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Abstract 

Background:  Plastomes of heterotrophic plants have been greatly altered in structure and gene content, owing 
to the relaxation of selection on photosynthesis-related genes. The orchid tribe Gastrodieae is the largest and prob-
ably the oldest mycoheterotrophic clade of the extant family Orchidaceae. To characterize plastome evolution across 
members of this key important mycoheterotrophic lineage, we sequenced and analyzed the plastomes of eleven Gas-
trodieae members, including representative species of two genera, as well as members of the sister group Nervilieae.

Results:  The plastomes of Gastrodieae members contain 20 protein-coding, four rRNA and five tRNA genes. Evo-
lutionary analysis indicated that all rrn genes were transferred laterally and together, forming an rrn block in the 
plastomes of Gastrodieae. The plastome GC content of Gastrodia species ranged from 23.10% (G. flexistyla) to 25.79% 
(G. javanica). The plastome of Didymoplexis pallens contains two copies each of ycf1 and ycf2. The synonymous and 
nonsynonymous substitution rates were very high in the plastomes of Gastrodieae among mycoheterotrophic spe-
cies in Orchidaceae and varied between genes.

Conclusions:  The plastomes of Gastrodieae are greatly reduced and characterized by low GC content, rrn block for-
mation, lineage-specific reconfiguration and gene content, which might be positively selected. Overall, the plastomes 
of Gastrodieae not only serve as an excellent model for illustrating the evolution of plastomes but also provide new 
insights into plastome evolution in parasitic plants.
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Background
Plant cells possess two semiautonomous organelles, 
plastids and mitochondria, both of which have evolved 
by endosymbiosis [1, 2]. Plastid genomes (plastomes) 
of photosynthetic higher plants possess conserved 
gene contents, with approximately 130 genes encoding 
approximately 80 proteins, 30 tRNAs, and four rRNAs [3, 
4]. The plastomes of photosynthetic higher plants exhibit 
a conserved structure, characterized by a large single-
copy (LSC) region, a small single-copy (SSC) region and 
two large inverted repeat (IR) regions, which separate 
the LSC and SSC [3, 5, 6]. In nonphotosynthetic plants 
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(heterotrophic plants), plastomes have been greatly 
altered in structure and gene content because of the 
relaxed selection pressure on photosynthesis-related 
genes, thus providing a unique opportunity for explor-
ing genome evolution under relaxed selection [3, 7–10]. 
Gene pseudogenization, gene loss and elevated substitu-
tion rates are the general trends of plastome degradation 
in heterotrophic plants [11–13]. The process of plastome 
degradation, proposed and revised previously, includes 
the following steps: (1) degradation of photosynthesis 
and photosynthesis-related genes; (2) degradation of 
atp and housekeeping genes; and (3) nearly complete or 
complete loss of the plastid genome [10, 12, 14]. Since its 
publication, this evolutionary model of plastome degra-
dation in parasitic plants has been supported by subse-
quent studies [10, 12, 14–23].

Mycoheterotrophs are heterotrophic plants that 
depend on fungi for nutrients and have evolved at least 47 
times in land plants [24]. The orchid tribe Gastrodieae is 
probably the oldest and potentially the largest mycohet-
erotrophic lineage of the extant Orchidaceae even in land 
plants, with approximately 100 species [25–34]. Molecu-
lar dating indicates that Gastrodieae evolved approxi-
mately 35–38 million years ago (Mya) [28, 31], and is 
possibly one of the oldest groups of mycoheterotrophs in 
angiosperms [28, 31, 35]. Like most Orchidaceae species, 
Gastrodieae seeds totally depend on fungal nutrients 
for germination, but in Gastrodieae and all mycohetero-
trophs, this dependence continues throughout their life 
cycle [10, 20, 36]. One member of Gastrodieae, Gastro-
dia elata, has a long history of use in traditional Chinese 
medicine [37]. Gastrodia elata was successfully culti-
vated in the 1970s in China and its plant- mycorrhizal 
interactions, phytochemistry, and medical applications 

have been intensively studied [38]. The mycohetero-
trophic system of Gastrodieae lineage offers a promising 
model to illustrate the coevolution of mycoheterotrophic 
plants and their symbiotic microbionts.

