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Abstract 

Background: Understanding the genetic basis of yield related traits contributes to the improvement of grain yield in 
maize.

Results: Using 291 excellent maize inbred lines as materials, six yield related traits of maize, including grain yield per 
plant (GYP), grain length (GL), grain width (GW), kernel number per row (KNR), 100 kernel weight (HKW) and tassel 
branch number (TBN) were investigated in Jinan, in 2017, 2018 and 2019. The average values of three environments 
were taken as the phenotypic data of yield related traits, and they were statistically analyzed. Based on 38,683 high-
quality SNP markers in the whole genome of the association panel, the MLM with PCA model was used for genome-
wide association analysis (GWAS) to obtain 59 significantly associated SNP sites. Moreover, 59 significantly associated 
SNPs (P < 0.0001) referring to GYP, GL, GW, KNR, HKW and TBN, of which 14 SNPs located in yield related QTLs/QTNs 
previously reported. A total of 66 candidate genes were identified based on the 59 significantly associated SNPs, of 
which 58 had functional annotation.

Conclusions: Using genome-wide association analysis strategy to identify genetic loci related to maize yield, a total 
of 59 significantly associated SNP were detected. Those results aid in our understanding of the genetic architecture of 
maize yield and provide useful SNPs for genetic improvement of maize.
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Background
As an important cereal and forage crop, maize plays 
an important role in sustaining global food security. 
Improvement of grain yield is a major and longstanding 
breeding goal for maize. Maize grain yield was deter-
mined by several yield-related traits, including grain 
yield per plant (GYP), ear length (EL), kernel row number 
(KRN), grain length (GL), grain width (GW), 100-kernel 
weight (HKW), and kernel number per row (KNR) [1]. 
Yield related traits possess higher heritability than grain 
yield and have great effects on improving grain yield [2]. 
They thus have attracted the attention of breeders in 

recent decades [3]. Nevertheless, our understanding of 
the molecular mechanisms underlying maize yield related 
traits is limited [4]. Identifying loci associated with yield 
related traits has become an essential topic in the molec-
ular breeding practice of high yield maize which contrib-
utes to our understanding of the correlations between 
yield related traits at a molecular level.

Up to now, some yield related traits genes have been 
cloned by studying mutants [5–7]. Unfortunately, most 
of the traits related to plant development and yield in 
mutants show negative effects, which limits the appli-
cation of mutants in breeding [8]. Therefore, the alleles 
controlling yield related traits can be identified by linkage 
mapping and association mapping in natural variation 
populations. To date, a number of quantitative trait loci 
(QTL) for yield related traits in maize have been detected 
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by linkage analysis. Liu et al. [9] detected four QTL con-
trolling KRN in an  F2 population and two QTL control-
ling KRN in a recombinant inbred line (RIL) population 
derived from the crossing of the maize inbred lines abe2 
and B73. Using an intermated B73 × Mo17 Syn10 dou-
bled haploid population, Zhang et  al. [10] detected 100 
QTLs for yield related traits and eight significant SNPs 
co-located within intervals of seven QTLs. Through 
linkage analysis, a PPR family gene ZmVPS29 regulat-
ing maize grain shape was successfully cloned according 
to genetic population which was constructed with maize 
inbred lines Huangzaosi and Lv28. Overexpression of 
ZmVPS29 could make the grain slender and significantly 
improve the yield per ear of maize [11]. However, QTL 
with small effects were difficult to identify since classi-
cal biparental populations generally lead to relatively low 
resolution [12]. Furthermore, some rare alleles are often 
neglected due to the lack of genetic diversity in biparental 
populations [13].

