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Abstract 

Background: A gene family comprises a group of genes with similar functional domains that play various roles in 
plant growth, development, and responses to environmental stimuli. Barley (Hordeum vulgare L.) is the fourth most 
cultivated cereal crop worldwide, and it is an important model species for genetic studies. Systematic identification 
and annotation of gene families are key for studies of molecular function and evolutionary history.

Results: We constructed a multi-omics database containing 5593 genes of 77 gene families called the Barley Gene 
Family Database (BGFD: http:// barle ygfdb. com). BGFD is a free, user-friendly, and web-accessible platform that pro-
vides data on barley family genes. BGFD provides intuitive visual displays to facilitate studies of the physicochemical 
properties, gene structure, phylogenetic relationships, and motif organization of genes. Massive multi-omics datasets 
have been acquired and processed to generate an atlas of expression pattern profiles and genetic variation in BGFD. 
The platform offers several practical toolkits to conduct searches, browse, and employ BLAST functions, and the data 
are downloadable.

Conclusions: BGFD will aid research on the domestication and adaptive evolution of barley; it will also facilitate the 
screening of candidate genes and exploration of important agronomic traits in barley.
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Background
A gene family is made up of homologous genes having 
a common ancestor and possessing two or more copies 
that originate from gene duplication [1–3]. Members of 
the same gene family sometimes can be closely placed to 
form a cluster of genes. However, most of the time they 
are distributed in different locations on the same chro-
mosome or scattered across different chromosomes [4]. 
Gene duplication and loss are primary factors during 
the dynamic evolution of gene families [5]. Duplications 

arise mostly through two major processes, small-scale 
duplications (SSD), such as segmental, tandem, and 
transposon-mediated, and whole-genome multiplications 
(WGM) [6]. Initially, the evolutionary outcome of gene 
duplication is to accelerate excessive redundancy. As the 
duplicated genes evolve, some accumulate deleterious 
mutations and are lost, whereas others gain new func-
tions and are permanently preserved, eventually reducing 
or eliminating redundancy [7].

Genes of the same family have similar structure and 
function, encoding functionally related protein products 
with conservative domains [8]. Evidence suggests that 
gene families are the master regulators for diverse bio-
logical processes [9]. Some well-documented examples 
are transcription factor (TF) gene families, such as heat 
shock transcription factor (HSF), APETALA2/ethylene-
responsive factor (AP2/ERF), NAM/ATAF/CUC (NAC), 
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and basic helix-loop-helix (bHLH). These TF gene fami-
lies are now known as crucial regulators of various stress 
responses, e.g., their response to hormones improves 
plant viability under environmental adversities [10, 11]. 
In addition to participating in specific stress responses, 
TF gene families are implicated in stress tolerance, play-
ing a critical role in interconnected stress regulatory net-
works [12]. Additionally, many TFs are involved in plant 
growth and developmental processes mediated by plant 
hormones, such as abscisic acid (ABA), gibberellin (GA), 
and brassinosteroid (BR) [13, 14]. The involvement of TFs 
in hormone signaling pathways increases the complexity 
of the multifaceted regulatory networks [15].

From the origin of agriculture to the present, bar-
ley (Hordeum vulgare L.) has been the most important 
temperate crop, ranking fourth among cereals in terms 
of both farming acreage and tonnage harvested [16]. 
Approximately 75% of barley global production is used 
as an ingredient in animal feed, 20% is utilized for the 
preparation for alcoholic and non-alcoholic beverages, 
and the remaining 5% is used for a variety of other food-
stuffs [17]. Barley is well-adapted to a wide range of harsh 
environmental conditions, including high salinity, low 
temperature, and intense ultraviolet exposure in high-
altitude areas [18]. Compared to its close relative wheat, 
barley is stress-tolerant. Consequently, it is a stable 
source of food for humans in poorer countries, sustain-
able in marginal and variable environments [19].