Recently, the genomes of two Gastrodieae mem-
bers, Gastrodia elata and G. menghaiensis, have been 
sequenced and published [36, 39, 40]. Jiang et al. (2022) 
reported that the plastomes of Gastrodia species have 
been greatly degraded with the expansion of some 
nuclear genes encoding plastid proteins, suggesting that 
plastids play an important role in fully mycohetero-
trophic plants [40]. However, little is known about the 
pattern and mechanism of plastome evolution in this key 
important lineage. To characterize plastome evolution 
in this ancient mycoheterotrophic group, we sequenced 
and analyzed the plastomes of ten Gastrodieae members 
together with those of its sister group Nervilieae.

Results
Molecular systematics of Gastrodieae
Nervilieae is sister tribe to Gastrodieae, which is strongly 
supported by plastome-based phylogenies (Fig. S1). The 
genus Didymoplexis is sister to the genus Gastrodia, with 
high support, and diverged from Gastrodia approxi-
mately 29 million years ago (Mya)(Fig.  1a; Supplemen-
tary Fig. S1a). Three Gastrodia species, including G. 
javanica, G. elata, and G. angusta, were identified, with 
high support, as successive sister species to the remain-
ing eight Gastrodia species investigated in this study 
(Fig.  1a). Gastrodia javanica, G. elata, and G. angusta 
diverged from the backbone of Gastrodia approximately 
20, 19, and 17 Mya, respectively, while the remaining 
eight species formed a tropical clade, which radiated ca. 
9 Mya (Fig.  1a). Additionally, G. javanica, G. elata, and 

Fig. 1  Chronogram and heatmap of nonsynonymous substitution rates (dN) in protein-coding genes. a Time-calibrated tree of Gastrodieae. Green 
star indicates the loss of IR; yellow star indicates the loss of matK and trnW-CCA​; red star indicates the loss of matK. b Heatmap of dN for each plastid 
protein-coding gene. Gray and red colors indicate low and high dN values, respectively
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G. angusta were characterized by the lack of roots and 
well-developed tubers and corms, whereas the remaining 
eight species were characterized by well-developed roots 
and small black tubers and corms [26, 27, 41].

Size, gene content, and GC content of Gastrodieae 
plastomes
DNA sequencing and assembly revealed that the plas-
tomes of two autotrophic Nervilia species (Nervilieae, 
Orchidaceae) are 15,8174 and 16,2651 bp in size (Fig. 2), 
while those of species belonging to Gastrodieae varied in 
length, ranging from 29,696  bp in Gastrodia peichatie-
niana to 51,241  bp in Didymoplexis pallens (Table  1, 
Fig. 2). All Gastrodia species showed similar sized plas-
tomes, ranging from 29,696  bp in G. peichatieniana to 
36,812 bp in G. angusta. The plastomes of all Gastrodieae 
members contained 20 protein-coding genes, four rRNA 
genes, and five tRNA genes (Table 1). Six housekeeping 
genes, including rpl22, rpl23, rpl32, rpl33, rps15, and 
rps16, appeared to be lost from all Gastrodieae plas-
tomes. The housekeeping gene matK was absent from 
the plastomes of most Gastrodieae members, except G. 
angusta and G. elata. Additionally, genes such as clpP, 
rpl2, and rpl16 often contain shorter introns in Gastro-
dieae plastomes than in Nervilieae plastomes (Supple-
mentary Fig. S2). The trnW-CCA​ gene was lost from the 
basal branch of Gastrodia, G. javanica, but was present 
in remaining members of Gastrodieae, such as G. elata, 
although the trnW-CCA​ gene in Gastrodieae members 
was approximately 16 bp shorter than its counterpart in 
Nervilia species. The rrn4.5 gene in Gastrodieae plasto-
mes contained two 30 bp AT-rich insertions. Secondary 

structure analyses indicated that this 4.5S rRNA has an 
altered structure (Supplementary Fig. S3). The plastome 
of D. pallens contained two copies each of ycf1 and ycf2.

