
Wei et al. BMC Plant Biology          (2022) 22:288  
https://doi.org/10.1186/s12870-022-03677-8

RESEARCH

Combining QTL mapping and gene 
co‑expression network analysis for prediction 
of candidate genes and molecular network 
related to yield in wheat
Jun Wei1,2, Yu Fang1,2, Hao Jiang1, Xing‑ting Wu1,2, Jing‑hong Zuo1,2, Xian‑chun Xia3, Jin‑quan Li4, 
Benjamin Stich5, Hong Cao1 and Yong‑xiu Liu1,2* 

Abstract 

Background:  Wheat (Triticum aestivum L.) is an important cereal crop. Increasing grain yield for wheat is always a 
priority. Due to the complex genome of hexaploid wheat with 21 chromosomes, it is difficult to identify underlying 
genes by traditional genetic approach. The combination of genetics and omics analysis has displayed the powerful 
capability to identify candidate genes for major quantitative trait loci (QTLs), but such studies have rarely been carried 
out in wheat. In this study, candidate genes related to yield were predicted by a combined use of linkage mapping 
and weighted gene co-expression network analysis (WGCNA) in a recombinant inbred line population.

Results:  QTL mapping was performed for plant height (PH), spike length (SL) and seed traits. A total of 68 QTLs were 
identified for them, among which, 12 QTLs were stably identified across different environments. Using RNA sequenc‑
ing, we scanned the 99,168 genes expression patterns of the whole spike for the recombinant inbred line population. 
By the combined use of QTL mapping and WGCNA, 29, 47, 20, 26, 54, 46 and 22 candidate genes were predicted for 
PH, SL, kernel length (KL), kernel width, thousand kernel weight, seed dormancy, and seed vigor, respectively. Can‑
didate genes for different traits had distinct preferences. The known PH regulation genes Rht-B and Rht-D, and the 
known seed dormancy regulation genes TaMFT can be selected as candidate gene. Moreover, further experiment 
revealed that there was a SL regulatory QTL located in an interval of about 7 Mbp on chromosome 7A, named TaSL1, 
which also involved in the regulation of KL.

Conclusions:  A combination of QTL mapping and WGCNA was applied to predicted wheat candidate genes for PH, 
SL and seed traits. This strategy will facilitate the identification of candidate genes for related QTLs in wheat. In addi‑
tion, the QTL TaSL1 that had multi-effect regulation of KL and SL was identified, which can be used for wheat improve‑
ment. These results provided valuable molecular marker and gene information for fine mapping and cloning of the 
yield-related trait loci in the future.
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Background
Bread wheat (Triticum aestivum L.) is one of the most 
important grain crops and widely cultivated worldwide 
[1]. In the face of global climate change, increasing wheat 
grain yield with limited land and water resources still 
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meets great challenges [2]. Kernel weight is a major yield 
component in wheat determined by many components 
[3]. From the view of plant morphometric traits, increas-
ing spike length (SL), kernel length (KL) and kernel width 
(KW) are the important approaches for breeding high-
yielding wheat [4, 5]. Furthermore, wheat has a minimal 
seed-dormancy mechanism, which can cause pre-harvest 
sprouting (PHS) of seeds and significantly reduces grain 
yield and quality [6]. Another aspect is that long-term 
storage of seeds leads to low seed vigor with slow and 
non-uniform germination, resulting in poor yield in the 
following field season [7]. Thus, improvements of seed 
vigor and PHS resistance are also often targets in breed-
ing [6, 7].

Wheat yield-related traits are typically controlled by 
multiple quantitative trait loci (QTLs). Previously, QTL 
mapping using various segregating population were 
conducted for wheat yield components. Cheng et al. [8] 
identified one major KL QTL on chromosome 2D that 
explained > 21.8% of phenotypic variances (PVE). Three 
kernel weight QTLs on chromosomes 2D, 4B and 5A 
were identified [9]. Furthermore, using a high-density 
genetic linkage map, five stable QTLs, including two 
for KL, one for KW and two for thousand kernel weight 
(TKW), were identified on chromosomes 2D, 5A, 5B and 
6B [5]. Based on two biparental populations, Li et al. [4] 
identified six major spike compactness and length QTLs. 
These major QTLs co-located on chromosomes 5A and 
6A, and explained 7.13–33.6% of PVE [4]. In previous 
study in wheat, we detected seed dormancy and vigor 
QTLs, of which four major QTLs for seed dormancy 
were found on chromosomes 3A, 3D, 6A and 7B [10], 
and two major QTLs for seed vigor were found on chro-
mosomes 2D and 4A [11]. Due to the complex genome 
of wheat and the limited numbers of available markers, 
these QTLs were located in relatively large intervals of 
genetic map. However, constructing secondary popula-
tions and developing new molecular markers to fine-map 
the underlying gene are time-consuming.