The assembly of barley genome has long been lagged 
due to its high content of transposon elements and 
large genome size. Thanks to high-throughput sequenc-
ing technologies (e.g., chromosome conformation cap-
ture (Hi-C), 10X genomics and Bionano Genomics 
optical map) and advanced algorithms (e.g., TRITEX 
pipeline), the barley Morex assembly was first released 
in 2012 [19] and its subsequent revisions have experi-
enced many rounds of improvement (Morex V1 and 
V2) [20, 21]. It should be of note that the most updated 
Morex V3 reference genome was generated by PacBio 
High-Fidelity (HiFi) sequencing, which displayed excel-
lent performance and near-complete coverage in the 
repeat-rich intergenic regions. Since the same RNA-seq 
datasets were employed for gene annotation, the gene 
models of Morex V3 showed almost completed align-
ments (≥99% identity and ≥95% alignment coverage) 
with the Morex V2 assembly [22]. Recently, the publica-
tion of the first-generation barley pan-genome has also 
greatly expanded the amount of natural and induced 
sequence variation available to genetic and breeding 
studies [23].

With the advent of multi-omics data, more and more 
gene families have been identified and analyzed in bar-
ley. For instance, members of the mTERF gene family 

are implicated in signaling pathways in response to 
abiotic stresses [24]. The HAK/KUP/KT potassium 
transporter gene family is induced by salt, drought, and 
potassium (K) deficiency stresses [25]. The role of the 
bZIP TF family as related to starch synthesis has been 
reported [26]. Many other gene families have been well-
documented in barley, such as xyloglucan endotrans-
glucosylase/hydrolases (XTHs) [27], non-specific lipid 
transfer proteins (nsLTPs) [28], SQUAMOSA-promoter 
binding like (SPL) [29], and GRAS (named after the first 
three identified proteins within this family, GAI, RGA, 
and SCR) [30] gene families. However, there is no inte-
grated database with large-scale multi-omics data for 
barley gene families.

To facilitate research on the rapidly growing amount of 
data, we built the Barley Gene Families Database (BGFD) 
(http:// barle ygfdb. com), which contains data on genes from 
77 gene families including 37 TF families. BGFD provides 
basic information on barley gene families, such as their 
physicochemical properties, chromosomal locations, exon-
intron structures, conserved domains, and phylogenetic 
relationships. Large-scale multi-omics datasets, including 
13 transcriptome experiments spanning 413 separate sam-
ples, 220 exome-captured sequencing accessions, and 22 
newly released reference genomes, facilitate the acquisition 
of tissue-specific, stage-specific, and stress-induced expres-
sion profiles, as well as genomic variation landscapes. The 
database has an organized and user-friendly web interface. 
Users can query BGFD to display and search the detailed 
annotations using gene information, such as gene family 
names, gene IDs, and genomic regions. This database pro-
vides comprehensive information on barley genes and is a 
useful exploratory tool for functional genomics research 
and the molecular breeding of barley.

Construction and content
Data resources and identification of gene families
The genomic information of barley reference assem-
bly (Morex V2) was retrieved from the IPK data-
base (https:// doi. org/ 10. 5447/ ipk/ 2019/8). Genes are 
always clustered into families based on their conserved 
domains [31]. The Hidden Markov Model (HMM) pro-
files of the 77 gene families were obtained from the 
Pfam database. For each gene family, the HMM profile 
was used as a query to search against the barley proteins 
using HMMER v.3.1 with an e-value of 0.001. The puta-
tive proteins were further validated using the InterPro 
(http:// www. ebi. ac. uk/ inter pro/), the National Center 
for Biotechnology Information–Conserved Domain 
Database (NCBI-CDD) (http:// www. ncbi. nlm. nih. gfov/ 
Struc ture/ cdd/ cdd. shtml) and the PFAM (http:// pfam. 
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xfam. org) databases. Candidates confirmed by at least 
one database were retained.

Characterization of basic information
The nucleotide sequences, protein-coding sequences, 
protein sequences, chromosome location, strand, and 
sequence length were obtained based on the gene trans-
fer format (GTF) file. The physicochemical characteris-
tics, including molecular weight (MW), theoretical point 
(pI), instability index (II), and grand average of hydro-
pathicity (GRAVY) were calculated using the online tool 
ExPASy (http:// web. expasy. org/ protp aram/).