The plastomes of autotrophic Nervilia species showed 
a typical quadripartite structure (Fig.  2). On the other 
hand, the plastomes of Gastrodia species showed a spe-
cialized structure with only one IR region (Fig. 2). All rrn 
genes joined together to form the rrn block in plastomes; 
rpl and rps genes formed the rpl-rpls block, while the 
four trn genes and two to three coding sequences (CDSs) 
were embedded in the rpl-rps block (Fig.  2). The rrn 
and rpl-rps regions were separated by ycf1 and ycf2. The 
highly reduced plastome of D. pallens showed a quadri-
partite structure, with transversion and expansion of IR 
regions (Fig.  2, Supplementary Fig. S1b). The IR region 
was extended to a length of 21  kb and contained rps3, 
rpl16, rpl14, and rps8 genes. By contrast, the SSC region 
was reduced to an approximately 3 kb sequence contain-
ing no gene. The transversion occurred between rps4 and 
rps14. Another transversion was observed at a location 
that coincided with the loss of trnW-CCA​ in G. javanica 
plastome (Fig. 1b).

The GC contents of plastomes varied greatly in 
Gastrodieae and Nervilieae. With total GC contents 
ranging from 23.10% in G. flexistyla to 25.79% in G. 
javanica, the average GC content of eleven Gastrodia 
species was approximately 10% lower than that of auto-
trophic species, such as Cremastra (Orchidaceae) [22], 
Holcoglossum (Orchidaceae) [42], N. aragoana, N. for-
dii and Tipularia (Orchidaceae) [22] (Table  1, Fig.  3a, 
Supplementary Table S1). However, the GC content of 
the D. pallens plastome was 34.8%. In the autotrophic 

Table 1  Plastid genomes of Gastrodieae and Nervilieae

Species Length (bp) GC content (%) Voucher GenBank accession
(NCBI)

Total LSC SSC IR

Didymoplexis pallens 51,241 7,189 3,061 20,495 34.8 Jin X. H. 23332(PE) ON515488

Gastrodia angusta 36,812 25.4 Jin X. H. 17853 (PE) ON515479

Gastrodia crispa 30,582 25.7 Jin X. H. & Arief H. PE-BO 4014 (PE) ON515481

Gastrodia elata 35,304 25.3 Jin X. H. 17638(PE) MF163256

Gastrodia flexistyla 30,797 25.4 Huang Y.S. QY20190302001(IBK) ON515480

Gastrodia javanica 31,896 24.8 PE-BO 4091 (PE) ON515482

Gastrodia longistyla 30,464 26.8 Jin X. H. 25023 (PE) ON515483

Gastrodia menghaiensis 30,158 26.8 Jin X. H. 18195 (PE) ON515489

Gastrodia peichatieniana 29,696 25.9 Jin X. H. 31639 (PE) ON515484

Gastrodia shimizuana 30,019 25.5 Huang Y.S. QY20190226001 (IBK) ON515485

Gastrodia sp. (near Gastrodia crispa) 29,944 25.8 Jin X. H. 38054 (PE) ON515486

Gastrodia uraiensis 30,746 24.9 QY1007 (IBK) ON515487

Nervilia aragoana 162,651 91,150 18,603 26,449 36.7 Jin X. H. 23240 (PE) ON515490

Nervilia fordii 158,174 86,875 18,079 26,610 36.8 Jin X. H. 23386 (PE) ON515491
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Nervilieae species, the GC content was approximately 
30% in most CDSs, and up to 44% in genes such as psbA, 
psbB, and psbC. In Gastrodia species, the GC con-
tent was approximately 30% in seven genes, including 

clpP, rpl2, and rpl14; less than 30% in the remaining 12 
CDSs; and less than 20% in ycf1 and ycf2 (Supplemen-
tary Tables S2). The GC content of matK was approx-
imately 21% in G. elata and G. angusta, and 30% and 

Fig. 2  Plastid genomes of Gastrodieae and Nervilia species
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32% in the two Nervilieae species (Supplementary 
Tables S2 and S3). The GC content of the third posi-
tion of codons (GC3) varied greatly among the three 
genera investigated in this study: 15–17% in Gastrodia; 
25% in D. pallens; and 27% in autotrophic Nervilia spe-
cies (Table 1, Fig. 3b). Notably, GC3 was less than 10% 
in rps18 in G. longistyla. Codon usage analysis showed 
that AAA (encoding Lys) was the most used codon in 
Gastrodieae, followed by AUA (encoding Ile) and AAU 
(encoding Asn) (Supplementary Table S3). However, 
in the autotrophic Nervilieae species, AAU and GAA 
(encoding Glu) were identified as the two most com-
monly used codons (Supplementary Table S3).