As a cost-effective tool for dissecting the genetic archi-
tecture of complex quantitative traits, genome-wide 
association studies (GWAS) provide a high-resolution 
approach for the identification of QTL and have been 
widely used for the examination of QTL for yield-related 
traits in crops [14]. Huang et  al. [15] used high-density 
SNP data and GWAS method to analyze 950 rice varieties 
in the world, and identified 10 trait loci related to yield 
in rice. To better understand the molecular mechanism 
underlying yield, Li et  al. [16] investigated four yield-
related traits of 133 soybean landraces by GWAS method 
and the results revealed five candidate genes associated 
with yield-related traits. Maize had high genetic diversity 
and contains many rare alleles in genome, which is very 
suitable to study the genetic basis of yield-related traits 
by GWAS [17, 18]. Using the association panel com-
posed of 240 maize inbred lines and recombinant inbred 
lines, Zhang et al. [2] identified 23 QTLs and 25 signifi-
cant SNPs related to HKW, KRN and KNR, including 
a stable locus (PKS2) related to KRN, HKW and kernel 
shapes. Zhang et al. [10] Used a natural population and 
B73 × Mo17 syn10 doubled hybridized haploid popula-
tion, detected 100 QTLs and 138 SNPs of yield related 
traits, and found that 8 important SNPs were located in 
the interval of 7 QTLs. Luo et  al. [19] used the GWAS 
method to identify a QTL-YIGE1, which regulates ear 
length by affecting pistillate floret number. Overexpres-
sion of YIGE1 can promote the growth of female inflo-
rescence meristem (IM), thereby increasing panicle 
length and grain number per row, thus increasing yield. 
The GWAS method has been used for detecting loci that 
control yield related traits in maize, such as grain yield 
per plant (GYP) [20], ear length (EL) [21], kernel row 
number (KRN) [22], kernel length (KL) [23], kernel width 

(GW) [23], 100-kernel weight (HKW) [24], and kernel 
test weight (KTW) [10]. Therefore, the yield related traits 
of quantitative trait nucleotides (QTNs) can be effec-
tively identified by GWAS method, and will improve our 
understanding of the molecular mechanism underlying 
kernel yield formation in maize.

Under the trend of increasing planting density and 
higher requirements for light energy utilization effi-
ciency in modern breeding, the plant type of maize, such 
as tassel branch number (TBN), has a great correlation 
with the yield of maize [6]. At present, many genetic 
loci for the tassel branch number have been obtained by 
QTL mapping or GWAS analysis. Yi et al. [25] used  F2:3 
population with 266 families and RIL population with 
301 families to locate QTLs for tassel length and tassel 
branch number, detected 15 and 16 QTLs respectively, 
of which 4 QTLs can be co-located by the two popula-
tions. Upadyayulia et al. [26] analyzed the tassel correla-
tion traits of maize backcross population and detected 45 
QTLs controlling the tassel correlation traits, of which 
the bnlg344-phi027 segment of bin9.02 can explain 14.6% 
of the phenotypic variation. The known ramosa1 (ra1) 
gene controlling the development of tassel is located in 
bin7.02 within the QTL interval. Using US-NAM popu-
lation and CN-NAM population, 63 QTLs controlling 
the tassel branch number and 62 QTLs controlling the 
length of tassel were identified by linkage analysis, and 
965 QTNs significantly associated with the tassel branch 
number were detected by association analysis [27].

In the present study, we used an association panel of 
291 maize inbred lines to identify the significant SNPs 
related to yield related traits by GWAS in different envi-
ronments. The objective of the study was to map SNPs 
that are significantly associated with yield related traits 
and identify the candidate genes involved in yield related 
traits. Our results will improve the understanding of 
molecular mechanisms underlying maize yield related 
traits and provide novel molecular markers that may be 
used by breeders to develop superior varieties.

Results
Yield related tarit phenotypic variations
Taking the average value of yield related traits in 3 years 
as phenotypic data, the six yield related traits were statis-
tically analyzed. The six phenotypic traits GYP, GW, GL, 
KNR, HKW and TBN of 291 maize inbred lines showed 
an approximate normal distribution (Fig.  1), indicating 
that these traits were typical quantitative traits controlled 
by multiple genes. Among 291 maize inbred lines, the 
phenotypes of GYP, KNR and TBN quantitative traits 
showed great variation (CV was 42.37, 39.95 and 49.79% 
respectively), and the 6 yield related traits showed high 
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broad-sense heritability, which were 0.62, 0.65, 0.71, 0.61, 
0.76 and 0.83 respectively (Table 1).

