and AtATPSs (with blue) are marked with dots 
of different colours
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located at the distal end of the chromosome, with five mem-
bers in a reverse distribution and the other four members in 
a positive distribution.

From the alignment of the full-length sequences 
of ChATPS proteins (Fig. S1), the ChATPS pro-
tein displayed an N-terminal mature peptide 
(50GLIEPDGKLVDLVVPEPRR69), which was character-
ized by transit peptide localization to the chloroplast and 
had greater than 60% N-terminal homology with the native 
chloroplast ATPS of Arabidopsis and spinach [40, 46, 47].

The relatively conserved sequence exists in the C-ter-
minus (Fig.  5). We further analysed the conservation of 
amino acid residues in this domain, similar to the analysis 
in A. thaliana. The amino acid residues in the C-termi-
nal domain remained conserved at most loci, which was 
assumed to be required for ATP sulfurylase. Remarkably, 
two conserved motifs present in the ChATPSs are the 

PP-loop (343GANFYIVGRDPAGM360) and HXXH motif 
(254HNGH257), except for ChATPS2-1.

Furthermore, cysteine residues are key redox targets 
and play important roles in redox regulatory mechanisms 
[48]. According to Prioretti et al. [49], algal ATPS proteins 
contain a large number of cysteine residues and are highly 
conserved compared to ATPS genes of plants and other 
organisms. Their research showed that cyanobacteria, 
marine cyanobacteria, green algae, hyaluronicum and het-
eroalgae contain five highly conserved cysteine residues. 
However, the cysteine residues identified in our study are 
not conserved structures and are few in number. These data 
are inconsistent with previous findings [49].

Combined with the gene structure, conserved domains, 
motifs and multiple sequence alignment results, we specu-
late that ChATPS2-1 may be a mutation or functional 
redundancy during evolution. Therefore, we will not 

Fig. 4 Chromosomal mapping of ATPS genes in C. hupingshanensis. The chromosome numbers are shown on the left side of each strip

 

Fig. 3 Phylogenetic trees, motifs, domains and gene structures of the ATPS gene family. A Phylogenetic tree of ATPS genes. B-C Conserved motifs and 
domains of the proteins; different colours represent different motifs or domains. D Exon-intron structures; exons are indicated by yellow boxes, and 
introns are indicated by lines
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perform protein function exploration and gene expression 
analysis.

Prediction of secondary and tertiary structures of ATPS 
protein
Secondary structure analysis of the eight ChATPS pro-
teins (Table S3) revealed the presence of α-helices (29.89–
32.04%), extended strands (15.70–19.39%), β-turns 
(5.51–9.44%) and random coils (38.75–46.67%), indicating 
minor structural differences in ChATPS sequences. BLAST 
searches were performed on the SWISS-MODEL library to 
determine a suitable template for the C. hupingshanensis 
ATP sulfurylase. The 3D structures of ChATPS and AtATPS 
used for docking were also predicted by the SWISS-
MODEL server (Fig. 6). The soybean ATP sulfurylase (PDB 
code: 4MAF) with the highest similarity scores (ranging 
from 76.62 to 86.07%) was selected as a template (Table 2). 
The 3D modelled protein structures of ChATPS have high 
GMQE (0.77 ~ 0.89) and QMEAN (0.87 ~ 0.89) scores, indi-
cating high confidence in the modelled structures. These 
ChATPS models were validated with the Structural Analysis 
and Validation Server (SAVES). Ramachandran plots show 

that nearly 90% of all models have residues in the favour-
able region, with ≥ 95% of residues in the core and allowable 
regions, which is sufficient to indicate the reliability of the 
3D model. Overall quality factor values were greater than 90 
in all generated models. The average 3D-1D scores for the 
nine model residues were higher than 0.2. Furthermore, the 
plausibility of torsion angles and covalent geometric distri-
butions within the model are indicated by G-factor values, 
all greater than − 0.5. In general, homology models are sta-
ble and reliable. ProSA analysis showed that all models had 
Z scores between − 10.99 and − 11.65. Finally, an LG score 
(greater than 3) indicates that the protein model is of good 
quality. All ChATPS protein structures achieved significant 
scores, with LGscores greater than 7.3. These results indi-
cate that these models obtained with the homology model 
are acceptable and can be used for further studies.