Molecular evolution of Gastrodieae plastomes
Among the mycoheterotrophic species in Orchidaceae, 
the Gastrodieae species showed especially high synony-
mous substitution rate (dS) and nonsynonymous sub-
stitution rate (dN) in plastomes (Supplementary Figs. 1, 
4, 5; Supplementary Table S4). The values of dN and dS 
in Gastrodieae plastomes were 8–10 times higher than 
those in the closely-related autotrophic species Nervilia 
aragoana and N. fordii (Fig. 4, Supplementary Table S4). 
The values of dN and/or dS varied across species and 
genes. The value of dS in four genes, including rpl14, 

rps11, rps18, and ycf1, was very high. However, dS in 
rpl36 was very low in Gastrodieae and very high in D. 
pallens. Additionally, the value of dS in four genes (accD, 
rpl36, rps11, and rps18) was approximately 2–4 times 
higher in D. pallens than in Gastrodia (Supplementary 
Fig. S4). Two genes, ycf2 and rps7, showed rather high 
dN in Gastrodieae, and ycf2 was under positive selec-
tion (Fig.  1b, Supplementary Fig. S4, Supplementary 
Table S5). The value of dN in rps7 was considerably high 
in Gastrodia but very low in D. pallens. Two genes, clpP 
and rps12, showed the lowest substitution rates in Gas-
trodieae (Fig. 1b).

Based on branch length, the dN and/or dS values 
changed over time in the various clades. Values of dN 
in three genes (rpl36, rps7, and rps11) were low in G. 
angusta but high in its sister group, the tropical Gastro-
dia clade (Figs.  1 and  4). The dS values in rpl36, rps12, 
and rps19 were low in G. javanica but high in the remain-
ing Gastrodia species (Supplementary Fig. S4). Values 
of dN and dS in the majority of remaining housekeeping 
genes, including accD, clpP, rpl12, rpl14, rps11, rpl16, 
rpl36, rps3, and rps4, were significantly higher in D. pal-
lens than in other Gastrodieae species (Figs. 1 and 4, Sup-
plementary Figs. S4 and S5). RELAX analyses indicated 
that two genes, accD and ycf1, were under significant 

Fig. 3  GC content of the plastomes of Gastrodieae and other species. a, Relationships between the length and GC content of plastomes of species. 
Gastrodieae species, green colour. Gastrodia species, light green. Didymoplexis pallens, dark green. Other species, blue colour. 1: Epipogium roseum; 2: 
Sciaphila densiflora; 3: Gastrodia peichatieniana; 4: Gastrodia sp.; 5: Gastrodia shimizuana; 6: Gastrodia menghaiensis; 7: Gastrodia longistyla; 8: Gastrodia 
crispa; 9: Gastrodia uraiensis; 10: Gastrodia flexistyla; 11: Gastrodia javanica; 12: Gastrodia elata; 13: Gastrodia angusta; 14: Aphyllorchis montana; 15: 
Petrosavia stellaris; 16: Epipogium aphyllum; 17: Didymoplexis pallens; 18: Neottia acuminata; 19: Neottia camtschatea; 20: Cymbidium bicolor; 21: 
Nervilia aragoana; 22: Epipactis veratrifolia; 23: Nervilia fordii. b Overall GC content and GC content of the first, second, and third positions of codons 
(GC1, GC2, and GC3, respectively) in the plastomes of various species. 1: Gastrodia menghaiensis; 2: Gastrodia peichatieniana; 3: Gastrodia longistyla; 
4: Gastrodia shimizuana; 5: Gastrodia sp.; 6: Gastrodia crispa; 7: Gastrodia flexistyla; 8: Gastrodia uraiensis; 9: Gastrodia angusta; 10: Gastrodia elata; 11: 
Gastrodia javanica; 12: Didymoplexis pallens; 13: Nervilia aragoana; 14: Nervilia fordii 
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intensification selection (Supplementary Table S6); how-
ever, intensification selection pressure on the remain-
ing genes was not significant (Supplementary Table S6). 
Three genes, ycf1, ycf2, and rps3, were under positive 
selection in Gastrodieae (Supplementary Table S7).