Group structure analysis of association penal
Based on the genotypes of 291 inbred lines, according 
to TASSEL5.0 software for cluster analysis, combined 
with the analysis results of Li et  al. [28] on the popula-
tion structure, 291 materials were clustered (Fig.  2). 
When 50% group attribute ratio was used as the basis 
for classification, 227 (78.0%) of 291 inbred lines were 
divided into 6 groups: Lüda red cob group (LRC), Tang-
sipingtou group (TSPT), Lancaster group (LAN), P group 
(P), Improved Reid group (IR) and Reid group (Reid); 
while the remaining 64 lines did not have clear group 
attribution characteristics and were classified as mixed 
groups (Mix). Among the seven groups, Lüda red cob 
group, Tangsipingtou group, Lancaster group, P group, 
Improved Reid group and Reid group, contain 10, 27, 39, 

33, 26 and 92, materials respectively, accounting for 3.4, 
9.3, 13.4, 11.3, 8.9 and 31.6% of the total materials respec-
tively. Lüda red cob group, Tangsipingtou group, Lancas-
ter group, P group, Improved Reid group and Reid group 
have been reported in previous studies, and they are all 
commonly used heterosis groups in maize breeding [29, 
30]. The materials in the mixed population contained 
Chinese and foreign germplasm widely, so the associa-
tion panel had a wide genetic basis and rich yield related 
variation loci.

Genome wide association analysis of yield related traits
In total, 38,683 high-quality SNPs were used to perform 
GWAS for six yield related traits. MLM with PCA model 
was used to analyze the average values of yield related 
traits of 291 maize inbred lines in 6 environments. The 
GWAS results showed that a total of 59 significantly 
associated yield related SNPs were identified, and their p 

Fig. 1 Phenotypic variation of yield related traits in 291 maize inbred lines

Table 1 Statistical analysis of yield related traits

GYP grain yield per plant (g), GW grain width (cm), GL grain length (cm), KNR kernel number per row, HKW 100-kernel weight (g), TBN tassel branch number. The same 
as below

Trait Mean Max Min SD CV (%) H2

GYP 49.92 127.50 3.39 21.15 42.37% 0.62

GW 8.34 30.60 4.97 0.96 11.51% 0.65

GL 9.32 12.47 6.10 1.07 11.43% 0.71

KNR 26.46 53.50 5.33 10.57 39.95% 0.61

HKW 25.18 40.04 9.75 4.93 19.59% 0.76

TBN 6.70 21.00 1.00 3.34 49.79% 0.83
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values were less than 0.0001 or could be detected in two 
yield related traits (Fig. 3 and Table 2). Among the signifi-
cantly SNPs, 11 SNPs of GYP were detected, which were 
located on chromosomes 1, 2, 3, 7, 8, 9 and 10; 29 SNPs 
of GW were detected, which were located on all chromo-
somes; 4 SNPs of GL were detected, which were located 
on chromosomes 2, 7 and 10; 5 SNPs of KNR were 
detected, which were located on chromosomes 1, 6 and 
7; 2 SNPs of HKW were detected, which were located on 
chromosomes 2 and 6; 11 SNPs of TBN were detected, 
which were located on chromosomes 1, 3, 4, 7, 8 and 10. 
At the same time, three of these SNPs can be detected in 
two different traits (bold SNPs, Table 2).

Candidate genes involved in yield related traits
The LD analysis results of this association panel showed 
that when r2 > 0.2, the LD decay with physical distance 
in our association panel was calculated to be 100 kb (Fig. 
S1). SNPs with significant correlation were screened out 
from GWAS. The yield related candidate genes within 
the LD range of significant association sites were found 
on the maizeGDB website (B73 RefGen_v4). A total of 66 
candidate genes were identified in 59 SNPs controlling 
yield related traits, of which 58 had functional annotation 
(Table 2).

Fig. 2 Cluster analysis of 291 maize inbred lines
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Discussion
Abundant phenotypic variations in the yield related traits
At present, GWAS method has been widely used to study 
the genetic basis of important traits of many species by 
calculating the association between genotypic and cor-
responding phenotypic variations [31]. In the study con-
ducted by Zhang et  al. [10], the population had a large 
phenotypic variation in ERN (ear row number), rang-
ing from 9.00 to 20.10; in HKW, ranging from 14.84 to 
41.75 g; in KNR, ranging from 14.50–35.05; in EGW (ear 
grain weight), ranging from 102.70–801.75 g. Meanwhile, 
in the study of Ma et al. [20], phenotypic variation of the 
association panel in the BLUE (best linear unbiased esti-
mate) value of GYP was 42.2 g, CV 40%; the BLUE value 
of HKW is 26 g, CV 17%; the BLUE value of KNR was 
15.87, CV 28%. Greater phenotypic variation would be 
beneficial for dissecting the genetic architecture of the 
yield related traits. Among the association panel com-
posed of 291 inbred lines had a large phenotypic varia-
tion in GYP, GW, GL, KNR, HKW and TBN (Table 1), so 
the association panel was suitable for association analysis 
of yield related traits.