QTL mapping has had success in identifying genes 
underlying plant quantitative trait. However, it requires 
genetic markers that specifically differentiate parental 
forms, controlled breeding and maintenance of large 
numbers of progeny [12]. Compared with QTL mapping, 
genome-wide association analysis (GWAS) that based on 
linkage disequilibrium, can investigate greater number of 
alleles and broader genetic variations in an association 
study [13]. In rice (Oryza sativa), OsSPL13, a grain yield 
controlling gene, had been identified through GWAS 
[14]. bHLH16, sharing a conserved function in regulat-
ing flag leaf angle, was identified by GWAS with 529 O. 
sativa accessions [15]. In addition to rice, for many major 
crops, such as maize (Zea mays) and soybean (Glycine 

max), agronomic trait had been study through GWAS 
[13, 16–19]. QTL mapping and GWAS are powerful tools 
to locate causal loci on the genome, but it is not enough 
to identify candidate genes on its own for complex traits. 
Thus, additional work is necessary. Causal genes of cap-
saicinoids that are unique compounds produced only in 
peppers (Capsicum annuum) were revealed by QTL map-
ping combined with GWAS [20]. Nitrogen is an essential 
element for plants, and genes related to nitrogen stress 
tolerance had been identified by combining QTL map-
ping and transcriptome profiling in sorghum (Sorghum 
bicolor) [21]. The marriage of transcriptomic approaches 
with genetic design has been proven a powerful tool in 
understanding of complex traits [22]. But such studies 
have rarely been carried out in wheat.

In this study, we had combined QTL mapping 
and weighted gene co-expression network analysis 
(WGCNA) to predict candidate genes related to yield 
in wheat. WGCNA is a systems biology method for 
describing the correlation patterns among transcrip-
tion levels of genes across many samples [23]. It enables 
characterization of modules of co-expressed genes that 
may share biological function. Such networks provide an 
initial way to explore functional associations from gene 
expression profiling and can be applied to various aspects 
of plant biology [23, 24]. Wang et  al. [25] analyzed the 
transcriptomes of developing spikes for 90 wheat lines 
and identified several genes related to spike complexity 
by WGCNA. SmWRKY44, an anthocyanin biosynthesis 
regulatory gene had been identified by WGCNA [26]. 
In tomato (Solanum lycopersicum), SlHSP70–1 was con-
nected with the SlIAA9 and SlDELLA node in co-expres-
sion network, and overexpressing SlHSP70–1 resulted in 
internode elongation [27]. In addition, WGCNA is less 
affected by homoeolog quantification, and is applicable 
to polyploids [28]. A combined integration of WGCNA 
with QTL mapping provided a multi-dimensional under-
standing of biological functional networks in this study. 
In this way, we predicted 29, 47, 20, 26, 54, 46 and 22 can-
didate genes for plant height (PH), SL, KL, KW, TKW, 
seed dormancy and seed vigor traits, respectively. Among 
them, three known genes, Rht-B, Rht-D and TaMFT, had 
been cloned as PH and seed dormancy regulator, respec-
tively [29, 30]. Furthermore, a major QTL for multi-effect 
regulation of KL and SL, named TaSL1, was identified. It 
was located in the interval of about 7 Mbp on chromo-
some 7AS (7A short arm).

Results
QTL detection for plant height and yield‑related traits
Using 241 F10 recombinant inbred lines (RILs) derived 
from Zhou8425B/Chinese Spring (CS) cross, we per-
formed QTL mapping for PH, SL and seed related traits. 
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Zhou8425B has a dwarf PH, large spike, big kernel and 
high TKW (Fig. S1), while CS has better PHS resistance 
and seed storability [10, 11]. Information about QTLs for 
seed dormancy and seed vigor were available from pre-
vious studies [10, 11]. The RILs were planted during the 
cropping season in 2016–2017, 2017–2018 and 2018–
2019. ANOVA was conducted for phenotypes across the 
three environments. Significant differences among the 
241 RILs were observed for the phenotypic values for 
all traits (Table S1). The frequency distributions of PH, 
SL, KL, KW and TKW for the RILs in each environment 
were continuous (Fig. S2), indicating that they are quan-
titative traits regulated by multiple genes. Based on data 
averaged across the three environments, PH ranged from 
52.2 to 111.5 cm with an average of 85.1 cm. SL ranged 
between 6.71 and 13.82 cm with an average of 9.55 cm. 
TKW ranged from 21.8 to 44.1 g with an average of 
33.5 g. KW and KL ranged from 2.37 to 3.44 mm and 5.34 
to 6.86 mm, with averages of 2.95 and 6.00 mm, respec-
tively. PH, SL, and KL showed high heritability, ranging 
from 0.74 to 0.79 (Table S1). Pearson’s correlation coef-
ficients were calculated for all pairs of traits (Table S1, 
Fig. S3). The highest positive correlation was observed 
between TKW and KW (r > 0.85, P < 0.01). In addition, 
germination ratio (GR) and first count germination ratio 

