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Abstract 

Background: Establish a molecular breeding program involved assembling a diverse germplasm collection and gen‑
erating accurate genotypes to characterize their genetic potential and associate them with agronomic traits. In this 
study, we acquired over eight hundred wheat accessions from international gene banks and assessed their genetic 
relatedness using high‑quality SNP genotypes. Understanding the scope of genomic variation in this collection allows 
the breeders to utilize the genetic resources efficiently while improving wheat yield and quality.

Results: A wheat diversity panel comprising 39 durum wheat, 60 spelt wheat, and 765 bread wheat accessions 
was genotyped on iSelect 90 K wheat SNP arrays. A total of 57,398 SNP markers were mapped to IWGSC RefSeq v2.1 
assembly, over 30,000 polymorphic SNPs in the A, B, D genomes were used to analyze population structure and 
diversity, the results revealed the separation of the three species and the differentiation of CIMMYT improved breed‑
ing lines and landraces or widely grown cultivars. In addition, several chromosomal regions under selection were 
detected. A subset of 280 bread wheat accessions was evaluated for grain traits, including grain length, width, surface 
area, and color. Genome‑wide association studies (GWAS) revealed that several chromosomal regions were signifi‑
cantly linked to known quantitative trait loci (QTL) controlling grain‑related traits. One of the SNP peaks at the end of 
chromosome 7A was in strong linkage disequilibrium (LD) with WAPO-A1, a gene that governs yield components.

Conclusions: Here, the most updated and accurate physical positions of SNPs on 90 K genotyping array are provided 
for the first time. The diverse germplasm collection and associated genotypes are available for the wheat research‑
ers to use in their molecular breeding program. We expect these resources to broaden the genetic basis of original 
breeding and pre‑breeding materials and ultimately identify molecular markers associated with important agronomic 
traits which are evaluated in diverse environmental conditions.
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Background
Wheat is the most widely grown cereal crop species 
in terms of cultivation area, ranking third in yield pro-
duction and accounting for approximately 20% of the 
total daily calories and protein supply worldwide [1, 2]. 
Wheat provides important nutrients, including vita-
mins, dietary fiber, minerals, and phytochemicals, that 
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are beneficial for human health [3]. The domestication 
of wheat occurred approximately 10,000 years ago. Spe-
cifically, two interspecific hybridization events were 
involved in the evolution of the modern hexaploid wheat 
Triticum aestivum (2n = 6x = 42, AABBDD). Cultivation 
and selection of wild emmer wheat led to the forma-
tion of the domesticated emmer wheat T. turgidum ssp. 
dicoccum (2n = 4x = 28, AABB), from which tetraploid 
durum wheat T. turgidum ssp. durum (2n = 4x = 28, 
AABB) evolved [4–6]. The origin of hexaploid spelt 
wheat (T. aestivum Ssp. spelta; 2n = 6x = 42, AABBDD) 
has been debated; it is not known whether spelt wheat is 
the ancestral form of hexaploid wheat or is derived from 
the hybridization of free-threshing hexaploid wheat and 
emmer wheat [7–9]. However, recent studies have sug-
gested that spelt wheat emerged from the hybridization 
between hexaploid T. aestivum and emmer wheat [5, 6, 
10].

The sequencing of the high-quality reference genome 
of the bread wheat cultivar Chinese Spring (International 
Wheat Genome Sequencing Consortium [IWGSC] Ref-
Seq v1.0) [11] has enabled the genome-wide discovery 
of high-density markers, the study of the transcriptional 
landscape [12], the comparative analysis of structural var-
iations [13], and the characterization of evolutionary his-
tory [6, 14, 15]. An improved genome sequence version, 
IWGSC RefSeq v2.1, was recently released. Sequenc-
ing gaps remaining in v1.0 were filled using PacBio long 
reads, and correction of scaffold orientation and ordering 
using a whole-genome optical map were achieved in this 
assembly [16]. With advancements in high-throughput 
genotyping technology, molecular marker discovery has 
accelerated. Detection of high-density single-nucleotide 
polymorphism (SNPs) via microarrays was applied to 
analyze the genome of tetraploid and hexaploid wheat 
species [17] and identify quantitative trait loci (QTLs) 
associated with agronomic traits [18–22], physiological 
traits [23], resistance to disease [24, 25], and resistance to 
preharvest sprouting [26].

Since the Green Revolution, significant breeding efforts 
have been made to increase wheat yields. Grain size 
and grain weight are components that determine yield 
potential, and several genes controlling grain-related 
traits have been identified and isolated via comparative 
genomics methods, including TaGS5 [27], TaGW7 [28], 
TaGS3 [29], TaCYP78A3 [30], and TaWTG1 [31]. In 
recent years, genome-wide association studies (GWASs) 
have been applied to wheat to identify trait-controlling 
variants [22, 32–34] by exploiting the historic recombi-
nant events that have accumulated over generations in 
wheat germplasms [35]. Several chromosomal regions 
associated with grain-related traits have been discovered 
in various wheat populations via association mapping 

approaches [22, 33, 36, 37]. Therefore, identifying QTL/
genes or molecular markers associated with grain-related 
traits is a prerequisite when applying marker-assisted 
selection, especially for pyramiding beneficial alleles in 
elite cultivars, to improve wheat yield and quality.

In this study, a diversity panel consisting of 765 bread 
wheat, 60 spelt wheat, and 39 durum wheat accessions 
was genotyped using the Illumina iSelect wheat 90 K SNP 
array. The physical positions of array probe sequences 
were mapped to IWGSC RefSeq v2.1, which was released 
in early 2021. SNP quality, including call rate and call 
score, was evaluated by several criteria and compared 
with the SNP quality of the variants detected by next-
generation sequencing (NGS). The population structure 
of this diverse wheat panel was assessed using SNPs with 
updated genomic positions, and a series of GWASs were 
then conducted to identify chromosomal regions associ-
ated with grain-related traits of bread wheat.

Methods
Plant material and SNP array genotyping
A wheat diversity panel comprising 39 durum wheat (T. 
turgidum ssp. durum), 60 spelt wheat (T. aestivum ssp. 
spelta), and 765 bread wheat (T. aestivum ssp. aestivum, 
spring wheat type) accessions were mainly obtained from 
the Wheat Germplasm Bank of the International Maize 
and Wheat Improvement Center (CIMMYT, Mexico) 
and the Germplasm Resources Information Network 
(GRIN) of the USDA-ARS (Supplementary Table S1). 
This collection included landraces (142), breeding mate-
rials (33), breeders lines (430), advanced/improved cul-
tivars (20), cultivars (197), genetic material (2), wild 
material (1), and some with uncertain improvement sta-
tus (40), the number of lines is indicated in parenthesis. 
Among four hundred and thirty breeders lines developed 
by CIMMYT’s wheat breeding program, three hundred 
and seventy lines have been evaluated in international 
and regional wheat trials such as Elite Selection Wheat 
Yield Trial (ESWYT, 24 lines), Semi-Arid Wheat Screen-
ing Nursery (SAWSN, 20 lines), High Rainfall Wheat 
Yield Trial (HRWYT, 12 lines), International Bread 
Wheat Screening Nursery (IBWSN, 44 lines), Fusarium 
Head Blight Screening Nursery (FHBSN, 98 lines), High 
Rainfall Wheat Screening Nursery (HRWSN, 126 lines), 
High Temperature Wheat Yield Trial (HTWYT, 46 lines).