Genetic architecture of yield related traits
Crop yield is a complex quantitative trait. Understand-
ing the genetic structure of maize yield is helpful to 
maize high-yield breeding. GWAS facilitates the iden-
tification of QTNs and candidate genes associated with 
the target traits. In this study, we performed GWAS 
using the association panels, including 291 inbred lines 
with 38,683 SNP markers, we obtained 59 significant 
SNPs (P < 0.0001) that were significantly associated with 
six yield related traits in maize. Among these SNPs, 
some overlapped with previously reported QTL/QTN 
intervals. The SNP 9_150257246 (Chr9: 150.25 Mb), 
7_162001602 (Chr7: 162.00 Mb) and 1_209009744 
(Chr1: 209.00 Mb) of GYP were mapped to the previ-
ously detected QTL Yqgypp9 (Chr9: 140.8–158.6 Mb), 
qgy-7.2 (Chr9: 161.51–165.72 Mb), the QTL detected 
in RIL population derived from lines DAN340 × K22 
(Chr1: 208.36–209.3 Mb) [32–34]. the GYP-associated 
SNP 7_162001602 (Chr7: 162.00 Mb) was closely located 
with the SNP chr7.S_162987283 (Chr7:162.98 Mb) 
detected in the RIL population [34]. Four GW-related 
SNPs 2_36952454 (Chr2:36.95 Mb), 2_54135317 

Fig. 3 Manhattan plot for genome-wide association study of maize yield related traits
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Table 2 List of significant SNPs associated maize yield related traits and the candidate genes and their functional annotations

Trait SNP P value R2% Candidate gene Gene annotation

GYP 9_150257246 1.92E-05 7.77 GRMZM2G330945 Cold regulated gene 27 (COR27)

GYP 7_162001602 2.86E-05 8.50 GRMZM2G151649 ARM repeat superfamily protein

GYP 3_138419644 5.32E-05 7.01 GRMZM5G803355 MYB transcription factor

GYP 2_29336901 5.90E-05 6.94 GRMZM5G845736 Inactive beta-glucosidase

GYP 3_138419203 6.10E-05 6.91 GRMZM5G803355
GRMZM2G585025

MYB transcription factor
Small RNA degrading nuclease 5

GYP 3_7417157 7.15E-05 6.79 GRMZM2G015267 FAD/NAD(P)-binding oxidoreductase

GYP 1_209009744 7.45E-05 6.76 GRMZM2G125557 Auxin-repressed protein putative expressed

GYP 2_66831336 7.76E-05 6.73 GRMZM2G097406 Unknown

GYP 3_138762178 9.58E-05 6.58 GRMZM2G087590 PsbP domain-containing protein 4

GYP 8_29023337 9.72E-05 6.57 GRMZM2G393347 HOPZ-ACTIVATED RESISTANCE 1 (ZAR1)

GYP 10_34938698 1.48E-04 6.26 GRMZM2G003090 Unknown

KW 6_77081642 3.60E-18 32.43 GRMZM2G328197
GRMZM2G376957

RING zinc finger domain superfamily protein
Histone H3-like 5

KW 1_299177196 2.17E-17 32.56 GRMZM2G110851 Pentatricopeptide repeat-containing protein

KW 3_175569291 2.86E-12 20.42 GRMZM2G149662 COV1-like protein

KW 1_52,668,969 1.42E-10 18.58 GRMZM2G174696 Mitochondrial import receptor subunit TOM40–1

KW 5_177277411 1.02E-08 15.00 GRMZM2G492156 MADS-box transcription factor 27

KW 9_154673101 2.50E-08 14.28 GRMZM2G092741 ARATH AP-2 complex subunit alpha-2

KW 6_67479669 2.53E-08 13.00 GRMZM2G430902 C3HC4-type RING finger family protein

KW 1_38858313 5.16E-08 12.44 AC204035.3 Unknown

KW 4_238037247 6.29E-08 12.28 GRMZM2G166145 Apoptosis-inducing factor homolog

KW 10_110533455 2.82E-07 12.31 GRMZM2G153215 Membrane-anchored ubiquitin-fold protein 4