Phylogenetic relationship, gene structure, and conserved 
motif analysis
A multiple sequence alignment of full-length proteins 
was carried out using ClustalW v2.1. A neighbor-join-
ing (NJ) tree was generated using MEGA X with 1000 
bootstrap replicates. An online Multiple Expectation 
Maximization for Motif Elicitation (MEME) was used to 
detect conserved motif patterns with a maximum num-
ber of motifs set at 8 and an optimal motif width range 
from 6 to 50 amino acids. The intron and exon annota-
tions were obtained from the GTF file and the gene 
structure was displayed using the Gene Structure Display 
Server (GSDS) (http:// gsds. cbi. pku. edu. cn/). The 1.5 kb 
sequence, upstream, gene coding regions were extracted 
and submitted to the online PlantCARE database to 
detect the cis-elements within promoters.

Identification of orthologous genes
The protein sequences of rice and Arabidopsis were down-
loaded from the Ensembl Plants database (https:// oct20 17- 
plants. ensem bl. org/ index. html). Orthologous relationships 
between barley and rice, and between barley and Arabi-
dopsis were generated using the program Inparanoid v8.0. 
The synonymous substitution rate (Ks), non-synonymous 
substitution rate (Ka), and Ka/Ks ratio were estimated for 
orthologous gene pairs using codeml of PAML v4.3. The 
orthologous relationships were plotted using Circos v0.67. 
Divergence time was inferred using the formula T = Ks/2λ, 
where T is the time of duplication, Ks indicates the synony-
mous substitutions per site, and λ is the mutation rate of 
the divergence of plant nuclear genes (λ = 6.5 ×  10-9).

Expression patterns of barley gene families
A total of 13 publicly available RNA-seq experiments 
composed of 413 samples with replicates were obtained 
from the NCBI sequence reading archive (SRA) database. 
Detailed information for each experiment (accession num-
ber, project description, and relevant publication) is given 
in Supplementary Table 1. Low-quality reads were removed 

using Trimmomatic v0.39 (https:// github. com/ usade llab/ 
Trimm omatic). Clean reads were mapped to the barley 
reference genome using HISAT v2.1.0. Aligned reads were 
sorted using SAMtools v1.3.1. The fragments per kilobase 
per million reads (FPKM) of each gene were calculated 
according to the reference annotation file. The expression 
level was visualized by the pheatmap package of R.

Nucleotide variation identification
The whole-exome sequencing datasets of 220 barley 
accessions collected worldwide were downloaded from 
the NCBI SRA database under the BioProject acces-
sion number: PRJEB8044 (Exome Capture to Study 
Genomic Diversity, Adaptation, and Selection in Barley) 
[32]. Read quality was evaluated and low-quality reads 
were filtered using Trimmomatic v0.39. The high-qual-
ity reads were aligned to the reference genome using 
BWA-MEM v0.7.13r1126. Picard v1.119 tools were used 
to clean, sort, and mark PCR duplicates of binary align-
ment map (BAM) files. Variant calling of BAM files was 
performed using the Haplotype Caller tool embedded in 
GATK v3.5-0-g36282e4. Single nuclear polymorphisms 
(SNPs) with minor allele frequency (MAF) <0.05 or 
>0.95, or missing rates >0.90 were removed. Only bial-
lelic alleles were retained. Functional annotation and 
impact on coding regions of variation were determined 
using SnpEff v4.3. The upstream and downstream region 
of the gene was set to 3kb.