(FCGR), which were used to reflect seed dormancy, had 
a high correlation (r > 0.73, P < 0.01). Weighted germina-
tion index (GI) and mean germination rate (MGR), which 
were used to reflect seed vigor, showed a high correlation 
(r > 0.65, P < 0.01, Fig. S3) as well. PH data from the three 
environments were highly correlated each other with 
r > 0.70 and P < 0.01, SL and KL also showed the similar 
correlations, indicating that they might be highly influ-
enced by genetic factors (Table S1, Fig. S3).

Using the SNP genotype and linkage map constructed 
previously [10], inclusive composite interval mapping 
(ICIM) identified 68 QTLs for PH, SL and seed traits 
across the three environments (Table S2). The QTLs 
identified in two of the three environments were des-
ignated in the following as stable QTL. Three QTLs for 
PH were stably identified across the three environments, 
and explained 13.7–23.2%, 8.6–18.5% and 7.2–7.5% 
of the PVE (Fig.  1, Table S2). Four stable QTLs for SL 
were identified on chromosomes 4A, 5A and 7A, and 
the QSL.cas-4A.3 was detected in all environments and 
explained 9.3–11.6% of the PVE. Two stable QTLs for 
KL were detected on chromosomes 2D and 5B, and they 
explained 7.5–8.2% and 6.1–7.1% of the PVE, respec-
tively. Fifteen QTLs for KW were identified, but only one 
stable QTL QKW.cas-3D was identified across the three 

Fig. 1  Genetic maps of chromosomes showing stable QTLs of wheat traits. The QTL identified in two of the three environments were designated as 
stable QTL. The QTLs for GI (weighted germination index) and MGR (mean germination rate), and the QTLs for GR (germination ratio) and FCGR (first 
count germination ratio) were quoted from our previous report, which were marked in blue. The other QTLs for plant height (PH), spike length (SL), 
kernel length (KL), kernel width (KW) and thousand kernel weight (TKW) were mapped in this experiment and marked in red
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environments, and explained 3.4–3.9% of the PVE. Fur-
thermore, seven QTLs for TKW were detected on chro-
mosomes 6A, 6B and 7B. Of these, the QTKW.cas-6B was 
detected in all of the three environments, explaining 6.9–
7.8% of the PVE (Fig. 1, Table S2).

Gene co‑expression network analysis identified gene 
modules related to yield traits
The RNA sequencing (RNA-Seq) reads for the RILs were 
mapped to the CS genome (TGACv1, release-36). On 
average, 44.1 million reads pairs per sample were per-
fectly mapped to the genome. Using a criterion of reads 
per kilobase million (RPKM) value ≥0.5 for gene expres-
sion, 67,016 of 99,168 identified annotated genes were 
expressed in at least one RIL, whereas 25,458 annotated 
wheat genes were expressed across all RILs. A dendro-
gram of samples based on the RPKM values indicated 
that there were not any obvious outliers and the RILs can 
be divided into two subgroups (Fig. S4).