Molecular Docking
Molecular docking is a novel technique for identifying 
binding modes or forces of ligand-protein complexes and 
is widely used in structural molecular biology and drug 
discovery [51]. First, we used Prankweb to predict and 

Fig. 5 Multiple alignment of partial sequences of the C. hupingshanensis ATPS proteins. Secondary structure elements are defined according to ESPript3.0 
[50]. The helixes represent alpha helices, and the arrows represent beta strands
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Fig. 6 Predicted 3D structures of ChATPSs and AtATPSs by the SWISS-MODEL server
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visualize the ligand-binding sites of ATPSs [52]. Several 
ligand-binding sites were predicted for each ATPS, rang-
ing from 10 to 15 for ChATPSs and 7 to 13 for AtATPSs. 
The online server numbers each site with Arabic numer-
als starting from 1 according to the calculated probability 
score, which is also the basis for our naming of binding sites. 
Therefore, for different proteins, the same Arabic numer-
als do not necessarily represent the same spatial position in 
each protein. For example, part of the ligand binding sites 
of protein ChATPS1-2 are visualized in Fig. 7. Afterwards, 
protein-ligand docking and molecular simulations were per-
formed using the AutoDock Vina program [53]. The bind-
ing energy of protein-ligand docking, which is an important 
criterion for interaction, was recorded, with a lower binding 
energy being considered more stable [53]. The structure of 
protein-ligand interactions was finally analysed using a pro-
tein-ligand interaction analyser (PLIP) and visualized with 
PyMOL [54, 55].

Bioinformatics analysis and preliminary study were used 
to verify the binding ability of selenate, selenite, sulfate, 
and sulfite with ChATPS according to network analysis 
and preliminary research. The docking binding energy of 
each ligand compound to the protein molecule is displayed 
in the heatmap (Fig.  8). When comparing the docking 
results between the ligand and ChATPS, the most notice-
able difference was the interaction energy, which ranged 
from − 4.3 to 2.3 kcal mol-1. We found that all ChATPS had 
stronger affinity for selenate than other compounds, with 
ChATPS1-1 (-4.2 kcal mol-1), ChATPS1-2 (-4.2 kcal mol-1) 
and ChATPS3-1 (-4.3 kcal mol-1) showing stronger affinity 
for selenate than other genes.

When analysing protein-ligand interactions, it was found 
that most of the amino acids at site 1 of each protein con-
sisted of two conserved motifs, ATPS, PP-loop and HXXH. 
It shares a similar spatial structure with the ATPS catalytic Ta
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Fig. 7 Visualization of some of the predicted ligand-binding sites for pro-
tein ChATPS1-2 by Prankweb
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site [43, 56]. We call site 1 of each protein the catalytic site, 
which is abbreviated as CS in Fig. 9. Therefore, we selected 
the catalytic site and one of the binding sites with the mini-
mum binding energy in the docking simulation to visual-
ize the interaction of the binary ATP-ATPS complex with 
selenate, including the amino acid residues involved in the 

interaction and the interaction forces (hydrogen bonds, salt 
bridges and π-cation interactions). Hydrogen-bond interac-
tions were found to be necessary for the interactions of the 
binary ATP-ATPS complex with selenate.

The interaction at the catalytic site is similar to 
GmATPS in that the ligands are surrounded by positively 

Fig. 8 The binding energy of compounds with all the ligand-binding sites of ATPS (ChATPS and AtATPS). The bottom of the heatmap represents four 
different ligands, and the ordinate represents the ligand-binding site predicted by Prankweb for each protein. The value represents the binding energy 
displayed by the ligand and the binary ATP-ATPS docking complex, unit: kcal mol-1
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charged residues Arg250, His254, His257 and Arg350. In 
previous studies, most of these conserved amino acid res-
idues were shown to interact with the β- or γ-phosphates 
of ATP [43]. In our study, these conserved ATP residues 
still interact with ATP phosphate and hydrogen bond 
with ATP adenine and selenate. These may be the reasons 
for the higher affinity of ChATPS for selenate.

At the maximum affinity binding site, similar to the 
catalytic site, the ligand is surrounded by positively 
charged amino acids Arg105 and Arg109. Although not 
among the characteristic catalytic sites of ATPSs, most of 
the highest affinity sites in ChATPS are located in similar 

spatial positions and have similar amino acid composi-
tions (Arg105, Gly106, Arg109, Ser111 and Glu112).