Clustering of ortholog groups (OGs) and syntenic 
relationships of genes within the barley pan‑genome
Publicly available barley genomes were downloaded 
from the following websites: http:// viewer. shigen. info/ 
barley/ index. php  (wild barley accession “OUH602”) 
[33], http:// viewer. shigen. info/ harun anijo/ index. php 
(Japanese elite malting barley cultivar ’Haruna Nijo’) 
[34], and https:// barley- pange nome. ipk- gater sleben. de 
(barley pan-genome project) [23]. This same approach 
was used to identify gene family members in the barley 
pan-genome. To make comparisons among family gene 
repertoires, OGs were identified using OrthoFinder 
v2.4.0 with default settings, except that the ‘msa’ 
option was used. The OGs identified were further 
divided into three parts: core OGs, which represent 
the set of OGs common to all barley accessions; shell 
OGs containing accession-specific OGs common to a 
subset of accessions; and cloud OGs, which are specific 
to unique barley accessions. Furthermore, the synteny 
blocks between pairwise genomes were identified 
between pairwise barley genomes using JCVI-syn2.0 
software, which is the Python version of MCSCAN. 
The shared and specific gene family members between 
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genomes were detected using an in-house script writ-
ten in Python.

Server, operating system, and website construction
The webserver was hosted on a lightweight application 
server of Tencent cloud (https:// cloud. tence nt. com/), 
freely accessible for non-commercial use via its website. 
Linux system CentOS v7.6.1810 (http:// www. centos. org) 
was installed on the server. The front end of the webpage 
is implemented in HTML (https:// www. w3. org/ html/) 
CSS (http:// www. w3. org) and JavaScript (https:// www. 
javas cript. com/), and PHP (https:// www. php. net/) sup-
ported the server-side back-end. Multi-omics data were 
processed and stored in the MySQL v5.6.50 database 
server following the MySQL operations manual. JBrowse 
was installed to provide a user-friendly interface capable 
of accessing genome information of interest. ViroBLAST 
constructed a standalone database so online BLAST 
searches could be performed. Some local scripts were 
rewritten to provide additional search services.

Utility and discussion
Comprehensive identification and characterization of gene 
families in barley
BGFD is a database of barley gene families; it provides 
comprehensive information at both the gene and family 
levels (Figs. 1 and 2). HMM search and online database 
validation were used to generate a comprehensive list of 
gene families. A total of 77 gene families composed of 
5593 members were identified. LRR-RLK possessed the 
largest number of gene family members (502), whereas 
Whirly had the smallest number (2). The home page 
for each gene family provides links (on the left naviga-
tion menu) to its interfaces along with a brief introduc-
tion. Other information, such as gene IDs, chromosomal 
location, strand, and protein length, is provided for each 
gene. Each member has a separate display window for 
other types of information, such as information on phys-
icochemical properties, GO annotations, and alternative 
gene IDs in the Morex V1 and V3 assemblies. BGFD also 
provides relevant publications for access to more detailed 
information. The full text of the related articles can be 
accessed by clicking on the hyperlinks. BGFD also fea-
tures a scrolling functionality to facilitate data retrieval.

Phylogenic relationships, structure, and conserved motif 
organization of barley gene families
To further elucidate the evolutionary relationships of 
specific gene families, multiple sequence alignment 
was carried out using full-length protein sequences. 
An unrooted phylogenetic tree was constructed using 

the neighbor-joining method with 1000 bootstrap rep-
licates. The clustering profile and member assignment 
can be determined visually. Users can download the 
multiple alignment outputs in FASTA file format and re-
construct the phylogenetic tree based on their personal 
preferences.

Characterization of the intron-exon structure of genes 
not only facilitates our understanding of functional 
diversification within gene families but also provides 
additional characters that can be used in phylogenetic 
analyses. Intuitive diagrams of gene structure are pro-
vided in BGFD. The black lines and yellow boxes display 
introns and exons, respectively. The scale bar represents 
the length at the bottom of the picture. Eight conserved 
motifs were identified through MEME online tools. The 
distribution of conserved motifs represents the core 
regions associated with the biological functions of genes. 
The colored boxes represent different conserved motifs. 
Consensus sequences of conserved motifs are shown at 
the bottom of the webpage. The location of each motif is 
estimated using the scale at the bottom.