Next, a co-expression network was constructed 
using the WGCNA package for R [23] with the 67,016 
expressed genes, followed by decomposition of the net-
work into 57 subnetwork modules (Figs.  2 and S4). 
Each module contains a set of genes showing signifi-
cant expression correlations with each other. The largest 
module ME48 contained 2533 genes, whereas the small-
est module ME55 contained only 60 genes, and 40,554 
ungrouped genes were assigned to module ME57 (Table 
S3). An eigen-value was calculated to represent the over-
all expression trend in each RILs for each module. For 
each module, the correlations between the eigen-value 
and the phenotypic values of all traits were computed 
across the 241 RILs. Interestingly, module ME2 exhib-
ited a significantly positive correlation with PH, KW and 
TKW (P < 4.0e-4, Fig.  2). Therefore, Module ME2 may 
harbor major regulators influencing biomass accumula-
tion in the entire period of wheat production. Besides, 
module ME32 was positively correlated with SL and KL, 
while module ME7 and ME33 was negatively correlated 
(Fig.  2). Therefore, module ME7 and ME32 may harbor 
antagonistic regulators influencing cell division or expan-
sion in wheat. Module ME33 revealed the most signifi-
cant negative correlation with KL (r = − 0.37, P = 2.0e-9). 
For seed vigor, module ME24, ME32, ME42 and ME43 
were positively correlated with GI and MGR. For seed 
dormancy, module ME8 and ME30 were significantly 
negatively correlated with GR and FCGR, while for mod-
ule ME9, ME12 and ME14, positive correlations were 
observed (Fig. 2). Moreover, lots of ungrouped genes in 
the module ME57, whose expression patterns were highly 
correlated with the traits, may act independently as regu-
lators (Fig. 2, Table S3).

Combining QTLs and co‑expression network analysis 
to predict candidate genes for yield traits
We identified candidate genes based on the strategy com-
bining the QTL mapping and WGCNA. We first mapped 
the stable QTLs to physical map based on the sequence 
of markers and the genes with high phenotypic correla-
tion in corresponding QTL were designated as candidate 
genes (Fig. 3, Table S4). In this way, 29, 47, 20, 26, 54, 46 
and 22 candidate genes were predicted for PH, SL, KL, 
KW, TKW, seed dormancy and seed vigor, respectively 
(Table S4).

The functional classification of these candidate genes 
was based on sequence BLAST with the Non-Redundant 
Protein Sequence Database (Nr), KEGG orthology (KO) 
and the Gene ontology (GO) database. These genes were 
functionally divided into 15 categories (Fig. 4A). Candi-
date genes functions of different traits had different pref-
erences. The unknown (Un) and metabolism (enzymes, 
Met) related candidate genes were involved for all traits 
(Fig.  4A, Table S4). The PH candidate genes belonged 
apart from Un and Met to the following categories: the 
most were cell cytokinesis and cytoskeleton (Cyt), and 
membrane protein or transport (Tra). Interestingly, the 
known PH genes Rht-B (TraesCS4B02G043100) and 
Rht-D (TraesCS4D02G040400) were detected by our 
approach (Table S4), which suggested that our strategy 
was effective. Similarly, among the candidate genes for 
SL, protease or ubiquitin proteasome (Pro), Tra and chro-
mosome binding (Chr) were abundant. The candidate 
genes of KL mainly belonged to the category Tra, storage 
proteins (Sto) and starch synthesis (Sta) apart from Met. 
Most of KW candidate genes belonged to Pro and Tra 
(Fig.  4A). For TKW candidate genes, in addition to Un 
and Met, genes related to Tra, RNA binding (RNA) and 
defense or response to stresses (Def) were abundant. For 
seed dormancy, candidate genes related to Def, Chr and 
RNA were dominant and a known seed dormancy gene 
TaMFT (TraesCS3A02G006600) was identified. Among 
the candidate genes for seed vigor, genes mainly belonged 
to transcription factor, Chr and Signaling (Fig. 4A, Table 
S4).

We predicted gene network for candidate genes 
using WGCNA package and Cytoscape [31] based on 
gene expression pattern (Fig. 4B). For SL, 36 of 47 can-
didate genes were assigned to four subnets (Fig. 4B I). 
TaSINA-like, TaHistone H3.2 and TaU-box-like had a 
higher degree of network, which implied that they may 
have important SL regulatory effects. The candidate 
genes for KL, TaCYCP450-B and TaPIL7, had a higher 
degree of network and connected to seed storage pro-
tein genes Ta11S-like1 and Ta11S-like1. In addition, 
TaBAM1, a serine/threonine-protein kinase gene, 
connected to TaUDPGP that is involved in energy 
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metabolism regulation (Fig.  4B II). For KW, 21 of 26 
candidate genes were assigned to six subnets (Fig.  4B 
III), which implied KW may be regulated by many 
pathways. A total of 54 candidate genes of TKW were 

detected, which is the most among all traits. This may 
be related to QTKW.cas-6B locating in a large inter-
val (Table S4). Interestingly, most of TKW candidate 
genes were assigned to a network in which each gene 