Discussion
Characteristics such as small size, very low GC con-
tent, and loss of many housekeeping genes indicate that 
the plastomes of Gastrodieae are highly reduced and 
have reached the stage of a minimal plastome. However, 
recent analyses of nuclear genes encoding plastid pro-
teins (NEPs) in G. elata and G. menghaiensis indicate that 
many genes involved in the biosynthesis of essential com-
pounds, such as aromatic amino acids (such as L-tryp-
tophan) and fatty acids, have undergone expansion [40]. 
These findings suggest that plastids play an important 
role in fully mycoheterotrophic species, despite the loss 
of photosynthesis [40]. The loss of housekeeping genes 
in plastomes and expansion of some NEPs define a para-
dox, which indicates that plastomes of Gastrodieae may 
still be in the process of reaching stability. The plastomes 

of Gastrodieae are an excellent model for illustrating the 
evolution of plastomes, and provide new insights into 
plastome evolution in parasitic plants.

The plastomes of Gastrodieae are collinear with those 
of autotrophic Nervilieae species and other autotrophic 
orchids (Supplementary Fig. S1b); however, there have 
been several reconfigurations, including the formation 
of the rrn block and loss or expansion of the IR regions. 
The rrn block evolved independently in Epipogium 
(Orchidaceae) [43], Gastrodieae (Orchidaceae), Rhizan-
thella (Orchidaceae) [44], and Sciaphila (Triuridaceae) 
[45]. The convergent evolution of the rrn block in these 
four distant plant lineages indicates that the rrn block 
evolved independently and was positively selected. In 
this study, analysis of the transcriptome data of G. elata 
downloaded from NCBI (SRR18147619) indicated that at 
least three blocks, including rrn, clpP-rps11-rpl36-rps8, 
and rpl14-rpl16, were transcribed together as a single 
transcript (Supplementary Fig. S6). Jiang et  al. (2022) 
indicated that NEPs of plastid ribosome large subunit 
underwent expansion [40]. This reconfiguration of plas-
tome structure, transcription pattern of the rrn block, 

Fig. 4  Variation in the values of relative and absolute synonymous substitution rates (dS) in plastid protein-coding genes in Gastrodieae. Red 
and blue branches show the evolution rates of Gastrodieae species and Didymoplexis pallens, respectively. a phylograms of dN and dS of rpl14, 
respectively. b phyograms of dN and dS of rps3, respectively. The value of dS was approximately 10-fold higher than that of dN. c phylograms of dN 
divergence of five individual genes. All trees are drawn to the same scale
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and expansion of NEPs of plastid ribosome large subunit 
may accelerate ribosome assembly, protein translation 
and biosynthesis of important compounds. This may be 
related to the special lifestyle of Gastrodieae. Plants of 
Gastrodieae species grow underground for approximately 
3–4  years. However, following inflorescence emergence 
from the ground, plants grow rapidly to a height of up to 
150 cm and disperse seeds within 1 month, thus requir-
ing support from plastid protein function. The reconfigu-
ration of IR regions is common among parasitic species 
but shows lineage-specific trends [43, 45]. Two extreme 
trends of IR reconfiguration were observed in this study: 
(1) complete loss of one IR region in all Gastrodia spe-
cies; and (2) expansion of IRs, spanning 80% or more of 
the plastome, in the D. pallens clade.