Ortholog analysis between Arabidopsis and rice of barley 
gene families
To provide preliminary information that would aid the 
cross-referencing and classification of genes from differ-
ent species, Arabidopsis and rice were used to identify 
orthologs in barley. The number of shared orthologous 
genes was 43.84% in Arabidopsis and 56.16% in rice. The 
distribution of orthologous gene pairs was consistent 
with their genetic relationships. Ka/Ks ratios were cal-
culated to characterize the mechanisms underlying the 
evolution of these gene families. Generally, Ka/Ks < 1, 
Ka/Ks = 1, and Ka/Ks >1 indicate negative (purifying), 
natural, and positive selections, respectively. Ka/Ks ratios 
between barley and rice ranged from 0.001 to 0.7592 with 
an average of 0.1748; by comparison, the average Ka/Ks 
ratio was 0.0409 (0–0.4000) between barley and Arabi-
dopsis. These orthologous gene pairs can facilitate evolu-
tionary and functional analysis of barley genes.

Temporal‑spatial and stress‑induced expression profiles
Analysis of stage-specific, tissue-specific, and stress-
induced expression patterns will serve as a valuable 
resource for the potential functions of genes in plant spe-
cies. Expression profiles were quantified using 13 RNA-
seq experiments spanning 413 samples from various 
genotypes, tissues/stages, and abiotic and biotic stress 
conditions. Expression levels of barley family genes were 
evaluated by FPKM. The data were presented in a freely 
available single interface that provided numerical and 
visual options to profile barley family genes across all the 
tested RNA-seq datasets. Users can make comparisons 

https://cloud.tencent.com/
http://www.centos.org
https://www.w3.org/html/
http://www.w3.org
https://www.javascript.com/
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between RNA-seq samples, including the expression pat-
terns of genes of interest in different tissues and stages 
and under different stress conditions. For example, 
after searching HORVU.MOREX.r2.2HG0149900 in the 

caleosin gene family, a tissue-specific pattern of higher 
expression in the developing grain (15 days after pollina-
tion) was observed; however, its expression was low in 
other tissues/stages. The expression of HORVU.MOREX.

Fig. 1 The home page of BGFD
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Fig. 2 The gene family page of BGFD (e.g., Alfin-like)
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r2.5HG0442310 in the LRR-RLK gene family was up-
regulated ~134.64-fold compared with the control under 
cold treatment. These findings indicate that these genes 
would make candidate targets for the functional cloning 
and molecular breeding of barley.

Cis-elements play essential roles in the transcriptional 
regulation of genes throughout the life cycle of plants. To 
get a preliminary insight into the regulatory mechanism 
and biological functions of barley family genes, the cis-
acting regulatory elements within the promoters were 
integrated into BGFD. A total of 56 kinds of functional 
cis-elements were identified and classified into five cat-
egories: hormone-responsive elements, light-responsive 
elements, organogenesis-related elements, stress-related 
elements, and structure and composition elements. 
Twenty functionally important cis-elements were dis-
played using a heatmap. Determining the variety and 
quantity of regulatory elements could provide insight 
into the regulatory mechanisms of genes involved in 
hormone signal transduction, plant growth and develop-
ment, and responses to abiotic and biotic stress. Data on 
promoter sequences, categories, and abundances of the 
cis-elements can be downloaded by clicking the “Down-
load” button.

Variation analysis of barley gene families
SNPs are the most common type of genomic variation in 
living organisms [35]. A total of 270,632 high-confidence 
SNPs were identified from the exome sequencing data of 
220 diverse barley germplasms representing 85 wild bar-
ley accessions and 135 barley landraces worldwide. The 
SNPs located in the gene-associated regions, including 
the upstream, exon, intron, and downstream regions, 
were retained. The interface summarizes information 
for the nucleotide variants of each gene. These nucleo-
tide variants can be retrieved in a variant call format 
(VCF) file. The genetic variants are valuable for molec-
ular marker-assisted selection, genome-wide associa-
tion studies of important agronomic traits, and research 
into the domestication and adaptive evolution of barley. 
For example, HORVU.MOREX.r2.4HG0282710 (CYP), 
HORVU.MOREX.r2.7HG0614640 (NBS-LRR), and 
HORVU.MOREX.r2.3HG0252360 (WRKY) were highly 
divergent between barley landraces and wild barley 
accessions based on nucleotide variants, and these genes 
experienced severe genetic bottlenecks during domes-
tication, suggesting that they might be domestication-
related candidate genes.