The seeds used in this study were harvested from at 
least two-rounds of selfed propagation to ensure purity. 
The genomic DNA of each accession was extracted from 
fresh leaf tissue using a DNeasy 96 Plant Kit (Qiagen, 
Hilden, Germany) and checked for quality. The puri-
fied DNA was subsequently hybridized to an Illumina 
iSelect wheat 90 K SNP array, and array processing and 
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fluorescent signal detection were performed according to 
the manufacturer’s protocol (Illumina, San Diego, USA).

Assignment of the physical positions of iSelect 90 K SNP 
markers to the reference genome
The Illumina iSelect wheat 90 K SNP array involves 
81,587 functional assays [17]. To obtain the physical posi-
tions of each SNP marker, the flanking sequences of the 
markers were obtained from this study [17] and searched 
against the content TRansposable Elements Platform 
(TREP) database (v2016) [38] with the following param-
eters: evalue 1e-10, best hit_score_edge 0.05, and best_
hit_overhang 0.25. Markers highly similar to repetitive 
sequences were removed due to their difficult assignment 
to a specific chromosomal region.

The flanking sequences of the unique markers were 
mapped against the IWGSC RefSeq v1.0 [11] and IWGSC 
RefSeq v2.1 [16] assemblies of the bread wheat cultivar 
Chinese Spring via Basic Local Alignment Search Tool 
(BLAST). The parameters applied in the BLASTN algo-
rithm were as follows: evalue 1e-10, best hit_score_edge 
0.05, and best_hit_overhang 0.25. The chromosomal 
assignments of markers with multiple BLAST hits were 
determined based on the lowest E-value. The distribution 
of 90 K SNPs on the two assemblies was compared, the 
event involved in inconsistent SNPs orientation or order 
was defined by at least four adjacent markers, the inter-
val sizes delimited by markers at distal ends were calcu-
lated in IWGSC RefSeq v2.1. Gene annotation of SNP 
was retrieved from IWGSC RefSeq Annotations (https:// 
wheat- urgi. versa illes. inra. fr/ Seq- Repos itory/ Annot 
ations).

Development of a SNP calling pipeline to genotype diverse 
wheat accessions
The image files of fluorescent signals, generated by the 
Illumina iSelect genotyping assays, were analyzed using 
the Polyploid Genotyping Module implemented in 
GenomeStudio v2.0.4 (Illumina, San Diego, USA). For 
each SNP marker, allele clustering was performed on the 
selected samples using the parameters included with the 
density-based spatial clustering of applications with noise 
(DBSCAN) clustering algorithm. The most important 
parameters were “cluster distance” and “minimum num-
ber of points in the cluster”. To determine the best com-
bination of parameters, five cluster distances (0.02, 0.03, 
0.05, 0.07, and 0.09) and three minimum numbers of 
points in clusters (5, 8, and 10) were tested and evaluated 
for their performance. Because the wheat accessions used 
in this study had undergone several generations of self-
ing, the “inbred population” option was selected because 
only two allelic clusters representing homozygous AA or 
BB groups were considered.

Determination of the best parameter combination was 
based on the sample call rate, sample p10 GC score (the 
10th percentile of the distribution of GenCall scores for 
all SNPs), SNP call frequency, and SNP 10% GC score 
(the 10th percentile of the GenCall scores across all called 
genotypes). The genotype calls of Chinese Spring in our 
diversity panel were also used to evaluate SNP clustering 
performance. For markers with assigned physical posi-
tions, the corresponding genotypes at the same position 
in the Chinese Spring reference genome were extracted. 
The genotypes of Chinese Spring from our clustering 
results and the genotypes extracted from the reference 
genome sequence were then compared. Genotype calls 
(AA and BB) were converted to International Union of 
Pure and Applied Chemistry (IUPAC) nucleotide codes 
based on the information in Supplementary Table S5 in 
the study by [17]. Only SNPs assigned to unique physical 
positions were included in the final genotype table, which 
was subsequently converted to HapMap file format.

Principal component analysis (PCA) and linkage 
disequilibrium (LD) analysis
SNP markers with a minor allele frequency (MAF) 
smaller than 0.01 and a missing percentage greater than 
10% were removed. PCA was conducted in TASSEL 
v5.2.26 [39]. The software automatically converted the 
genotype data to numeric scores, and the missing data 
were imputed with the average score for each marker. 
Intrachromosomal LD was calculated using Plink v1.90 
[40]. The window size for the calculation of LD was set to 
25 Mb, and the LD between each pair of markers within 
the window was measured according to r2 values. To 
investigate LD decay in our diversity panel, the r2 values 
were plotted against the physical distance between each 
pair of markers, and a trend line was fitted using the Hill 
and Weir expectation of r2 [41], which was later modi-
fied by Remington et  al. (2001) [42]. LD decay across 
the whole genome and within each subgenome was cal-
culated for the three wheat species (durum wheat, spelt 
wheat, and bread wheat) in our dataset. The most com-
monly used threshold to declare no correlation between 
markers is an r2 of 0.1 or 0.2 [43]. For comparisons with 
the results of previous studies, values of LD decay using 
thresholds of r2 = 0.1 and 0.2 were reported.

Model‑based clustering analysis and genetic diversity 
index
The number of underlying subpopulations (K) in our 
diversity panel was determined using ADMIXTURE 
software [44]. The K value ranged from 1 to 12, and 
10-fold cross-validation was performed.  FST was calcu-
lated via GenoDive v3.04 to assess the genetic differen-
tiation between subpopulations [45]. The mean pairwise 
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difference (𝜋) for each subpopulation was calculated with 
TASSEL v5.2.56 [39]. We further detected genome-wide 
selection signals using BayeScan v2.1 [46] with the default 
parameter settings. A false discovery rate (FDR) < 0.05 was 
used as the threshold to identify significant SNPs.