Increase in AT content of plastomes is considered as 
indicator of plastome degradation in heterotrophic plants 
compared with autotrophic species, and the level of AT-
richness somewhat correlates with the degree of plas-
tome reduction [11, 14, 46]. Extremely high AT content 
has been recorded in two heterotrophic lineages, Thismia 
(Thismiaceae) [46] and Balanophoraceae [47]. Although 
many species possess highly reduced plastomes, such 
as Epipogium aphyllum (18,339  bp) (Orchidaceae) and 
Sciaphila densiflora (21,485 bp) (Triuridaceae), their GC 
content is no less than 30% [43, 45]. Both Gastrodia and 
Didymoplexis are fully mycoheterotrophic genera in the 
Gastrodieae tribe; however, Gastrodia species have a very 
low GC content even compared to mycoheterotrophic 
orchids (Supplementary Table S8), whereas D. pallens 
shows a rather high GC content (34.8%). The high GC 
content of D. pallens might have been contributed by its 
genome structure and corresponding adaptive changes. 
Due to the expansion of IRs, the plastome of D. pallens 

contains 44 genes, however, there are 28 to 29 genes in 
plastomes of Gastrodia (Supplementary Table S8). GC 
content in nontranscribed spacers tends to be consider-
ably lower than elsewhere in the plastome [11, 12]. IR 
also greatly reduces the substitution rate of genes within 
IR region [48].

Wicke et al. (2016) suggested that low GC content cor-
relates with increases in the number of structural rear-
rangements [13]. The 30 bp AT-rich insertions in rrn4.5 
not only make it very difficult to predict the rrn4.5 [26, 
36] but also present a strategy for structural rearrange-
ments that increase the AT content of plastomes. How-
ever, the insertion of long AT-rich sequences may lead to 
the pseudogenization of rrn4.5. This bias toward AT-rich-
ness is lineage specific, and seems to have evolved after 
the divergence between Gastrodia and Didymoplexis. 
The AT-rich insertion in rrn4.5 has also been reported in 
Balanophora (Balanophoraceae) [47]. While most mem-
bers of Gastrodieae lost matK during evolution, the low 
GC content of G. elata and G. angusta plastomes, which 
contain matK, indicates that matK might soon be lost 
from these two plastomes. The mechanism underlying 
the adaptation to this bias toward AT-richness remains to 
be illustrated.

Substitution rates are often elevated in the plastomes of 
parasitic plants [13, 49, 50]. Wicke et al. (2016) suggested 
that the elevation of substitution rates in parasitic plants 
was caused first by relaxed selection and then by rate 
deceleration due to intensified selection [13]. Our results 
indicated that Gastrodia is one of the Orchidaceae genera 
with the highest substitution rate, which is approximately 
10-fold higher than that of two autotrophic species of 
Nervilia [12]. Some housekeeping genes, such as accD 
and ycf1, were under significant intensified selection in 

Fig. 5  Natural habitat of Gastrodieae species. a Didymoplexis pallens in dry and open forest. b and c, Gastrodia elata (b) and Gastrodia menghaiensis 
(c) in shady and humid forest. Photographed by X.H. Jin
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Gastrodia. However, most genes showed very high sub-
stitute rates. Jiang et al. (2022) indicated that some NEPs, 
including genes encoding plastid ribosomal subunits and 
accD, underwent expansion in Gastrodia genomes [40], 
which suggests that coevolution of the nuclear genome 
and plastome might have large effects on the molecu-
lar evolution of plastid genes. Although the plastomes 
of Epipogium (Orchidaceae), Gastrodia (Orchidaceae), 
and Thismia (Thismiaceae) are minimal and at the final 
stages of degradation, it seems that these plastomes still 
have very high substitute rates [43, 46]. Recent molecular 
dating indicated that the fully mycoheterotrophic lineage 
Thismia is of a much more recent origin [43]. All Gas-
trodieae members are mycoheterotrophic and diverged 
from their autotrophic relatives (Nervilia species) 
approximately 35 Mya. This suggests that the relaxed 
selection pressure on plastome genes may last longer 
than expected.