Expression profiles of ATPS genes in different tissues under 
Se stress
ATP-sulfurylase can participate in plant responses to 
several abiotic stresses through different sulfides. To bet-
ter understand the molecular functions of ChATPS genes 
under abiotic stress conditions, RT-qPCR technology was 
used to analyse the expression of nine ChATPS genes in 
C. hupingshanensis leaves under different concentrations 

Fig. 9 Interactions of the binary ATP-ATPS complex with selenate. The left panel is the overall view, and the right panel is the focused view. The ATPS 
protein is shown on the surface, the amino acid residues at the binding site are grey-blue, and the ligand (ATP and selenate) is heavy yellow. The blue solid 
line represents a hydrogen bond, the yellow dashed line represents a salt bridge, and the red dashed line represents a π-cation interaction. CS: putative 
binding mode of ATP and selenate to model the ATPS protein structure at the catalytic site. MBS: ATP and selenate are in a putative binding mode that 
mimics the protein structure of ATPS at the site of minimum binding energy, the site of maximum affinity binding
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of Se stress (0 µg Se L-1, 100 µg Se L-1 and 80,000 µg Se 
L-1).

Among the ChATPS family genes measured by qRT-
PCR, under low-concentration selenium stress (100  µg 
Se L-1), the gene expression in roots was upregulated 
(Fig.  10  A). Among them, ChATPS1-2 genes were 
highly upregulated (approximately 29.5-fold) at 6  h. 
ChATPS1-1 was upregulated approximately 9.4-fold at 
6 h, and ChATPS3-1 was upregulated approximately 8.5-
fold at 3 h. The upregulation of the remaining six genes 
in roots was relatively small (1.5- to 4.6-fold) under 
low-concentration selenium stress. The expression of 
ChATPS family genes was upregulated in leaves under 
low-concentration selenium stress (Fig. 10B). The upreg-
ulation of ChATPS1-1 and ChATPS1-2 gene expression 
was prominent (approximately 10.2-fold and 11.2-fold) 
at 6  h. ChATPS2-2, ChATPS2-3 and ChATPS3-1 were 
upregulated at 24  h by approximately 8.8-fold, 8.7-fold 
and 6.8-fold, respectively. The remaining four genes were 
upregulated to a smaller extent (2 to 3.7 times) in leaf 
parts under low-concentration selenium stress.

Under high-selenium stress (80,000  µg Se L-1), only 
ChATPS4-2 was downregulated in roots. The expres-
sion of other members of the ChATPS gene family was 
upregulated (Fig.  10  C). Among them, ChATPS1-1 and 

ChATPS1-2 were upregulated approximately 6.7-fold 
and 10-fold at 6  h, respectively, and ChATPS3-1 was 
upregulated approximately 10.6-fold at 3 h. The upregu-
lation of the remaining four genes in roots was relatively 
small (1.4- to 4-fold). ChATPS family members were 
upregulated to varying degrees in leaves under high-
concentration selenium stress (Fig. 10D). Simultaneously, 
ChATPS1-1 and ChATPS1-2 were upregulated approxi-
mately 6.1-fold and 6-fold at 3 h, respectively. ChATPS2-2 
and ChATPS2-3 were upregulated approximately 6.7-fold 
and 7-fold at 24 h, respectively. The remaining four genes 
were upregulated to a lesser extent (1.6- to 4.2-fold) in 
leaf parts under high-concentration selenium stress.

Based on these data, ChATPS may play an important 
role in selenium detoxification by promoting selenide 
production.

Discussion
In our study, more C. hupingshanensis ATPS genes were 
identified from the genome database using bioinformatics 
methods, which is a potential reason for Se tolerance and 
Se accumulation capacity in Se hyperaccumulators. In 
total, 9 ATPS genes were recognized in C. hupingshanen-
sis, which is relatively more abundant than that of Ara-
bidopsis thaliana (4 AtATPS), Brachypodium distachyon 

Fig. 10 Expression of the ChATPS gene in different concentrations of selenium stress and different tissues. A Expression of ChATPS family genes in roots 
under low-concentration selenium stress (100 µg Se L-1). B Expression of ChATPS family genes in leaves under low-concentration selenium stress (100 µg 
Se L-1). C Expression of ChATPS family genes in roots under high-selenium stress (80,000 µg Se L-1). D Expression of ChATPS family genes in leaves under 
high-selenium stress (80,000 µg Se L-1). The abscissa represents 9 ChATPS genes, and the ordinate represents different time points (0 (control group), 3, 
6, 12 and 24 h) under different treatments (0 µg Se L-1, 100 µg Se L-1 and 80,000 µg Se L-1) relative expression levels. Samples at 0, 3, 6, 12 and 24 h are 
represented by dark blue, light blue, green, orange and red, respectively. Each data point represents the mean ± standard deviation (SD) (n = 3). Error bars 
represent the standard deviation