Genotyping‑by‑sequencing (GBS)
A subset consisting of 96 bread wheat lines from the 
diversity panel was subjected to GBS. The GBS library 
was prepared according to the protocol developed by 
Elshire et  al. [47]. Briefly, genomic DNA was digested 
with ApeKI, followed by ligation of barcode sequences 
and common adapters. The barcoded samples were 
pooled and amplified by PCR, and the library was 
sequenced with a single-end length of 100 bp on an Illu-
mina HiSeq 2500 platform. The quality of the sequence 
reads was assessed using FastQC v0.11.8 [48]. SNP call-
ing was conducted via the TASSEL-GBS pipeline [49]. 
The reads were trimmed to 64 bp (not including the 
barcode) and subsequently mapped to the bread wheat 
reference genome IWGSC RefSeq v2.1 using Burrows-
Wheeler Aligner (BWA) [50].

Grain phenotyping and statistical analysis
The selected wheat accessions were grown over 2 years 
in the same experimental field. Within the same year, 
around 300 accessions were grown in the field with size 
around 0.1 ha, 18 individuals per accession were planted 
on one plot (plot size is 1 m × 1.2 m), two plots per acces-
sion were randomly arranged in the field. Mature grains 
of each accession were bulked, the dry and clean seeds (at 
least 100 grains and up to 600 grains per accession) har-
vested in two separate years (I and II) were scanned inde-
pendently by an Epson Perfection V600 flatbed scanner 
at a 24-bit and 300 dpi resolution, a black cardboard box 
was used to cover the scanner to reduce internal reflec-
tion from the light emitted during scanning. The scanned 
image was saved as a JPG file for processing. Color cali-
bration was performed by using the color Palette and his-
togram functions in Epson Perfection V600 Professional 
Mode. The grain size and color were measured from 
scanned images using GrainScan software developed by 
CSIRO [51]. The measurements included the area  (mm2), 
perimeter (mm), grain length (mm), grain width (mm) 
and values representing three independent color chan-
nels. The value of each color channel was considered a 
proxy for the RGB color model. Pearson correlation coef-
ficient was calculated between traits. Analysis of vari-
ance (ANOVA) for all the traits was performed using R. 
The broad-sense heritability was calculated as H2 = σ2

G/
(σ2

G + σ2
E); where σ2

G was calculated as  (MSgenotype − 
 MSresidual)/2 and σ2

E was  MSresidual.

GWASs, local LD estimation and orthologous genes 
identification
Marker-trait associations were performed in TASSEL 
v5.2.56 [39]. The general linear model (GLM) estimates 
only SNP effects while controlling trait variation, and the 
mixed linear model (MLM) includes the centered iden-
tity-by-state (IBS) kinship matrix as a cofactor to reduce 
false-positive signals due to the relatedness among wheat 
accessions. Incorporating principal components (PCs) 
into the GLM and MLM could correct for the con-
founding effect caused by population structure. A total 
of four statistical models, the GLM, GLM + PC, MLM, 
and MLM + PC, were applied to estimate associations 
between markers and grain traits. The LD between peak 
SNP and neighboring SNPs was calculated and visualized 
using the R package “LDheatmap” [52].

The sequence of previously cloned rice genes control-
ling grain size traits (Supplementary Table S1 in [53]) was 
BLAST to search for wheat orthologs in LD block har-
boring peak SNP. For wheat orthologs identification, the 
coding sequence (CDS) of the cloned rice genes anno-
tated to grain morphological traits in the Q-TARO data-
base [54] were retrieved from the RAP-DB database [55] 
and BLAST against the wheat genome assembly IWGSC 
RefSeq v2.1 using the parameters: evalue 1e-10, best hit_
score_edge 0.05, and best_hit_overhang 0.25.

Results
Anchoring the Illumina iSelect wheat 90 K markers 
to IWGSC RefSeq v1.0 and v2.1
The Illumina iSelect wheat 90 K array includes 81,587 
SNP detection assays corresponding to 517,587 hybridi-
zation sites in the wheat genome. The flanking sequences 
of each assay were obtained from a previous study 
[17], and 277 assays showing high similarity to repeti-
tive sequences in the TREP database were removed. 
The remaining ~ 81,000 assay sequences were searched 
against the IWGSC RefSeq v1.0 and v2.1 assemblies 
using the BLAST, which yielded 242,632 and 380,430 
hits, respectively. Excluding the assays without any 
hits, assays with a single hit or with hits with the lowest 
E-value were selected, which resulted in 57,851 mark-
ers (together named as “90K_Refv1”), and 57,398 mark-
ers (together named as “90K_Refv2”) (Table 1). A similar 
marker distribution was observed in the two datasets, 
and a reduced number of total markers and markers 
assigned as “unknown” in IWGSC RefSeq v2.1 that the 
genotype call accuracy had improved. Comparing the 
two datasets (90K_Refv1 and 90K_Refv2), we found that 
56,597 markers (98.98%) were commonly assigned to 
the same chromosomes, while 583 markers (1.02%) were 
mapped to different chromosomes in the two genome 
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assemblies. Gene annotation of 56,597 SNP markers 
was retrieved from IWGSC RefSeq v2.1, 50,006 markers 
were located in the genic region, 901 and 1666 markers 
were within 2 kb upstream and downstream of annotated 
gene, respectively (Supplementary Table S2). Most of the 
inconsistent chromosomal assignments involved mark-
ers that were assigned to the unknown chromosome in 
IWGSC RefSeq v1.0 but assigned to real chromosomes in 
IWGSC RefSeq v2.1 (417, 71.53%), and the second most 
occurred within homoeologous groups (104, 17.84%) 
(Supplementary Fig. S1). Only 22 markers (3.77%) were 
mapped to the real chromosomes in IWGSC RefSeq 
v1.0 but were mapped to the unknown chromosome in 
IWGSC RefSeq v2.1. When analyzing the order and ori-
entation of markers on the same chromosome between 
IWGSC RefSeq v1.0 and v2.1, we detected 63 events that 
ranged from 1.03 kb to 2.46 Mb in size, which could be 
the result of contig orientation errors (Supplementary 
Fig. S2). Eleven events ranging from 1.20 to 329.76 Mb 
in size were related to a contig ordering problem. Eight-
een events ranging from 652.18 kb to 550.38 Mb were due 
to problematic orientation and ordering of contigs. The 
physical positions of array markers in IWGSC RefSeq 
v1.0 and v2.1 are provided in Supplementary Table S2. A 
total of 44,803 markers anchored to IWGSC RefSeq v1.0 
were also reported in a previous study [56], and we found 
that the genomic positions of 43,642 markers (97.41%) 
were in agreement (Supplementary Table S2).