Gene pseudogenization and gene loss are common 
phenomena in the plastomes of parasitic plants [43, 51]. 
The ycf1 gene was often absent from the highly reduced 
plastomes of parasitic plants growing in humid and 
shaded environments, such as Epipogium [43], Sciaph-
ila [45, 52], and Thismia [46], as well as from the plas-
tomes of aquatic plants including all members of the 
Podostemaceae family [53]. To our knowledge, D. pal-
lens is the only fully mycoheterotrophic species with two 
copies of ycf1 in plastomes. In contrast to most mycohet-
erotrophic plants that grow in humid and shady environ-
ments (Supplementary Table S9), our botanical survery 
indicated that D. pallens grows in very dry and open 
environments (Fig.  5). Although previous results sug-
gest that environment has little effect on plastome evolu-
tion, the presence of a duplicate copy of the ycf1 gene in 
D. pallens and absence of ycf1 in Podostemaceae suggest 
that environmental factors may affect the loss, retention, 
and duplication of genes in the plastomes of parasitic 
plants in extremely environmental conditions.

Conclusions
The plastomes of Gastrodieae are greatly reduced and 
characterized by low GC content, rrn block formation, 
and lineage-specific reconfiguration and gene content. 
Synonymous and nonsynonymous substitution rates are 
much higher among the plastomes of Gastrodieae than 
among those of mycoheterotrophic species in Orchi-
daceae. Overall, plastomes of Gastrodieae not only serve 
as an excellent model for illustrating the evolution of 
plastomes but also provide new insights into plastome 
evolution in parasitic plants.

Methods
DNA extraction and sequencing
A total of 13 species belonging to the Gastrodieae tribe 
(Didymoplexis pallens and ten Gastrodia species) and its 
sister tribe, Nervilieae tribe (two Nervilia species), were 
sampled (Supplementary Table S1) based on previous 
results [28, 31]. Genomic DNA was extracted from these 
species using silica-dried materials with the modified 
cetyltrimethylammonium bromide (CTAB) method [54]. 
DNA was sheared to 400–600 bp fragments using Cova-
ris M220. DNA libraries were prepared using the NEB-
Next Ultra DNA Library Prep Kit (New England Biolabs, 
USA), according to the manufacturer’s instructions, and 
then outsourced to Majorbio Company (Beijing, China) 
for 100 or 150 bp paired-end sequencing on the Illumina 
HiSeq 2500 platform. Approximately 5  Gb of raw data 
were generated for heterotrophic species, and 3  Gb for 
autotrophic species. Epipactis veratrifolia was used as 
an autotrophic outgroup for comparative analyses. One 
plastome downloaded from NCBI (https://​www.​ncbi.​
nlm.​nih.​gov/) were included in the analyses (Supplemen-
tary Table S1). In addition, 19 plastomes representing 19 
mycoheterotrophic orchid genera were downloaded from 
NCBI (https://​www.​ncbi.​nlm.​nih.​gov/) for comparison 
(Supplementary Table S8).

Plastome assembly and annotation
Raw reads were trimmed and filtered using NGSQC-
TOOLKIT v. 2.3.3 [55]. Plastomes were assembled using 
GetOrganelle v. 1 [56] and NOVOPlasty [57], with default 
parameters, and the plastome of Calanthe triplicata 
(NC_024544.1) was used as a reference. Contigs were 
combined and extended using Geneious Prime (Biomat-
ters, Inc., Auckland, New Zealand; http://​www.​genei​
ous.​com) to obtain the plastome draft. Assembly errors 
were corrected in Geneious Prime by mapping reads to 
the plastome draft. The boundaries of IR regions in each 
plastome were confirmed by BLAST. Completed plasto-
mes were annotated with PGA [58] using the annotated 
plastome of C. triplicata (NC_024544.1) as a reference. 
Then, the annotations were manually checked, and gene 
or exon boundaries were adjusted using Geneious Prime.