Fig. 2  Module-trait relationship for 57 modules. Module-trait relationship of 67,016 expressed genes was analyzed by WGCNA package with 
parameter Soft-Threshold = 16 and minModuleSize = 50. Each row corresponds to a module eigengenes (MEs) that were defined as the first 
principal component of each gene module and the expression of MEs was considered as a representative of all genes in a given module, column 
corresponds to a trait. Each cell contains the corresponding correlation and P-value (in bracket). The table is color-coded by correlation according to 
the color legend. PH, plant height; SL, spike length; KL, kernel length; KW, kernel width; TKW, thousand kernel weight. MGR, mean germination rate; 
GI, weighted germination index; GR, germination ratio; FCGR, first count germination ratio
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had high degree of network and weight values (Fig. 4B 
IV). It suggested that these genes work closely together 
to regulate TKW. Seed dormancy candidate genes were 
divided into three subnets. TaMFT, a known seed dor-
mancy regulatory gene, had higher degree of network. 
In addition, TaEIF3A, TaTRMT and TaSINA-like 11 in 
another subnet had a higher degree of network (Fig. 4B 
V). For seed vigor, candidate genes were divided into 
three subnets and these genes were related to each 
other and may jointly regulate seed vigor (Fig. 4B VI).

We selected some candidate genes that had high 
gene significance (GS) which is defined as mediated 
P-value of each gene in the linear regression between 
gene expression and the trait. (Fig.  5A). These genes 
included transcription factors, such as TaODORANT1, 
TaYY1-like and TaDIVARICATA-like, and chromo-
somal binding genes et  al. The expression pattern of 
TaYY1-like was positively correlated with TKW, while 
TaCYCP450-like was negatively correlated. TaTAF9 
was both a candidate gene for seed dormancy and seed 
vigor. The higher its expression level, the stronger seed 
dormancy and higher seed storage tolerance (Fig. 5A). 
To verify the RNA-Seq results, we selected some can-
didate genes for expression analysis between parent CS 
and Zhou8425 using quantitative RT-PCR (qRT-PCR) 
(Fig. 5B). The expression patterns of these genes were 
generally consistent with RPKM value from RNA-Seq 
(Fig. 5), which suggested that the RNA-Seq data were 
credible.

Gene markers on chromosome 7A were tightly associated 
with SL and KL
The gene and promoter sequences of the candidate 
genes for the QTL QSL.cas-7A.2 were sequenced. 
Among them, two candidate genes, an unknown gene 
(TraesCS7A02G200000) and TaODORANT1 (TraesC-
S7A02G205100), have abundant genetic variation 
between CS and Zhou8425B. Between both parental 
inbreds, 16 SNPs and one 416 bp deletion in promoter 
of TaODORANT1 (Figs.  6A and S5), and one 113 bp 
deletion in the first intron of TraesCS7A02G200000 
were detected (Fig. 6B). We designed molecular mark-
ers based on these variations (Figs.  6C and S6). Using 
a population comprising 265 wheat landraces from 
around the world (Table S5), an association analysis 
was performed between these markers and the two 
yield components SL and KL. The result suggested 
that the markers BJ-P2010 and BJ-P2010K for TaO-
DORANT1, and BJ-6840 for TraesCS7A02G200000 
were significantly associated with SL and KL (P < 0.01, 
Fig.  6D, Table S5). Gene markers were developed for 
seven additional indels on both sides of marker BJ-6840 
based on sequence difference between Zhou8425B and 
CS (Fig. S7, Table S6). These markers were also signifi-
cantly associated with SL and KL in the above-men-
tioned panel of 265 landraces (Fig. S7, Table S5). Thus, 
we hypothesized there were significant SL and KL regu-
lators in this region (159.4–167.2 Mbp) (Fig. S7), which 
were named TaSL1.

Fig. 3  Schematic diagram of candidate gene prediction. Firstly, selecting the major effect QTLs that were detected in at least two of the three 
environments. Secondly, based on the sequence of markers, mapping QTLs to physical map, and all genes in the QTL interval were selected. 
Thirdly, the genes from highly associated modules or with high GS value (GS was defined as mediated P-value of each gene in the linear regression 
between gene expression and the traits, including the highest and lowest 200 genes) were selected based on WGCNA. Finally, the joint genes 
identified through the second and third procedure were considered as candidate genes
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In order to investigate TaSL1 application in wheat 
improvement, a total of 879 wheat accessions were 
genotyped with gene markers mentioned above. The 
879 accessions comprise 429 cultivars from China, 185 
cultivars from other zones and the 265 landraces men-
tioned above (Table S5). The results indicated that from 

landraces to cultivars, the ratio of the preferred haplo-
type of TaSL1 (Hap-Z) was increased from 30.2 to 89.3% 
(BJ-P2010 as representative, Table S5). Furthermore, the 
increase was observed in all ecological wheat zones, espe-
cially in the major production zones I, II and III (Fig. 6E). 
In addition, the frequency of the advantageous allele in 