Determine SNP genotypes for 864 wheat accessions
To determine accurate SNP genotypes for each wheat 
accession, we developed a customized SNP cluster-
ing pipeline based on Illumina GenomeStudio Software 
v2.0.4 (Fig. 1). Within the GenomeStudio polyploid geno-
typing module, we applied the DBSCAN algorithm to 

cluster the samples. By comparing the number of samples 
or the number of markers meeting the specific thresh-
old of the call rate (0.9) and call score (0.4) (the result of 
each threshold was presented in separate sheet in Sup-
plementary Tables S3), we determined that the best set-
ting to generate high-quality genotypic information was 
a cluster distance of 0.05 and minimum number of points 
in a cluster of 5 for markers in the A and B genomes as 
well as a cluster distance of 0.07 and minimum number 
of points in a cluster of 5 for SNPs in the D genome. To 
evaluate the accuracy of SNPs detected by the 90 K array, 
we sequenced, via genotyping-by-sequencing (GBS), the 
genome of 96 bread wheat accessions, including that of 
the Chinese Spring variety. After filtering the low-cover-
age reads, 12,763,672 unique sequences were aligned to 
IWGSC RefSeq v2.1, and variants were identified using 
the TASSEL-GBS pipeline [49]. Comparing the genotype 
calls of the 96 wheat accessions obtained from GBS and 
90 K SNP array detection, at shared loci without missing 
values, we found that 97.98% was in agreement (Table 2 
and Supplementary Table S4).

Population structure, selection signal and LD in wheat 
species and improved breeding lines
After removing SNPs with MAF < 0.01 and missing 
rate > 10%, a total of 28,836 polymorphic SNPs in the 
A and B genomes were used to analyze the population 
structure of 864 tetraploid and hexaploid wheat germ-
plasms. The first PC separated tetraploid durum wheat 
from hexaploid wheat; bread wheat and spelt wheat were 
further differentiated by other PCs (Fig. 2a).

When the polymorphic markers in the D genome were 
included, which resulted in total 31,854 polymorphic 
SNPs in the A, B and D genomes, to analyze the popu-
lation of 825 hexaploid wheat accessions, the results 

Table 1 Number of Illumina iSelect 90 K SNP markers assigned to wheat chromosomes according to two IWGSC RefSeq genome 
assemblies

Homoeologous group 90K_Refv1 90K_Refv2

Subgenome Total Subgenome Total

A B D A B D

1 2802 3340 2373 8515 2804 3319 2361 8484

2 3299 4718 2834 10,851 3323 4682 2827 10,832

3 2696 3060 2007 7763 2686 3078 2015 7779

4 2421 2172 1427 6020 2424 2176 1473 6073

5 2849 3546 2307 8702 2837 3515 2308 8660

6 2614 2796 1810 7220 2616 2786 1864 7266

7 3099 2665 2261 8025 3096 2676 2267 8039

Total 19,780 22,297 15,019 57,096 19,786 22,232 15,115 57,133

Unknown 755 57,851 265 57,398
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showed that the first two PCs could differentiate spelt 
wheat from bread wheat and could differentiate bread 
wheat accessions (Fig.  2b). To better characterize the 
765 bread wheat accessions, the origin of genotypes was 
retrieved from the GRIN database (https:// npgsw eb. ars- 
grin. gov/ gring lobal/ search). Interestingly, the accessions 
developed at CIMMYT were grouped together and sepa-
rated from others by PC1 based on 29,803 polymorphic 
SNPs (Fig.  2c). The accessions separated by PC2 were 
somewhat correlated with geographical origin, and one 
group of accessions collected in Asia was genetically dif-
ferentiated from the accessions collected in Europe, Aus-
tralia, and America.

To characterize the genetic ancestry of various 
wheat accessions, the model-based clustering software 
ADMIXTURE was applied to calculate an individual 
accessions’ ancestry coefficient. By the use of SNPs in 
the A and B genomes, the majority of durum wheat, spelt 
wheat, and bread wheat accessions could be clustered 
into species-specific groups (Fig. 3a). Some samples had 
mixed ancestral compositions, suggesting that gene flow 
or introgression events had occurred. Ancestry analysis 

of 825 hexaploid wheat and 765 bread wheat accessions 
using markers on A, B, and D genome separated cultivars 
developed at CIMMYT from the rest of the accessions at 
K = 2 (Fig. 3b and c). The CIMMYT germplasms shared a 
high proportion of ancestral components, which was in 
agreement with the PCA results (Fig.  3c). To assess the 
level of subpopulation differentiation (via a fixation index 
 [FST]) within the bread wheat group, individual accession 
was assigned to a specific subpopulation when the pro-
portion of a single ancestry was larger than 0.8, a total of 
259 individual accessions were assigned to subpopulation 
Pop1 (red dots), 354 genotypes belonged to subpopula-
tion Pop2 (blue dots), and 152 accessions were consid-
ered admixtures (Supplementary Fig. S3). Pop1 mainly 
consisted landraces (119 accessions) and cultivars (110 
accessions) from worldwide countries, Pop2 is dominated 
by 339 breeders lines. The pairwise  FST between Pop1 
and Pop2 was 0.201, suggesting moderate differentiation 
(Table 3). The mean pairwise difference (𝜋) of Pop1 was 
0.30, while that of Pop2 was only 0.21. Although Pop2 
comprised more accessions than Pop1 did, the mean 
pairwise difference in Pop2 was lower than that in Pop1, 

Fig. 1 In‑house pipeline developed for clustering SNPs in wheat subgenomes. Each box contains information describing the functionality, 
parameters, input samples and output results

https://npgsweb.ars-grin.gov/gringlobal/search
https://npgsweb.ars-grin.gov/gringlobal/search
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which could result from 92.09% of the accessions in Pop2 
being improved lines developed by CIMMYT, and many 
of them shared the same parents or have similar pedigree 
history (Supplementary Table S1).

We applied BayeScan v2.1 [46] to detect genome-wide 
selection signals. Our results showed that 88 SNPs with 
an FDR < 0.05 significantly differentiated between Pop1 
(cultivars or landraces) and Pop2 (CIMMYT improved 

Table 2 Consistency of genotype calls between the GBS and 90 K arrays of 96 wheat accessions. The SNPs with MAF > 0.01 and 
missing rate < 20% were used for comparison

Chromosome Number and missing rate of 90K_Refv2 
SNPs

Number and missing rate of GBS 
SNPs

Number and agreement 
percentage of shared 
markers

1A 1510 (0.34%) 473 (11.20%) 0

1B 1883 (0.27%) 548 (11.45%) 2 (100%)

1D 847 (0.26%) 271 (10.56%) 0

2A 1585 (0.16%) 662 (11.33%) 0

2B 2269 (0.24%) 1023 (11.10%) 6 (98.65%)

2D 882 (0.15%) 287 (11.13%) 1 (100%)

3A 1302 (0.13%) 555 (10.95%) 4 (92.39%)

3B 1659 (0.18%) 893 (11.03%) 5 (100%)

3D 504 (0.17%) 382 (11.33%) 0

4A 1138 (0.21%) 448 (11.50%) 0

4B 917 (0.10%) 318 (11.52%) 3 (100%)

4D 347 (0.12%) 99 (12.14%) 0

5A 1430 (0.24%) 572 (11.00%) 8 (99.58%)