KW 2_223591728 4.83E-07 10.70 GRMZM2G172101
GRMZM2G052507

Seryl-trna synthetase
Serine carboxypeptidase-like 45

KW 2_36952454 6.26E-07 11.67 GRMZM2G102238 PAP2 family domain containing protein

KW 1_13682335 6.28E-07 10.49 GRMZM2G417455 Beta-galactosidase 5

KW 7_130909742 6.31E-07 10.49 GRMZM2G464985 Serine/threonine-protein kinase D6PKL1

KW 4_174067645 9.84E-07 10.15 GRMZM2G010933 Cytochrome c oxidase copper chaperone 1

KW 6_66363963 1.72E-06 9.72 GRMZM2G110983 Ubiquitin-conjugating enzyme E2

KW 1_154806752 1.76E-06 9.70 GRMZM2G446047 Trm32_arath protein trm32

KW 5_179440519 2.05E-06 9.58 GRMZM2G003384 60S ribosomal protein L6

KW 1_76348752 2.30E-06 10.62 GRMZM2G174708 Polygalacturonase inhibitor 1

KW 6_19391683 2.56E-06 10.54 GRMZM2G319397 Unknown

KW 8_71170430 2.78E-06 10.47 GRMZM5G887975 GATA transcription factor 19

KW 2_54135317 2.80E-06 9.35 GRMZM2G173218 Unknown

KW 2_233033601 3.21E-06 9.24 GRMZM5G843555
GRMZM2G149935

Putative prolyl 4-hydroxylase 12
Hydroxyproline o-galactosyltransferase galt4

KW 2_153726247 3.51E-06 9.17 GRMZM5G800842 Ubiquitin-activating enzyme E12

KW 7_115163058 5.27E-06 8.86 GRMZM2G071059
GRMZM2G171408

CCR4-NOT transcription complex subunit 7
Spotted leaf protein 11

KW 1_87304388 5.56E-06 8.82 GRMZM2G046848 U-box domain-containing protein kinase family

KW 1_233620848 6.16E-06 8.74 GRMZM2G001850 Nucleolin like 2

KW 5_204816347 6.48E-06 8.70 GRMZM5G899787 RNA-binding (RRM/RBD/RNP motifs) protein

KW 8_65840306 6.66E-06 8.68 GRMZM2G477340 CDP-diacylglycerol--serine O-phosphatidyltransferase 2

KL 2_200248530 4.01E-05 7.18 GRMZM2G435689 Unknown

KL 2_192310952 7.72E-05 6.70 GRMZM2G013892 Zinc finger C3HC4 type domain containing protein

KL 7_137256260 9.02E-05 6.59 GRMZM2G458164 Glucan endo-1 3-beta-glucosidase precursor

KL 10_34938698 1.51E-04 6.21 GRMZM2G003090 Unknown

KNR 1_52253410 1.23E-05 9.29 GRMZM2G128644 VQ motif-containing protein

KNR 1_299177196 1.58E-05 9.09 GRMZM2G110851 PPR repeat domain containing protein
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(Chr2:54.13 Mb), 3_175569291 (Chr3:175.56 Mb) and 
5_177277411 (Chr5:177.27 Mb) were mapped to the 
previously reported intervals of the GW-related QTL 
on Chr2: 33.71–36.47 Mb, Chr2: 45.2–54.97 Mb, Chr3: 
175.56–179.42 Mb and Chr5: 168.68–177.86 Mb [21, 
34, 35]. 7_137256260 (Chr7: 137.25 Mb) that was asso-
ciated with GL situated closely the interval of the GL 
SNP chr7.S_137701632 (Chr7: 137.70 Mb) identified 
in the RIL population [34]. The SNP 8_139,471,588, 
8_139164894 and 8_148198954 of TBN were located 
closely and mapped to the previously detected QTL 
of TBN in qTBN8–1 (Chr8: 129.97–154.67 Mb) [22]. 
SNP 8_89433292 (chr8: 89.43 Mb) associated with TBN 
and located in the QTL interval of  Q49CN-NAM (chr8: 
73-101 Mb), which was positioned by Wu et  al. [27] in 
TBN. The SNP 3_180017439 (chr3: 180.01 Mb) of TBN 
was closely linked to the SNP S3_179732428 (chr3: 
179.73 Mb) and 179,982,665 (chr3: 179.98 Mb) of TBN [4, 
27]. These yield related SNPs could be considered popu-
lation-stable SNPs, which should be given close attention 
in MAS breeding for improving maize yield. In addition, 
several SNPs not found in previous studies might con-
tribute to achieving high and stable yield in maize.