Fig. 4  Candidate gene function classification and network prediction. A The functional classification of candidate genes was based on sequence 
BLAST with the Non-Redundant Protein Sequence Database (Nr), KEGG orthology (KO) and the Gene ontology (GO) database. Abbreviations for 
functional classes are as follows: Cyt, cell cytokinesis and cytoskeleton; Chr, chromatin binding; RNA, RNA binding; Tf, transcription factor; Sig, 
signaling; Def, defense or response to stresses; Cw, cell wall; Sto, storage proteins; Met, metabolism (enzymes); Nse, nuclease-like; Tra, membrane 
protein or transport, including protein, RNA or other material transport; Un, hypotheticals/unknowns/unknown function; Pro, protease or ubiquitin 
proteasome; Prk, Protein kinase-like; Sta, starch synthesis. B Predict the internal network of candidate genes for six different phenotypic traits. Darker 
green of node showed higher degree of network. Darker black of edge showed higher weight. (I) candidate genes for SL; (II) candidate genes for KL; 
(III) candidate genes for KW; (IV) candidate genes for TKW; (V) candidate genes for Seed dormancy; (VI) candidate genes for seed vigor
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varieties from the other six major wheat production con-
tinents around the world were 90.3, 86.5, 94.4, 95.9, 91.8 
and 95.3%, respectively (Fig. 6F). The high ratios of pre-
ferred haplotypes in American, European and Australian 
wheat might be due to their longer breeding histories.

Discussion
In wheat kernel development, the soft dough stage is 
generally about 21 days post anthesis (DPA). During this 
stage, the kernel size reaches its peak [32], and the tran-
script levels of genes encoding for storage proteins and 
defense proteins generally reach their maximum and 

tend to be maintained until the end of maturation [33]. 
Furthermore, many lipid peroxidation and metabolic 
enzymes closely related to seed vigor are most active dur-
ing this stage [34, 35]. Cytokinin levels in the kernel are 
at their highest before milk stage and the level decreases 
gradually until it reaches the minimum at about 20 DPA, 
while abscisic acid (ABA) level is low in the initiation 
stage of kernel development, and reaches its highest level 
in the soft dough stage, and gradually decreases in the 
following stages [32, 36, 37]. The balance of ABA and GA 
plays an important role in seed dormancy. Studies have 
shown that when the dry matter content of grain reaches 

Fig. 5  Expression analysis of candidate genes between parent Chinese Spring and Zhou8425B. A The relationship between gene expression level 
and traits variation. The gene expression level was reflected by RPKM value. The green dot indicates Chinese Spring and the blue dot indicates 
Zhou8425B. The gene significance (GS) was defined as mediated P-value of each gene in the linear regression between gene expression and the 
traits. *, Statistical test P-value is significant at the 0.05 level. **, Statistical test P-value is significant at the 0.01 level. SL, spike length (cm); KL, kernel 
length (mm); KW, kernel width (mm); TKW, thousand kernel weight (g); GR, germination ratio (%); GI, weighted germination index (%). B Using 
qRT-PCR to verify the expression levels of candidate genes between parent Chinese Spring and Zhou8425B. CS, Chinese Spring; Z, Zhou8425B. Total 
RNA was extracted from 21 DPA wheat spike. Gene expression was calculated using the 2-ΔΔCt methods with TaActin as an internal control. Data are 
means (±SE) of three biological replicates, n = 3
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45%, the germination difference between resistant and 
non-resistant PHS can be observed [38]. This implies 
that seed dormancy is basically formed at the soft dough 
stage. Thus, in the analysis of gene co-expression network 
for related yield traits in this study, the whole spike at 21 
DPA were used for RNA-Seq.

In this study, we first performed QTL mapping for PH 
and yield-related traits. The QTLs were identified on 
chromosomes 2D, 3D, 4A, 5A, 5B, 6A, 6B and 7A (Fig. 1, 

Table S2). Among them, QTLs on chromosomes 2D, 4A, 
5A, 6A were consistent with previous studies [4, 39–41]. 
However, the functional genes of these QTLs in wheat 
are still unknown. Based on a combined strategy of QTL 
mapping and WGCNA (Fig.  3), we predicted candidate 
genes for them. Three known genes, including two PH 
regulating genes (Rht-B and Rht-D) and one seed dor-
mancy regulating gene (TaMFT), had been cloned previ-
ously [29, 30].