 



Page 13 of 17Xiao et al. BMC Plant Biology          (2022) 22:491 

(2 BdATPS), Cucumis sativus (3 CsATPS), Oryza sativa 
(2 OsATPS), Phaseolus vulgaris (2 PvATPS), Prunus per-
sica (2 PpATPS), Sorghum bicolor (2 SbATPS), Solanum 
lycopersicum (3 SlATPS), Brassica rapa (6 BrATPS), Vitis 
vinifera (2 VvATPS), and Daucus carota (3 DcATPS) [38]. 
Among them, ChATPS1-2 is shorter than other genes 
and lacks the motif of ATPS feature. We did not perform 
functional analysis or gene expression analysis. However, 
there are still few studies on the interaction mechanism 
between ATP sulfurase and selenite or selenite. Using 
molecular docking technology to model the interaction 
between ATP sulfurase and selenate model compounds, 
we observed that ChATPS bound with the greatest effi-
ciency to selenate, while its bond with sulfite was weaker. 
In addition, we found that the binding orientation of the 
ligand model compounds inside ATPS varied greatly. The 
site of minimum binding energy is the same for selenate 
and selenite and different from that of sulfate (Table S5 
and S6). This indicates that selenium hyperaccumulators 
appear to be able to differentiate between sulfate and sel-
enate uptake and to preferentially accumulate selenium 
over sulfur, which is consistent with the experimental 
results of Schiavon et al. [57].

To better understand the molecular functions of ATPS 
genes under selenium stress, RT-qPCR was used to anal-
yse the expression of eight ChATPS genes in leaves and 
roots of C. hupingshanensis under different concentra-
tions of selenium (Fig. 10). Under the low selenium con-
centration treatment, the expression level of ChATPS1-2 
in roots was upregulated by approximately 29-fold, which 
was significantly higher than that in the roots of the high 
concentration of selenium treatment (approximately 10 
times), which had a certain stress effect on C. huping-
shanensis. Additionally, the ChATPS1-2 gene also has a 
strong affinity for sodium selenate, which catalyses the 
reaction under suitable growth conditions of selenium 
concentration, accelerates the metabolism of selenium, 
and shows a strong ability to accumulate selenium. We 
think that the low expression level of genes with strong 
affinity prevents excess selenium from entering the met-
abolic pathway, thereby resisting the stress of high con-
centrations of selenium and showing excellent selenium 
tolerance. We speculate that C. hupingshanensis evolved 
more ATPS gene members than Arabidopsis and other 
higher plants to adapt to the high-selenium environ-
ment. This phenomenon deserves our attention in future 
explorations of the mechanism. Additionally, the upregu-
lation of ChATPS1-2 gene expression was significantly 
higher than that of other members, and the affinity of 
ChATPS1-2 protein with the substrate was also stronger 
in the molecular docking simulation exploration. Based 
on the above two points, we will select the ChATPS1-2 
gene for further research.

The ATPS family genes of C. hupingshanensis shared 
conserved structures and motifs but had a stronger 
affinity for selenate. This allows inorganic selenium to 
enter metabolic pathways faster, helping plants accu-
mulate selenium. First, ChATPSs exhibited high simi-
larity to AtATPSs in motifs, ATPS-type domains, CDS 
regions, and exons (Fig.  3B), which makes them persist 
in catalytic function. Based on their interfamily similari-
ties, relation with their homologues from other species, 
such as Arabidopsis thaliana, and motif distribution, the 
ChATPS gene family was classified into four subfamilies. 
The obtained results are in line with those of previously 
reported studies in Arabidopsis. Moreover, the conserved 
MEME motifs of ATPS proteins also exhibited corre-
sponding permutation and combination with their phy-
logenetic relationship (Fig. 3 C). These results implied the 
possibility that the ATPS gene family may function in a 
conserved manner in C. hupingshanensis and Arabidop-
sis. Analysis of the characteristics of the identified ATPS 
proteins showed that all ATPSs have no signal peptides 
and no transmembrane region. The absence of a sig-
nal peptide, transmembrane domain and cysteine resi-
dues and disulfide bonds indicate that these proteins are 
likely intracellular in nature. In addition, according to the 
conserved amino acid residue analysis, two conserved 
domains present in ChATPS are the PP-loop and HXXH 
motif (Fig. 5) [44, 56, 58], which constitutes Site1 of these 
proteins. In addition, the results of molecular docking 
calculated by computer algorithms cannot completely 
simulate the actual conformational changes of proteins. 
Therefore, when we docked the protein as a semiflexible 
molecule to the substrate, the optimal binding region did 
not appear in the catalytic domain. We are still conduct-
ing further biological experiments to explore the true 
binding form. On the other hand, after molecular dock-
ing simulations, it was found that the ligand selenate has 
a stronger affinity for the ChATPS protein than AtATPS. 
In terms of amino acid composition at the affinity site, 
hydrogen bonds, salt bridges and π-cation interactions 
together form affinity interactions. Additionally, we 
found that the sites with higher affinity in the ChATPS 
protein were enriched in the following residues: Arg105, 
Gly106, Arg109, Ser111 and Glu112. These residues con-
stitute a relatively conserved sequence 105RGXXRXSE112 
in the ChATPS genes (Fig. 5).