5B 1823 (0.12%) 784 (10.89%) 6 (99.81%)

5D 455 (0.07%) 131 (11.07%) 0

6A 1461 (0.18%) 504 (11.08%) 5 (92.06%)

6B 1542 (0.38%) 870 (11.43%) 2 (100%)

6D 547 (0.28%) 227 (11.35%) 2 (97.59%)

7A 1733 (0.29%) 873 (11.02%) 1 (100%)

7B 1494 (0.24%) 935 (11.28%) 1 (98.81%)

7D 522 (0.23%) 257 (11.24%) 0

Unknown 163 (0.51%) 102 (10.61%) 0

Overall 26,013 (0.22%) 11,214 (11.17%) 46 (97.98%)

Fig. 2 PCA of the diversity panel. a 3D scatter plot of the first three PCs representing 864 wheat accessions based on 28,836 SNPs in the A and B 
genomes. b Distribution of 825 hexaploid wheat accessions on the basis of 31,854 SNPs in the A, B, and D genomes. c Distribution of the 765 bread 
wheat accessions on the basis of 29,803 SNPs in the A, B, and D genomes. The proportion of the total variance explained by each PC is shown on 
the axis label. The color of each point represents the species or origin of accession
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germplasms). The  FST values of these significant signals 
ranged from 0.32870 to 0.42347 (Table  4 and Supple-
mentary Table S5), and the SNPs were located on chro-
mosomes 1A, 1B, 1D, 3A, 3B, 4A, 4B, 4D, 5D, 6A, and 
6D (Supplementary Fig. S4). A cluster of significant SNPs 

was identified on chromosome 1A in the region between 
345 Mb and 377.5 Mb, suggesting that this region might 
have been subject to strong selection. All the significant 
loci had a positive alpha value, suggesting that these loci 
were under diversifying selection.

Fig. 3 ADMIXTURE ancestry coefficient (K = 2) for diverse wheat accessions. a Eight hundred sixty‑four durum wheat, spelt wheat and bread wheat 
samples analyzed by SNP markers on the A and B genomes. b Eight hundred twenty‑five hexaploid wheat samples analyzed by markers on the A, 
B, and D genomes. c Seven hundred sixty‑five bread wheat samples analyzed by markers on the A, B, and D genomes. Each stacked bar represents 
one genotype, and the color and length are proportional to the ancestral components. The origin of the accessions is denoted below each stacked 
bar
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LD was analyzed in durum wheat, spelt wheat, and 
bread wheat separately. Among the three species, bread 
wheat exhibited the fastest genome-wide LD decay, 
and the physical distances at which genome-wide LD 
(r2) decayed from the initial value of ~ 0.45 to 0.2 were 
1.76 Mb in bread wheat, 4.11 Mb in spelt wheat, 7.21 Mb 
in durum wheat (Fig. 4a). When comparing the decay of 
subgenome LD among the three species, we found that 
the LD of subgenomes A and B was greatest in durum 
wheat, and the highest extent of LD was detected in the 
D genome (r2 = 0.2 at 21.08 Mb) in spelt wheat (Fig. 4b-
d). LD in Pop 1 (cultivars or landraces) decayed faster 
than that in the Pop 2 and admixture groups when the 
SNPs in the A or B genome or three genomes together 
were analyzed (Supplementary Fig. S5); however, a long 
range of LD was observed in Pop 1 when the D genome 
alone was analyzed, followed by the Pop 2 and admixture 
populations.

GWASs revealed chromosomal regions controlling 
grain‑related traits
To validate the efficacy of high-quality SNPs genotyped in 
diverse accessions, we performed genome-wide association 
study using grain-related traits known for their high herita-
bility characteristics. Analyzing 2 years of grain phenotypic 
data in 280 wheat accessions showed grain trait across years 
(I and II) was highly correlated (i.e., grain length is 0.83, 
grain color is 0.86), the broad-sense heritability of each trait 
was then calculated, which ranged from 0.62 to 0.86 (Sup-
plementary Table S6). A total of 29,467 polymorphic SNPs 
with MAF greater than 0.01 and a missing percentage of 
less than 10% were used to identify genotypic associations 
with grain-related traits in 280 bread wheat accessions. A 
Manhattan plot and Q-Q plot generated from the statistical 
models for each grain trait are shown in Fig. 5b and Supple-
mentary Figs. S6, S7, S8, S9, S10 and S11, the p-value of sig-
nificant SNPs smaller than  10− 6 or  10− 4 detected in GLM 
or MLM model and their associated  R2 for each grain trait 
was presented in Supplementary Table S7. For the nor-
mally distributed grain length trait, a major SNP peak was 
identified at the end of chromosome 7A across all analyti-
cal models (Fig. 5a and b), suggesting that this SNP peak is 
adjacent to a QTL for grain length. Interestingly, this region 
was also significantly associated with grain surface area and 

grain perimeter (Supplementary Figs. S7 and S8). This can-
didate region was further refined by analyzing the local LD 
between the peak marker (BS00021657_51) and neighbor-
ing markers spanning a 10 Mb region, and the results sug-
gested that the interval was located between 676,603,251 
and 678,873,631 bp on chromosome 7A (Fig.  5c). Wheat 
chromosome 7A is known to harbor several genes related 
to grain traits, including TaWTG1 [31], TaGASR7-A1 [57], 
TaTGW-7A [58], TaTEF-7A [59], and WAPO-A1 [60]. 
Among these genes, WAPO-A1 was located within the 
region identified in this study. WAPO-A1 was previously 
identified as a candidate gene involved in spikelet number 
per spike, but additional experiments are needed to deter-
mine whether WAPO-A1 has a pleotropic effect or whether 
there is a novel gene that regulates grain length. For grain 
color, one significant SNP cluster located at the end of long 
arm of chromosome 3B was commonly detected in three 
color channels across all models examined (Supplementary 
Figs. S9, 10 and S11), the significant SNP (Excalibur_rep_
c97324_623) at 771,937,474 bp was previously reported to 
associate with grain color in the U.S winter wheat [61].

Grain size-related traits have been investigated exten-
sively in rice. Therefore, we extracted the sequences 
from functionally characterized rice genes known to 
control seed morphological traits from Q-TARO data-
base [54] and a review paper [53] to search for the wheat 
orthologs, the identified orthologs (total 191) were then 
mapped to our GWAS detected regions. The results 
showed that TraesCS3A03G0430300 on chromosome 
3A, the ortholog of rice grain-size associated gene Rdd1 
[62] was near a significant SNP wsnp_Ex_c1538_2937905 
controlling grain length (Supplementary Table S8). The 
orthologs of rice grain length controlling genes GL3 and 
OsPPKL3 [63] were located on wheat chromosome 5A 
and 5D. Three significant SNPs, Kukri_c28080_887 and 
RAC875_rep_c112205_166 associated with grain perim-
eter and BS00073670_51 for grain length, were located 
near TraesCS5A03G0897900 on chromosome 5A. SNP 
IAAV9053 was overlapped with TraesCS5D03G0859400 
on chromosome 5D. Other significant SNPs such as wsnp_
Ex_c1538_2937905 on chromosome 3A, BS00022800_51 
on chromosome 3B, and Tdurum_contig11827_678 on 
chromosome 7B, were colocalized with wheat orthologs of 
rice genes controlling grain morphological traits (Supple-
mentary Table S8).