It is now widely agreed that one or a few reference 
genomes are insufficient for capturing the full range of 
genetic diversity of a species [36]. The additional bar-
ley genomes [33, 34] and pan-genome [23] recently 
published reveal a high degree of structural variation, 

including inversions, translocations, copy number vari-
ation (CNV), and presence/absence variation (PAV), 
which facilitates exploration of the alleles of agronomi-
cally significant genes. This approach has been used to 
identify 263,267 gene family members within the bar-
ley pan-genome. OG analysis revealed 4099 core, 7405 
shell, and 33 cloud OGs within the barley pan-genome. 
The shell and cloud OGs might be involved in addi-
tional biochemical pathways and biological functions, 
and some of these might be candidate genes that could 
be explored in future functional investigations, as well 
as used to genetically improve barley. Large-scale syn-
teny blocks with large numbers of genes were identi-
fied between pairwise genomes. The average number of 
syntenic genes was 5273, which accounts for 94.27% of 
the reference genome (Morex V2), whereas no syntenic 
relationships were detected for the rest of the genes 
(5.73%). These data provide preliminary insights into 
the structural variation of barley family genes. Users 
also have the option to determine syntenic relation-
ships by applying different query genomes to the refer-
ence genomes.

Database implementation and practical tools
The BGFD is also implemented with family analysis-
related online tools. Our platform contains seven main 
sections, including the homepage, search tool, website 
introduction, BLAST service, JBrowse framework, down-
load, and contact information (Fig. 3).

Home The home page consists of three major parts. At 
the top of the website, we provide a brief introduction of 
the BGFD, followed by a list of 77 gene families including 
37 TF gene families. As the mouse hovers over a specific 
gene family, a brief introduction of the gene family comes 
up in the frame to the right.

Search The search function was embedded in BGFD 
to support various retrieval requirements. For query-
ing gene families or genes, users can search the BGFD 
by submitting the entire name of the gene family or the 
gene ID, and even a truncated version can be accepted. In 
addition, an advanced search model is provided in BGFD. 
Users can access an interface with a list of eligible genes 
using search criteria such as chromosome number, pro-
tein length, or exon number. The detailed annotation of 
gene results can be browsed by clicking on the super link 
of a gene ID.

Introduction The “Introduction” page provides a drop-
down menu from which users can browse the “Materials 
and Methods” used in BGFD. Data resources and official 
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Fig. 3 An illustration of the BGFD system. A The search functions. B Sequence Blast tools. C An introduction of BGFD. D JBrowse framework. E The 
download pages. F The contact information
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websites of the software can be visited by clicking on the 
links. The analysis workflow with detailed parameters is 
also shown on this page.

JBrowse Being universal and customizable, the JBrowse 
framework was integrated into BGFD to interpret and 
visualize the genomic features. JBrowse is highly port-
able and can be configured with data tracks that include 
Gene, mRNA, CDS (Coding Sequence), and 6-frame 
translation. With the help of this tool, users can acquire 
the genomic loci quickly and accurately, allowing breed-
ers to identify candidate genes that are associated with 
traits of interest.

BLAST The “BLAST” tool allows users to determine all 
information related to the fragment sequences. For exam-
ple, if a cDNA fragment is characterized in barley cDNA 
libraries, the BLAST search tools could be used. Users can 
submit the query nucleotide or amino acid sequences into 
the input box in FASTA format or directly upload text files. 
BGFD supports five basic BLAST algorithms (BLASTN, 
BLASTP, BLASTX, TBLATN, and TBLASTX). BLAST 
tools allow users to perform sequence similarity searches 
against the barley gene family genes. For advance searches, 
users can set parameters such as expected thresholds, max 
target sequences, and output format.

Download The entire data resources in BGFD are avail-
able for downloading and reanalysis by end-users.