In conclusion, the results of this study provide impor-
tant insights into the function of ChATPS genes in Se 
hyperaccumulators and their responses to selenium 
stress conditions. In this context, nucleotide and protein 
sequence analysis and phylogeny, determination of gene 
expression profiles of C. hupingshanensis under selenium 
stress, and 3D structure prediction of ChATPS was per-
formed. Notably, the ATPS gene is highly conserved. In 
addition, the C. hupingshanensis ATPS gene showed 
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different expression patterns according to time and stress 
intensity, indicating dynamic regulation. The results of 
this study may support the understanding of the sele-
nium assimilation pathway in higher plants under abiotic 
stress conditions.

Materials and methods
Genome-wide identification of ATPS Family genes
C. hupingshanensis genome and its annotation file were 
obtained from the Genome Warehouse BIG Data Cen-
ter under accession number PRJCA005533. To identify 
the ATPS gene family in C. hupingshanensis, the AtATPS 
protein sequences were downloaded from the Arabidop-
sis Information Resources (TAIR) database (https://www.
arabidopsis.org/). Using AtATPS as the query sequence, 
the most representative ChATPS protein sequence was 
extracted by the Blast Zone of TBtools software [59]. In 
addition, the extracted ChATPS proteins were further 
checked by NCBI BLAST (https://blast.ncbi.nlm.nih.
gov/blast/Blast.cgi). The conserved domains of ChATPS 
proteins were analysed by CD-search (https://www.ncbi.
nlm.nih.gov/Structure/cdd/wrpsb.cgi).

Bioinformatic analysis of the ATPS genes
ChATPS chromosomal location information was 
extracted from the C. hupingshanensis genome GFF file 
and plotted by “Gene Location Visualize from GTF/
GFF” of TBtools software. In addition, the molecular 
weight (MW), isoelectric point (pI) and other physi-
cal and chemical properties of the ChATPS family can 
be predicted and analysed using the online tool ExPASy 
(https://web.expasy.org/protparam/) [60]. The online 
software SignalP 5.0 (http://www.cbs.dtu.dk/services/
SignalP/) was used to predict signal peptides. WoLF 
PSORT (https://wolfpsort.hgc.jp/) was used for ChATPS 
gene subcellular localization predictions. The transmem-
brane regions of proteins were analysed by TMHMM 2.0 
(http://www.cbs.dtu.dk/services/TMHMM/) [61]. The 
AtATPS and ChATPS protein sequences were aligned by 
ClustalW (https://www.genome.jp/tools-bin/clustalw), 
and the alignment result was further processed by ESP-
ript 3.0 (https://espript.ibcp.fr/ESPript/cgi-bin/ESPript.
cgi) to output the image [50].

Submit the ChATPS and AtATPS protein sequences to 
perform a conserved motif scan on the MEME website 
(http://meme-suite.org/tools/meme) with the MEME-
motif set to 10. ChATPS and AtATPS protein sequences 
were submitted to CDD: NCBI’s conserved domain 
database (https://www.ncbi.nlm.nih.gov/Structure/
bwrpsb/bwrpsb.cgi) to obtain conserved domain infor-
mation. The intron-exon gene structure information of 
the ChATPS and AtATPS genes was extracted from the 
GFF files of the respective genomes. Submit the Newick 
Tree file output by MEGA, the xml file obtained from 

the MEME website, the HitDate file and genome GFF file 
obtained by NCBI-CDD, and visualize by “Gene Struc-
ture View (advanced)” of TBtools.