Discussion
Identification of the physical positions of 90 K SNP markers 
on the IWGSC RefSeq v2.1 assembly
Seven years since the release of the Illumina iSelect 
wheat 90 K SNP array to the public [17], more than one 
thousand articles have cited the original publication, 
which suggested that a substantial number of research 

Table 3 FST value between subpopulations within the bread 
wheat group

Population Pop1 Pop2 Admixed

Pop1 0.000 0.201 0.077

Pop2 0.201 0.000 0.099

Admixed 0.077 0.099 0.000
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Table 4 Results of Bayescan showing putative genomic regions differentiated between Pop1 and Pop2

Marker Name Chr RefSeqv2.1 (bp) Fst qval Gene annotation

BS00086680_51 1A 283,434,503 0.42347 0.0027169 TraesCS1A03G0427800

wsnp_Ex_c14866_22995097 1A 344,966,381 0.40759 0.0025669 TraesCS1A03G0509200LC

wsnp_Ex_c1374_2630830 1A 353,665,720 0.38302 0.0058256 TraesCS1A03G0524200

wsnp_Ex_c8885_14842394 1A 353,701,188 0.38325 0.0073579 TraesCS1A03G0524400

wsnp_Ra_rep_c74936_72685894 1A 354,778,944 0.38203 0.0070857 TraesCS1A03G0525100

IACX2325 1A 357,984,644 0.38942 0.0031781 TraesCS1A03G0531100

wsnp_Ex_c3906_7086162 1A 370,238,544 0.37882 0.0082217 TraesCS1A03G0547700

BS00081455_51 1A 371,510,813 0.40244 0.0027169 TraesCS1A03G0551300

wsnp_Ex_c4605_8241260 1A 371,519,074 0.40171 0.0026253 TraesCS1A03G0551400

Kukri_c54467_100 1A 377,521,899 0.37488 0.009663 TraesCS1A03G0560100

Ra_c11488_297 1B 58,403,113 0.36423 0.020924 TraesCS1B03G0172700

wsnp_Ex_c14832_22953906 1B 58,553,627 0.36382 0.019809 TraesCS1B03G0173000

wsnp_Ex_c33654_42106735 1B 60,378,596 0.35842 0.022868 TraesCS1B03G0176700

wsnp_Ex_c41969_48673442 1B 403,457,802 0.3782 0.0085049 TraesCS1B03G0637300

D_contig04348_649 1D 296,218,439 0.37476 0.011175 TraesCS1D03G0523400

BS00021878_51 1D 300,171,366 0.37815 0.0076462 TraesCS1D03G0531700

Excalibur_c27055_1326 3A 486,468,087 0.33126 0.048531 TraesCS3A03G0650400

Tdurum_contig31586_197 3A 512,355,527 0.36841 0.012207 TraesCS3A03G0689300

wsnp_Ex_c2580_4800249 3B 470,056,794 0.33203 0.045641 TraesCS3B03G0734200

wsnp_Ex_c34975_43204180 3B 471,012,861 0.3287 0.049573 TraesCS3B03G0735500

Kukri_c18009_398 3B 475,225,424 0.33396 0.041674 TraesCS3B03G0741000

TA002241–1114 3B 501,573,733 0.35778 0.017918 TraesCS3B03G0781500

wsnp_Ex_c5378_9505533 3B 501,573,733 0.35871 0.019232 TraesCS3B03G0781500

BS00037898_51 3B 501,926,217 0.36162 0.016595 TraesCS3B03G0782700

Tdurum_contig75784_771 3B 502,260,476 0.36358 0.015299 TraesCS3B03G0783000

BS00047274_51 3B 642,665,525 0.34594 0.025818 TraesCS3B03G0992500

Ra_c106076_67 3B 644,913,215 0.34285 0.028626 TraesCS3B03G0995200

wsnp_Ex_c8825_14757625 3B 645,214,868 0.33913 0.03614 TraesCS3B03G0995600

BS00076457_51 3B 820,219,334 0.34512 0.02964 TraesCS3B03G1427000LC

Tdurum_contig19376_810 4A 28,573,747 0.37333 0.011871 TraesCS4A03G0067900

Ex_c40210_281 4A 56,468,205 0.36411 0.015733 TraesCS4A03G0119700

wsnp_BE591195A_Ta_1_1 4A 71,226,338 0.40432 0.0025003 TraesCS4A03G0146700

wsnp_Ex_c7011_12080274 4A 146,300,496 0.39682 0.0034903 TraesCS4A03G0243200

wsnp_Ra_rep_c107017_90667618 4A 165,449,299 0.38209 0.0079182 TraesCS4A03G0272200

RAC875_c110384_153 4A 212,332,496 0.3819 0.0051577 TraesCS4A03G0309400

wsnp_Ex_c10186_16720660 4A 233,713,164 0.38307 0.0064729 TraesCS4A03G0324600

wsnp_CAP7_c2931_1395666 4A 464,533,298 0.38406 0.0055006 TraesCS4A03G0503100

wsnp_Ex_c5979_10480527 4A 466,419,006 0.41374 0.0024002 TraesCS4A03G0507300LC

wsnp_Ex_rep_c70327_69270561 4A 488,165,445 0.35563 0.023532 TraesCS4A03G0536300

wsnp_Ku_c5979_10559245 4A 521,249,651 0.35917 0.020375 TraesCS4A03G0585900

Kukri_c74651_223 4A 533,271,898 0.34889 0.026759 TraesCS4A03G0601800

wsnp_Ex_rep_c67779_66463916 4A 533,582,113 0.3376 0.040703 TraesCS4A03G0602200

Excalibur_c31814_298 4A 533,820,364 0.35778 0.0222 TraesCS4A03G0602300

IAAV7636 4A 534,460,817 0.34136 0.037012 TraesCS4A03G0603500

IAAV971 4B 43,533,249 0.38945 0.010837 TraesCS4B03G0112000

Excalibur_c56787_95 4B 62,313,549 0.39457 0.0088047 TraesCS4B03G0145400

Excalibur_c17607_542 4B 81,062,793 0.38883 0.011518 TraesCS4B03G0183100

wsnp_RFL_Contig4151_4728831 4B 183,053,308 0.38448 0.01486 TraesCS4B03G0318300

RAC875_c101563_102 4B 212,025,810 0.38659 0.013955 N/A
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experiments have been conducted via this genotyping 
array. With the recent release of the IWGSC RefSeq v2.1 
assembly [16], it is necessary to update the physical posi-
tion of molecular markers to the current version. In this 
study, the flanking sequences of 90 K SNP markers were 
mapped to the IWGSC RefSeq v1.0 and v2.1 indepen-
dently, and most mapped markers were located on the 
B genome, followed by the A genome and D genome, 
which is consistent with previous findings [17, 64]. 
Thousands of SNPs located in problematic contigs were 
corrected, and their genomic positions are now accurate. 
Moreover, 279 previously unplaced scaffolds (74.96 Mb) 
were anchored onto pseudomolecules, which reduced 
the number of array markers assigned to the unknown 
chromosome. These refinements contributed to the 
improved sequence and assembly quality of IWGSC Ref-
Seq v2.1 [16].