Fig. 6  TaSL1 regulated both spike and kernel length and the distribution of its preferred haplotype. A Gene marker BJ-P2010K and BJ-P2010 was 
developed based on a 416 bp deletion and a SNP in the promoter of TraesCS7A02G205100, respectively. The solid black box represents exons 
and the solid black line represents introns; The gray box represents 5′-UTR and the gray arrow box represents 3′-UTR; The white box and dotted 
line represents promoter. B Gene marker BJ-6840 was developed based on a 113 bp deletion in fist intron of TraesCS7A02G200000. C Agarose gel 
plots of gene markers. Upper left picture shows marker BJ-6840; Bottom left picture shows marker BJ-P2010K; Right picture shows the digestion 
of PCR product of primer set BJ-P2010-F/R with enzyme SmaI. The plots of different markers were from different gels. The completed gels are 
shown in Figure S6. M, molecular marker; CS, genotype of Chinese spring; Z, genotype of Zhou8425B, H, genotype of heterozygous. D Gene 
markers BJ-P2010K, BJ-P2010 and BJ-6840 were associated with both spike length and kernel length in 265 wheat landraces. E Distributions of two 
haplotypes of TaSL1(represented by BJ-P2010) in 429 cultivars population in different ecological regions of China. I, North winter wheat zone; II, 
Huanghuai winter wheat zone; III, The Yangtze river winter wheat zone; IV, Southwest winter wheat zone; V, South China winter wheat zone; VI, 
Northeast spring wheat zone; VII, North spring wheat zone; VIII, Northwest spring wheat region; IX, Qinghai-Tibet Spring-Winter Wheat zone; X, 
Xinjiang winter-spring wheat zone. F Distributions of two haplotypes of TaSL1 in 334 varieties from the six worldwide wheat production regions 
(Excluding China). The relative size of the pie chart indicates the relative size of the sample
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The wheat SL regulation genes are rarely reported. In 
rice, the known main panicle length regulatory genes are 
DEP2 (Dense and erect panicle 2) [42] and SP1 (Short 
panicle1) [43]. SP1 encodes a peptide transporter [43]. 
DEP2 encodes an unknown plant-specific protein and 
is highly expressed in young panicles [42]. In our study, 
multiple genes associated with the ubiquitin-proteas-
ome pathway were selected, such as TaU-box-like and 
TaSINA-like (Fig. 4B, Table S4). They were all located on 
chromosome 4A and may be candidate genes of QSL.cas-
4A.1 and QSL.cas-4A.3. In addition, two genes located 
in the QTL TaSL1, an unknown gene and a MYB tran-
scription factor gene TaODORANT1, were predicted for 
SL candidate genes (Fig. 4B, Table S4). A previous study 
showed that TaODORANT1 participates in seed storage 
protein synthesis in wheat [44]. Our results showed that 
its promoter has several SNPs in Zhou8425B compared 
to CS (Figs. 6 and S5). Based on the finding, we further 
identified that QTL TaSL1 was associated with both 
SL and KL (Figs. 6 and S7). The TaSL1 had been widely 
selected in breeding (Fig.  6 E, F), but it still has impor-
tant value for wheat improvement in some regions, such 
as Asia and Africa, especially for Southwest winter wheat 
zone and Qinghai-Tibet Spring-Winter Wheat zone in 
China (Fig. 6 E, F). Lots of cultivars in these areas, such 
as Zang1941, Yu23, Yu615, Mianmai1403, Mianmai185, 
Mianmai46, Mianyang16, Mianyang20, Mianyang26, 
etc., (Table S5) do not contain the preferred haplo-
types of TaSL1, and they may still have the potential for 
improvement.

Previously, wheat kernel size or weight regulator were 
identified by homologous cloning or reverse genet-
ics, such as TaGW2, TaGS5 and TaTGW6 [45]. These 
genes are mainly associated with three genetic path-
ways: G-protein signaling, phytohormone signaling 
and proteasomal degradation [45]. In our study, TaPTR, 
TaCYCP450-like and TaAMI1 were selected as candi-
date genes (Fig.  4B, Table S4). They may regulate grain 
size or weight by participating in plant hormone signal-
ing. Arabidopsis AtPTR has the capability of transporting 
plant hormones including auxin, ABA and GA [46]. AMI 
involved in auxin biosynthesis [47]. And most brassinos-
teroid biosynthetic enzymes belong to the cytochrome 
P450 family [48]. Besides, in our results, many genes 
involved in the proteasomal degradation were selected, 
such as TaPCS1, TaAIRP2, TaCLPX (Fig. 4B, Table S4).