Pleiotropic loci affect yield related traits in maize
Pleiotropism is a common phenomenon that has been 
found in the QTL mapping and GWAS of multiple crops 

[36, 37]. According to combined linkage and association 
mapping, Zhang et  al. [2] found 17 QTL/SNPs which 
had pleiotropism in yield related traits in maize. Liu et al. 
[23] investigated in an association panel and a biparental 
population, and also identified five pleiotropic QTLs for 
kernel traits, which implicating that a close genetic cor-
relation existed among different kernel traits in maize. In 
our study, we identified 3 pleiotropic SNPs (pSNP) that 
have pleiotropic effect on different yield related traits 
(Table  2 bold SNP). Of these, pSNP 1_299177196 and 
6_77081642 displayed a pleiotropic effect on GW and 
KNR. The SNP 1_299177196 associated candidate gene 
was GRMZM2G110851, which encoded a pentatrico-
peptide repeat-containing (PPR) protein. Chen et al. [11] 
cloned the PPR family gene Zmvps29 through linkage 
analysis, which can regulate the kernel width of maize and 
increase the kernel number per row. GRMZM2G110851 
and Zmvps29 both belong to PPR family genes and have 
the same regulatory effect on maize kernel, suggest-
ing that GRMZM2G110851 has a similar function with 
Zmvps29. The candidate gene GRMZM2G328197 of SNP 
6_77081642 in GW and KNR encoded a RING zinc fin-
ger domain superfamily protein, which was previously 
reported to be significantly related to panicle length in 
rice and to have a positive role in seed germination in 
Arabidopsis [37, 38]. The pSNP 10_34938698 could be 
detected in both GYP and GL which associated with a 

Bold represents the SNPs associated with two yield related traits

Table 2 (continued)

Trait SNP P value R2% Candidate gene Gene annotation

KNR 6_77081642 3.10E-05 7.52 GRMZM2G328197
GRMZM2G376957

RING zinc finger domain superfamily protein
Histone H3-like 5

KNR 6_158099344 4.58E-05 8.25 GRMZM2G049091
GRMZM2G138067

Transcription initiation factor IIF beta subunit
Protein LURP-one-related 5

KNR 7_13586175 8.49E-05 7.77 GRMZM2G446921 F-box domain containing protein

HKW 2_206427709 2.45E-05 8.72 GRMZM2G418343
GRMZM2G117900

Cell wall protein precursor putative
Translation initiation factor family protein

HKW 6_67617018 4.05E-04 5.59 GRMZM2G430902 C3HC4-type RING finger family protein

TBN 8_139,471,588 2.00E-09 14.76 GRMZM2G101664 Zinc finger protein

TBN 8_89433292 6.73E-07 10.25 GRMZM5G856067
GRMZM2G063676

Ribosomal protein L18ae family
heat shock 70 kDa protein 4

TBN 1_29024922 1.07E-06 9.90 GRMZM2G153611
GRMZM2G180023

E3 ubiquitin-protein ligase ARI2
serine/threonine receptor-like kinase NFP

TBN 10_4247900 1.98E-06 9.44 GRMZM5G886547 Non-specific lipid-transfer protein 3

TBN 8_148198954 2.07E-06 9.40 GRMZM2G130586 Unknown

TBN 8_139164894 4.92E-06 8.76 GRMZM2G046037 ubiquitin carboxyl-terminal hydrolase MINDY-2

TBN 3_160368430 7.87E-06 8.40 GRMZM2G129114 Nucleotide-diphospho-sugar transferase

TBN 1_270000781 1.41E-05 7.97 GRMZM5G857351 translational activator GCN1

TBN 3_180017439 1.20E-05 8.09 GRMZM2G042295 methyltransferase putative expressed

TBN 4_209597837 1.39E-05 7.98 GRMZM2G094541 Receptor-like serine/threonine-protein kinase SD1–6

TBN 7_175448419 1.32E-05 8.02 GRMZM2G086628 early nodulin-like protein 16
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candidate gene GRMZM2G003090, but its function was 
unknown. These pleiotropic SNPs detected in multiple 
yield related traits might be stable sites for regulating 
maize yield, which was helpful to understand the molec-
ular mechanism of maize yield formation.