Controlling the accuracy of array‑anchored genotypes
Fluorescence intensity generated by hybridization 
between genomic DNA and array probes is the source 
of allele clustering, which often requires manual cura-
tion for error-prone SNPs in polyploid species [17, 65]. 
It is extremely time consuming and challenging to manu-
ally inspect SNP clusters without predefined cluster files, 
especially for diverse wheat accessions. In this study, we 
developed a customized allele clustering pipeline to avoid 
manual curation, and several indices were used to evalu-
ate the clustering performance. In general, a larger cluster 

distance and a smaller minimum number of points in the 
cluster lead to a higher number of samples and SNPs 
with call rates > 0.9. Compared to cluster distance, the 
minimum number of points showed variable effects on 
genotype quality. Therefore, we selected an optimal clus-
ter distance to obtain superior clustering performance, 
resulting in a relatively high call rate and call score.

Array-based genotyping has been compared to GBS 
in various contexts [56, 66, 67]. In this study, the geno-
types detected at shared loci from two platforms were 
highly concordant, which supported the ability of our 
in-house SNP calling pipeline to generate accurate geno-
type sequences. Array-based systems provide a unique 
advantage for easy integration of genotypes from samples 
processed in different laboratories, and the fixed genomic 
positions of assayed markers could help streamline 
downstream applications, such as comparing detected 
QTLs for the same traits and developing trait-associated 
markers for selection. It is also important to consider the 
tradeoff between the cost of genotyping and bioinfor-
matic infrastructure establishment when deciding which 
genotyping platform to use.

Population structure and differentiation of diverse wheat 
accessions
When SNP genotypes of the A and B genomes were 
used, PCA could easily separate our diversity panel into 
three main clusters corresponding to bread wheat, spelt 
wheat, and durum wheat, which was in agreement with 

Table 4 (continued)

Marker Name Chr RefSeqv2.1 (bp) Fst qval Gene annotation

Excalibur_c55414_216 4B 242,295,896 0.34019 0.037864 TraesCS4B03G0376700LC

RAC875_c46966_193 4B 242,296,560 0.34716 0.025007 N/A

RAC875_c75075_313 4B 310,932,752 0.35545 0.031596 TraesCS4B03G0428900

RAC875_c12495_1391 4B 362,697,044 0.38983 0.013499 TraesCS4B03G0469400

BobWhite_c9876_331 4B 375,327,326 0.34685 0.039731 N/A

wsnp_JD_c1549_2185341 4B 389,540,610 0.34203 0.047573 TraesCS4B03G0502100

wsnp_Ex_c25373_34639805 4B 481,850,675 0.3663 0.024242 TraesCS4B03G0630800LC

RAC875_c107130_384 4B 648,735,419 0.36646 0.012654 TraesCS4B03G0930800

Kukri_c7791_99 4D 4,232,342 0.38036 0.018765 TraesCS4D03G0014600

Kukri_c35140_75 4D 208,791,961 0.38259 0.017043 TraesCS4D03G0351700

wsnp_Ra_c9233_15459255 5D 129,165,508 0.3649 0.035251 TraesCS5D03G0264200

RAC875_rep_c70595_321 5D 155,195,977 0.36619 0.032533 TraesCS5D03G0282500

Excalibur_c15835_86 5D 393,060,408 0.3838 0.0043588 TraesCS5D03G0666300

IAAV6265 5D 400,879,728 0.41294 0.0039277 TraesCS5D03G0684600

BobWhite_c27364_296 6A 616,983,067 0.34329 0.0277 TraesCS6A03G1028700

IAAV8527 6D 410,996,114 0.36902 0.018337 TraesCS6D03G0670800

Kukri_c31995_1948 6D 423,456,552 0.37339 0.014411 TraesCS6D03G0689000

wsnp_Ex_c1690_3206784 6D 427,650,981 0.37669 0.013081 TraesCS6D03G0696600

wsnp_Ra_c13881_21836489 6D 430,642,760 0.35451 0.021543 TraesCS6D03G0701400
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Fig. 4 LD of bread wheat, spelt wheat, and durum wheat. a Genome‑wide LD decay of three wheat species. b LD decay of subgenome A of the 
three species. c LD decay of subgenome B of the three species. d LD decay of subgenome D of spelt wheat and bread wheat. The physical distance 
(in megabases) is plotted against the LD estimate (r2) for pairs of markers

(See figure on next page.)
Fig. 5 Genome‑wide association mapping for grain length. a Distribution of the grain length of 280 bread wheat accessions. b Manhattan plot of 
the four models (GLM, GLM_PC, MLM, MLM_PC) and associated quantile‑quantile (Q‑Q) plot representing the statistical association between each 
SNP and grain length. c The pairwise LD of SNPs surrounding the peak marker on chromosome 7A was calculated. The position of peak marker 
BS00021657_51 and WAPO‑A1 is labeled
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Fig. 5 (See legend on previous page.)
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the results from phylogenetic and ADMXITURE analy-
ses. In the analysis, some accessions were placed between 
defined clusters, and the admixed accessions might be 
the result of gene flow between wheat species. Complex 
historical events of hybridization have led to frequent 
gene flow or introgression between wheat species and 
their wild relatives [6, 14]. Using SNPs in the A, B, and D 
genomes to characterize the population structure within 
765 bread wheat lines, we found that the improved wheat 
lines developed at CIMMYT were separated from acces-
sions collected in other countries. A recent study ana-
lyzed the diversity of 56,342 domesticated hexaploids, 
including landraces, widely grown cultivars, elite breed-
ing lines and nursery germplasm, from CIMMYT [68]. 
The authors found that a large group of elite materials 
clearly differentiated from landraces and genetic stocks, 
those elite lines had the varieties “Kauz”, “Pastor” and 
“Veery” in their pedigree history, apparently, these three 
varieties were also found in 31% of CIMMYT breeders 
lines of our collection, Kauz and Pastor were appeared in 
97 and 68 records respectively (Supplementary Table S1). 
Improved varieties developed by CIMMYT wheat breed-
ing program could have undergone different levels of 
artificial selection, and the shared parentages could cause 
the allele frequency of these accessions to differ from that 
of materials collected from diverse geographical regions. 
We noticed that wheat accessions collected from Asia 
formed a cluster distinct from those of other European 
and Australian accessions, suggesting that accessions 
might have adapted to the local environment or have 
been bred for specific objectives. Similarly, Muqaddasi’s 
study [69] reported that spring wheat accessions originat-
ing from Asia were distinguished from European acces-
sions by PCA, and a similar pattern was also detected in 
[70] in which wheat varieties from the same origins clus-
tered together.