About The “About” page displays some genetic external 
links that users can access quickly. This site also offers 
contact and other researcher information. Feedbacks 
from researchers are welcome and will inform future 
updates and developments of BGFD.

The advantages and features of BGFD
The advances in sequencing technology and bioinfor-
matics play key roles in deciphering complex genomes. 
New plant genome assemblies, especially for cereal 
crops, are being released. Comprehensive databases are 
desired for collecting, storing, and maintaining genom-
ics data for further study of underlying biological func-
tions and molecular mechanisms. The sequencing of 
the first Arabidopsis thaliana genome ushered in a new 
era for the identification of gene families at the whole 
genome scale [37]. Several Arabidopsis gene fam-
ily databases are available over the Internet. Approxi-
mately 70 families of TFs have been categorized in 
these public databases, including DATF [38], RARTF 
[39], and ARGIS [40]. Additionally, other competing 
databases, such as PlnTFDB [41], PlantTFDB v4.0 [42], 

GFDP [4], and MGFD [43], collect gene family data of 
Arabidopsis and other plant species. Once enormously 
helpful and informative, these underrepresented data-
bases now lag behind the steadily updated genomes and 
multi-omics data. These databases focus on the iden-
tification and primary characterization of gene fam-
ily members, while more useful information for users, 
such as expression patterns and variation atlas, are not 
included. To make better use of the multi-omics infor-
mation for crop research and breeding, it is essential 
to systematically use multi-omics data from different 
sources or integrate multi-omics data generated from 
the same panel.

BGFD has specific advantages and features:

 (1). BGFD is the first attempt to identify and char-
acterize barley gene families, an effort vitally 
important to the study of gene biological func-
tion and evolutionary history. The BGFD data-
base contains 77 gene families consisting of 5593 
genes making it the most comprehensive data-
base for barley gene family research.

 (2). BGFD integrates several generic database sources, 
including IPK, Pfam, Expasy, PlantCARE, and 
NCBI. Detailed information about gene structure, 
phylogenetic trees, syntenic relationships, and pro-
moter distribution is provided for each barley sin-
gle and family gene. BGFD also provides statistical 
analysis, including exon numbers, chromosome 
locations, and variant distributions. These annota-
tions provide a foundation for further gene isola-
tion and functional characterization.

 (3). The transcript abundances of barley family genes 
were quantified using an exhaustive collection 
of 13 available RNA-seq datasets consisting of 
413 samples with replicates. Expression profiles 
can be easily extracted to allow investigators 
to explore spatial-temporal and stress-induced 
expression profiles and biological functions of 
candidate genes. BGFD also features massive 
whole-exome resequencing (220 accessions) and 
pan-genome (22 accessions) datasets that could 
be used to evaluate both nucleotide and struc-
tural variants. The nucleotide and structural vari-
ations could be useful for the molecular breeding 
and characterization of functional genes with 
important agronomic traits in barley.

 (4). The BGFD interface is modern and accessible, 
allowing users to browse, search, and download 
areas of interest easily and effectively. The pro-
posed platform enables data visualization in dif-
ferent forms. Our database also realizes practi-
cal functions such as keyword retrieval, BLAST 
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alignment, and JBrowse browsing. The external 
links allow users to access other resources, thus 
adding or verifying gene family information to 
improve the accuracy of the data in BGFD.

Conclusions
The increasing volume of multi-omics data provides a 
valuable source of information for studies of barley gene 
families. We constructed BGFD (http:// barle ygfdb. com) 
to facilitate the use of the comprehensive information 
mined from the continually growing amount of multi-
omics data. We hope that BGFD will provide a valuable 
resource for future researchers and breeders interested 
in identifying candidate genes and functionally explor-
ing important agronomical traits in barley. Given that the 
amount of omics data continues to grow at a rapid pace, 
we plan to continuously collect and share multi-omics 
information, especially epigenomic, proteomic, and 
metabolomic data, by incorporating this information into 
BGFD to ensure that our platform is as comprehensive 
and up-to-date as possible. In addition, more web-based 
practical tools for conducting studies of barley gene fami-
lies will be developed and incorporated into BGFD in the 
future.
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