Candidate genes involved in yield related traits
Among these candidate genes in this study, some of them 
were previously reported to affect grain yield or kernel 
development, which were considered the top-priority 
candidate genes. The SNP 3_138419644 and 3_138419203 
were both associated with GRMZM5G803355, which 
encoded an MYB transcription factor. Jia et al. [39] found 
that the expression of ZmMYBE1 in the two hybrids was 
higher than that in their parents, and considered that 
ZmMYBE1 was related to yield heterosis at the transcrip-
tional level. The candidate gene of SNP 6_67617018 and 
6_67479669 were GRMZM2G430902, which encoded 
a C3HC4 type ring finger family protein. The family 
genes were expressed in many tissues of Arabidopsis and 
maize during reproductive development, also played an 
important role in plant seed development [40]. The SNP 
1_ 52,668,969 had a high P-value, which associated gene 
GRMZM2G174696 encoded a TOM40 protein. TOM40 
was relatively conservative and had homologous genes 
in rice and maize. In Arabidopsis, AtTOM40 was essen-
tial for the normal structure of the mitochondrion, and 
participated in early embryo development and pattern 
formation through maintaining the biogenesis of mito-
chondria [41]. The candidate gene GRMZM2G304745 of 
SNP 2_23576028 encoded a leucine-rich repeat protein 
kinase family protein, overexpression of LRK (leucine-
rich repeat receptor kinase) gene could increase the 
yield of rice [42]. GRMZM5G878070 encoded a ABC1-
like kinase protein, overexpressing OsAGSW1 (ABC1-
like kinase related to Grain size and Weight) exhibited a 
phenotype with a significant increase in grain size, grain 
weight, grain filling rate and 1000-grain weight com-
pared with the wild-type and RNAi transgenic plants 
in rice [43]. GRMZM2G492156 encoded a MADS-
box transcription factor 27 protein, overexpressing 
MADS-box showed new attributes such as the increase 
of vegetative growth and grain weight in maize [44]. 
GRMZM2G464985 annotated as a serine/threonine-
protein kinase gene, was previously demonstrated to 
play vital roles in ear length, kernel number and enhance 
maize hybrids grain yield [45]. The SNP 8_ 139,471,588 
had the most significant p-value in the TBN, which can 
explain 14.76% of the phenotypic variation of TBN. This 
locus was associated with GRMZM2G101664, which 
encoded a zinc finger protein. NSG1 encoded a member 
of the zinc finger protein family and was expressed mainly 
in the organ primordia of the spikelet in rice, which 

played a pivotal role in maintaining organ identities in the 
spikelet by repressing the expression of LHS1, DL, and 
MFO1 [46]. Maize ramosa1 (ra1) gene encoded a zinc 
finger transcription factor protein, which was involved in 
the regulation of tassel development in maize [47]. The 
zinc finger protein encoded by GRMZM2G101664 might 
also be involved in the development of maize tassel. The 
SNP 8_89433292 could explain 10.25% of the phenotypic 
variation and associated with GRMZM2G042295, which 
encoded a heat shock protein. HSP101 can participate 
in the regulation of tassel development at the post tran-
scriptional level in maize [48]. The SNP 3_180017439 
associated with GRMZM2G042295, which encoded a 
methyltransferase family protein. Wang et al. [49] found 
a methyltransferase family protein and played a key role 
in the regulation of secondary wall biosynthesis in inter-
fascicular fibers during inflorescence stem development 
of Arabidopsis. These genes are considered to be reli-
able candidate genes for regulating yield related traits in 
maize, and further verification of their function will be 
helpful for further elucidating the underlying genetic and 
molecular mechanisms of yield related traits.