LD in diverse wheat species
LD between two independent loci is known to be affected 
by mutation, effective population size, mating system, 
gene flow, genetic drift, and selection [71]; therefore, the 
rate of LD decay can vary between subgenomes, species 
or analyzed populations. In our study, among the three 
species, bread wheat had the most rapid genome-wide 
LD decay; specifically, the A genome decayed the most 
rapidly, followed by the D genome and B genome. The 
fastest LD decay in the A genome has been reported in 
several studies [33, 72].

Spelt wheat was estimated to diverge from mod-
ern bread wheat several thousand years ago; interest-
ingly, the genome-wide LD decay patterns in the A and 
B genomes (but not the D genome) were quite similar 
between the two hexaploid wheat lines, where r2 = 0.2 

occurred at 21.08 Mb as opposed to 1.67 Mb in bread 
wheat. Such long-range LD decay was also observed in 
293 Swiss spelt wheat and 123 European spelt acces-
sions [73, 74]. Würschum’s results [73] suggested that 
the results obtained should be treated with caution due 
to the lower marker density in the D genome compared 
with the other genomes. In our study, the number of pol-
ymorphic markers in the D genome was four times lower 
in the 60 spelt wheat accessions compared with the 765 
bread wheat accessions; however, considering that the 
number of polymorphic markers in the A or B genome 
in the 60 spelt wheat accessions was three times lower 
than that in the 765 bread wheat accessions, the LD pat-
tern was not dramatically different; as such, we suspect 
that other factors contributed to the extended LD of 
the D genome in spelt wheat. It is widely accepted that 
the D genome is derived from diploid Aegilops tauschii 
and is the youngest genome in hexaploid wheat [7, 10, 
75, 76]. It is possible that the D genome in spelt wheat 
has not accumulated a significant number of mutations 
or recombination events that could contribute to the 
degree of LD decay.

Association between grain traits and SNP markers
Wheat chromosome 7A is known to harbor genes 
related to grain traits, among these genes, WAPO-A1 
was shown to colocalize with the QTL region identified 
in this study and was identified as a candidate gene for 
a QTL responsible for spikelet number per spike [60]. 
Another significant SNP detected in the present work, 
Kukri_c2912_2029, was found on chromosome 2A (S6.1-
Grain length in Supplementary Table S6) in the vicinity 
of TaGW7, which regulates grain length and grain width 
[77], and the significant SNP marker BS00073670_51, on 
chromosome 5A (S7.1-Grain length in Supplementary 
Table S7), was found near TaGL3-5A, which is associ-
ated with grain length and thousand-kernel weight [78]. 
Co-localization of significant SNPs on chromosome 7A 
associated with grain surface area, grain perimeter, and 
grain length was found in this study (Supplementary Fig. 
S9, S10 and S11). The phenotypic correlation between 
these traits is high (Pearson correlation coefficient ranges 
between 0.53–0.95), however traits distribution varies 
(Supplementary Fig. S12), this suggested the candidate 
gene in the QTL region on chromosome 7A could have 
different effects, highlighting the importance to identify 
the causal genes or variants controlling grain traits. Rice 
genes controlling grain morphological traits have been 
studied extensively [53], wheat genes TaGW7 and TaGL3-
5A were found to be orthologous to the rice GW7 [79, 80] 
and GL3.1 [63, 81]. Another important trait determining 
wheat quality is grain color. The long arm of chromo-
some 3B is known to carry a grain color locus “R” [82], a 
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candidate gene “Tamyb10-B1” encoded R2R3-type MYB 
domain protein was further investigated for its allelic 
diversity and effect on grain color [83], Tamyb10-B1 gene 
was found to locate in the LD block calculated from the 
significant associated-SNPs detected in this study (Sup-
plementary Fig. 13). The agreement between our GWAS 
results and those concerning previously identified genes 
governing grain-related traits not only validated the SNP 
quality resulting from our in-house pipeline but also sug-
gested that diagnostic markers for grain traits could be 
potentially developed by the use of 90 K SNP markers. 
Wheat breeders could identify the elite germplasm car-
rying a beneficial allele for the trait of interest from this 
study. Pyramiding several QTLs in the target variety’s 
background through diligent crossing or inter-mating 
and marker-assisted selection could improve yield or 
quality significantly.

Conclusions
With the recent release of IWGSC RefSeq v2.1 in 2021, 
this study reported an updated and accurate physical 
position of 57,398 SNP loci on a high-density 90 K wheat 
genotyping array. Using the information gained in this 
work, we anticipate that wheat researchers who previ-
ously applied 90 K array markers for QTL mapping can 
seamlessly update their findings to RefSeq v2.1. In addi-
tion, the diverse wheat germplasms analyzed in this 
work constitute great resources for investigating popula-
tion differentiation between and within hexaploid wheat 
accessions, and the genetic variation inherent within 
each population reflects its evolutionary and breeding 
history. Finally, considering our materials and genotypes 
are available to the public, we anticipate more QTLs or 
trait-linked SNP markers will be discovered in different 
environmental conditions, which could also increase our 
understanding of genetic architecture controlling quanti-
tative traits.

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12870‑ 022‑ 03844‑x.
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Additional file 2: Supplementary Fig. S2. Distribution of markers with 
the same chromosomal assignment but different orientations or order 
between IWGSC RefSeq v1.0 and IWGSC RefSeq v2.1. The x axis indicates 
wheat chromosomes, and the y axis shows the physical position along 

the chromosome. The chromosomes of IWGSC RefSeq v1.0 are shown 
in black, and chromosomes of IWGSC RefSeq v2.1 are colored blue. The 
red line connects the physical positions of each marker between the two 
RefSeq assemblies.
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on an ADMXITURE analysis.
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representing the statistical association between each SNP and grain area.
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GLM_PC, MLM, MLM_PC) and associated quantile‑quantile (Q‑Q) plots 
representing the statistical association between each SNP and color 
channel 1.
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plots representing the statistical association between each SNP and color 
channel 2.

Additional file 11: Supplementary Fig. S11. Genome‑wide associa‑
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plots representing the statistical association between each SNP and color 
channel 3.
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