Phylogenetic analysis and molecular dating
All protein-coding sequences in plastomes were used to 
reconstruct the phylogenetic relationships (Supplemen-
tary Table S1). A single gene matrix was aligned using 
MAFFT under the automatic model selection option 
[59, 60] with manual adjustments in BioEdit. Then, each 
matrix was combined into a single plastome superma-
trix using SEQUENCEMATRIX v1.7.8 [61]. The con-
catenated sequences were analyzed using RAxML [62] 
in CIPRES [63], with the best-fit model GTRGAMMA. 

https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/
http://www.geneious.com
http://www.geneious.com
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Branch support was evaluated by 1,000 bootstrap repli-
cates. Molecular dating was conducted with the com-
bined supermatrix using BEAST v. 2.1.3 [64–66]. Priors 
were placed on the stem node of Nervilieae and Gas-
trodieae (offset: 34.93 Mya; sigma: 1.0) and Epipactis 
and Gastrodieae + Nervilieae (offset: 60.3 Mya; sigma: 
1.0), based on previous results [28, 67–69]. Two runs of 
MCMC searches were performed for 200 million gen-
erations with sampling every 10,000 generations, and 
typically four non-independent chains were used for 
each run. A Yule process was chosen for the tree prior. 
Log files were monitored using Tracer v1.6 [70]. The first 
10% of trees saved from the first run and the first 8% of 
trees saved from the second run were discarded, and the 
remaining trees were combined in Logcombiner v. 2.3.0. 
Convergence was determined based on the effective sam-
ple sizes (ESSs) of all parameters, assessed as more than 
100. A maximum clade credibility (MCC) chronogram 
was generated in TreeAnnotator v. 1.8.0 [64] with median 
heights for node ages.

Molecular evolutionary analyses
The CDSs of 17 protein-coding genes common to both 
Gastrodieae and Nervilieae tribes (Table  1 and Sup-
plementary Table S5, Supplementary Material online) 
were aligned at the codon level using MUSCLE, with 
the option “-codon”, in MEGA v. 7.0.2 [71]. Stop codons 
were removed from the CDSs prior to alignment. The 
phylogenetic analysis-generated phylogram based on all 
CDSs was used for evolutionary analysis. The plastome 
of Apostasia odorata (NC_030722.1) was used as a ref-
erence. The values of dS and dN in the 17 concatenated 
protein-coding genes were calculated using CODEML 
in the PAML v.4.8 software package [72, 73]. The relative 
values of dS and dN in each CDS were calculated using 
the pairwise model in the PAML software package [73]. 
The plastome of Epipactis veratrifolia (NC 030708.1) was 
used as a reference. Selective regimes among branches 
were analyzed in PAML v.4.8 using the CODEML mod-
ule [72, 73]. Differences in substitution rates were spe-
cifically tested between Gastrodieae and the autotrophic 
outgroup, and between Gastrodieae + Nervilieae and 
the autotrophic outgroup. To determine the relative dN/
dS ratio in Gastrodieae among orchids, the substitution 
rates in CDSs were analyzed in 24 representative myco-
heterotrophic species across Orchidaceae (Supplemen-
tary Table S9). A total of 17 CDSs common to these 
mycoheterotrophic species were analyzed as described 
above. To determine whether the relaxed selection on 
plastome genes varied with the species lifestyle, the varia-
tion in selection pressure on these 17 genes was analyzed 
using RELAX [74]. Gastrodieae and autotrophic Nervilia 
species were treated as different test branches.

Codon usage, amino acid frequencies, and GC3 value 
in the 12 Gastrodieae and Nervilieae plastomes were 
calculated using CondonW v1.4.2 (http://​codonw.​
sourc​eforge.​net/), based on the subset of 17 common 
protein-coding genes. Genes were categorized into 
groups according to gene function or subunits that 
form a functional protein complex, as described pre-
viously [75]. Statistical analyses were performed using 
the R software package (http://​www.r-​proje​ct.​org), and 
correction for multiple comparisons was conducted 
using the Benjamini and Hochberg method (1995), 
which controls for the false discovery rate. RNAs of 
various species were compared using Geneious10.2.3, 
and the secondary structure of RNA was determined 
using the online software (http://​rna.​tbi.​univie.​ac.​at//​
cgi-​bin/​RNAWe​bSuite/​RNAfo​ld.​cgi). Transcriptome 
data of G. elata (SRR18147619) was downloaded from 
NCBI (https://​www.​ncbi.​nlm.​nih.​gov/) and analyzed as 
described previously [36].
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