Conclusion
In this study, a genome-wide association study (GWAS) 
method was made on an association panel of 291 inbred 
lines. Using 38,683 high-quality SNPs, six yield related 
traits were analyzed by the MLM with PCA method. A 
total of 59 yield related SNP were detected, involving 66 
candidate genes. In the future, it is expected to improve 
the accuracy of GWAS results by adding more repre-
sentative inbred lines to expand the association popula-
tion and identifying high-quality phenotypic data from 
multiple environmental trials. Our results will improve 
the understanding of the genetic and molecular mecha-
nisms underlying maize grain yield as well as provide 
new molecular markers for breeders to develop superior 
maize varieties.

Method
Plant material and field experiments
An association panel of 291 wide range of genetic diver-
sity maize inbred lines in China, was collected for 
GWASs. All the accessions were planted following a 
randomized block design of two replicates in 3 years 
(2017, 2018, 2019) Jinan in Shandong Province (E117°10′, 
N36°25′). Each material was planted in a row. The field 
experiments include in a single row 3 m in length, with 
0.6 m between adjacent rows and 14 individual plants 
per row. The Maize Institute of Shandong Academy of 
Agricultural Sciences has established experimental field 
bases at Jinan. The field experiments were approved by 
the Maize Institute, and field management followed local 
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maize management practices. The field studies did not 
involve endangered or protected species in this study. We 
declare that all plant materials comply with the ‘Conven-
tion on the Trade in Endangered Species of Wild Fauna 
and Flora’ in this study. The plant materials used in this 
study were conserved in our lab.

Phenotyping and data analysis
The phenotypic traits measured in this study included 
grain yield per plant (GYP), grain length (GL), grain 
width (GW), kernel number per row (KNR), 100-ker-
nel weight (HKW) and tassel branch number (TBN). In 
GYP, the ears of each line were harvested after reach-
ing maturity and 10 ears with consistent growth were 
selected for evaluation in each replication. In GL, GW 
and KNR, the phenotypes were represented by the 
mean values of 10 ears. In HKW, the average weight of 
three repeated measures of 100 randomly selected ker-
nels from the bulked kernels of each line. TBN was the 
average number of tassel branch number of 10 random 
individual plants in each row.

Excel 2016 and SPSS16 software were used to make 
statistical analysis on six traits, including GYP, GL, GW, 
HKW, KNR and TBN. The average values of each trait 
of 3 years were taken, and the standard deviation and 
coefficient of variation of each trait were calculated 
(Table S2). QTL IciMapping V4.1 was used to calcu-
late broad-sense heritability (H2) by ANOVA in soft-
ware [50]. The coefficient of variation was calculated 
as CV(Coefficient of variation) = SD(Standard Devia-
tion)/Mean [28].

DNA extraction and genotyping
Five maize plants were selected from each material, and 
their fresh leaves were used to extract genomic DNA. 
We extracted the genomic DNA followed the cetyltri-
methylammonium bromide (CTAB) method [51]. All 
samples were quality checked and genotyped using the 
GenoBaits Maize 40 K chip [52]. Then, the successfully 
called SNPs with a missing rate of more than 20% and 
minor allele frequency (MAF) of < 0.05 were excluded 
from the genotyping dataset [53]. After that, 38,682 
high-quality SNPs were used in further analysis (Table 
S1).

Genome‑wide association studies
All the above phenotypic and genotypic data in the 
above associated population were used for GWAS. 
Based on high-quality SNPs, TASSEL 5.0 software was 
used to analyze the population structure of 291 inbred 
lines. Combined with the material pedigree, iTOL soft-
ware was used to draw neighbor joining tree [54]. Using 
MLM with principal components analysis (PCA) model 

by TASSEL 5.0, we carried out GWAS for the six yield 
related traits investigated in this study [55]. The sugges-
tive P value (0.05/N) was set as a significance threshold 
and N was calculated using the simpleM package in R 
to control false negatives [56].

Candidate genes identification
We examined the LD in the genomic region around 
each significant SNP to establish a supporting interval 
for the significant association. That supporting interval 
would comprise the surrounding region in LD (r2 > 0.2) 
[57]. The candidate genes in the LD region around sig-
nificant SNPs were identified based on the B73 refer-
ence genome V3 from MaizeGDB (https:// www. maize 
gdb. org/).
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