Phylogenetic analysis of ChATPS
To explore the phylogenetic relationship of ChATPS 
family genes, 4 from Arabidopsis thaliana (At), 8 from 
Camelina sativa (Cs), 4 from Brassica rapa (Br), 4 from 
Brassica napus (Bn), 4 from Brassica oleracea (Bo), 2 
from Oryza sativa (Os) and 2 from Zea mays (Zm) were 
downloaded from NCBI for multiple sequence align-
ment. The amino acid sequences were aligned using 
Clustal W, and then a maximum likelihood (ML) tree was 
constructed with all of the ChATPS protein sequences 
using MEGA 11, bootstrap = 1000 repetitions.

Homology modelling and validation of ChATPS
SOPMA was used to predict the protein secondary struc-
ture [62]. Then, we searched and selected the best crystal 
structure as a template in the SWISS-MODEL (https://
swissmodel.expasy.org/) template library and used the 
SWISS-MODEL web server to model the ChATPS pro-
tein homology. The final 3D models of ChATPS were 
validated using the online server SAVES 5.0 (https://ser-
vicesn.mbi.ucla.edu/SAVES/) with various functions.

Ligand Preparation and Molecular Docking
The compounds (ATP, selenate, selenite, sulfate, sulfite) 
used in this study were selected from the Chemspider 
database. Their structures were sketched with ChemS-
ketch saved in protein data bank format. PrankWeb [52] 
was used to predict protein active sites.

Experiments with the docking of proteins and ATP 
sulfurylase were performed using AutoDock v4.2 and 
AutoDock Vina v1.1.2 [53]. We used AutoDock v4.2 to 
modify proteins and ligand compounds, adding all hydro-
gens, incorporating nonpolar hydrogens and calculating 
Gasteiger charges. We used AutoDock Vina to perform 
the molecular docking of compounds with ATP sulfury-
lase proteins with the exhaustiveness setting at 10. The 
best aptamer conformations are selected based on their 
minimal binding energies.

First, the ATP-Protein complex PDB file was formed 
by docking the substrate ATP with the binding pock-
ets of each protein molecule by AutoDock Vina and 
PyMOL. Only pockets with negative binding energy can 
be docked in the next step. Then, the small molecule 
ligand and ATP-protein complex PDB files were docked 
by AutoDock Vina to form a small molecule-ATP-protein 
complex PDB file. The interaction of the small molecule-
ATP-protein complex (hydrogen bond and hydrophobic 
interaction) was analysed and visualized by PLIP and 
PyMol, and the docking binding energy was visually 
analysed by GraphPad Prism version 9.0.0 for Windows, 
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GraphPad Software, San Diego, California USA, www.
graphpad.com.

Gene expression analysis
Seeds of C. hupingshanensis were collected from the 
Yutangba Colour Mine in Enshi, Hubei Province, China. 
Plants were placed in a room with a constant tempera-
ture of 22 ± 1 °C, a photoperiod of 16 h, and an irradiance 
of 1500 mol− 2 ms− 1. Thirty-nine seedlings approximately 
10  cm tall and four months old were selected, and the 
roots were rinsed with vermiculite and equilibrated in 
Hoagland’s solution for two days. The samples were 
treated with selenium at different concentrations (0 µg Se 
L-1, 100  µg Se L-1, 80,000  µg Se L-1), the actual concen-
tration of elemental selenium coming from the selenite 
(analytical reagent, Sinopharm Chemical Reagent Co., 
Ltd, Shanghai, China), and the samples treated with 0 µg 
Se L-1 were used as experimental controls. Leaves and 
roots of 3 seedlings were isolated from each treatment at 
0 h, 3 h, 6 h, 12 and 24 h, and these samples were snap 
frozen in liquid nitrogen for RNA extraction.

Total RNA was extracted from root and leaf samples 
by the TRIzol method, and the RNA concentration and 
quality were detected by a NanoDrop 2000. RNA integ-
rity and genomic DNA contamination were detected 
by gel electrophoresis. RNA samples were treated with 
RNase-Free DNase to remove residual genomic DNA. 
Real-time PCR was performed on ABI StepOne Plus. 
The primers used in qRT-PCR analysis for ChATPS are 
shown in Table S4. The EvoScript RNA SYBR Green I 
Master Kit (Roche) was used to quantitatively detect the 
expression of target genes in the samples, and the ΔΔ-CT 
method was used to calculate the gene expression. Col-
umn graphs were generated using GraphPad Prism ver-
sion 9.0.0 for Windows, GraphPad Software, San Diego, 
California USA, www.graphpad.comprism. All assays 
were carried out in triplicate.
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