Seed dormancy affects PHS resistance. The known 
genes involved in PHS regulation in cereals include 
TaMKK3, TaMFT, TaSdr and other regulators related 
to the signaling pathways [6]. Gene classification based 
on BLAST showed that seed dormancy candidate genes 
were mainly divided into two categories, one could be 
related to chromatin or DNA binding, such as TaRPA1, 

TaTAF9 and TaFHA2-like, and the other could be 
related to RNA regulation, such as TaEIF3A, TaRPS5 
and TaUTP21, (Fig.  4, Table S4). These genes may 
regulate seed dormancy by sensing the external envi-
ronment or endogenous signals. In addition, TaMFT 
was selected and had high degree of network among 
the candidate genes (Fig.  4B, Table S4). Two invertase 
inhibitor genes, TaINH-like1 and TaINH-like2, were 
selected for seed dormancy candidate gene and con-
nected with TaMFT in subnet (Fig.  4B). Invertase 
inhibitors classified as cell wall/apoplastic and vacuolar 
belonging to the pectin methylesterase family, play a 
major role in plant development and responses to envi-
ronment, including seed germination [49, 50].

Lipid peroxidation is a major causes of seed vigor 
decline [33]. A series of causal genes had been identi-
fied in rice, such as LOX2/LOX3, ALDH7 and AKR, etc. 
[33]. Among our predicted candidate genes, TaPeroxi-
dase1 and TaPeroxidase2 that were related to peroxi-
dation, and TaMAS2 were detected (Fig. 4B, Table S4). 
TaMAS2 is a momilactone A synthase-like gene which 
may function in α-Amylase and α-Glucosidase activ-
ity regulation [51]. In addition, six candidate genes, 
TraesCS3D02G454600, TraesCS3D02G550210LC, 
TraesCS3D02G567800LC, TaFHA2-like, TaTAF9 and 
TaRGA2 were selected for both seed vigor and seed 
dormancy (Fig. 4B, Table S4). FHA domain-containing 
proteins localize to the nucleus, where they participate 
in establishing or maintaining cell cycle checkpoints, 
DNA repair, or transcriptional regulation [52]. TAFs 
are components of the transcription factor IID complex 
that are essential for the regulation of RNA polymerase 
II-mediated transcription [53].

Conclusions
In summary, a total of 68 QTLs were identified for PH, 
SL and seed traits, and 12 QTLs were stably identified 
across the three environments (Fig. 1). By a combined use 
of QTL mapping and WGCNA (Fig. 3), 29, 47, 20, 26, 54, 
46 and 22 candidate genes were predicted for PH, SL, KL, 
KW, TKW, seed dormancy, and seed vigor, respectively. 
Candidate genes for different traits have distinct prefer-
ences. The known PH regulation genes Rht-B and Rht-D, 
and the known seed dormancy regulation genes TaMFT 
can be selected, which suggested that the integrated strat-
egy was effective. Moreover, further experiment revealed 
that there was a SL regulatory QTL on chromosome 7A, 
named TaSL1. TaSL1 was located in an interval of about 
7 Mbp, which also regulated KL. It has important value 
for wheat improvement. These results provided valuable 
molecular marker and gene information for fine mapping 
and cloning of the yield-related trait loci in the future.
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Methods
Wheat planting and phenotyping
A total of 241 F10 RILs derived from the cross of 
Zhou8425B/CS and 879 wheat accessions were used in 
this study (Table S5). The 879 wheat accessions consisted 
429 cultivars from China, 185 cultivars from other zones 
and 265 landraces form around the world. Zhou8425B is 
an elite Chinese wheat line developed by the Zhoukou 
Academy of Agricultural Sciences in 1984, having a 
semi-dwarf PH, large spike, high TKW and multiple dis-
ease resistance [39]. CS has better PHS resistance and 
seed storability compared to Zhou8425B [10, 11]. For 
phenotyping, all 241 RILs (including parents, s285, CS; 
s377, Zhou8425B) were planted at the Experimental Sta-
tion of the Institute of Botany, Chinese Academy of Sci-
ences, Beijing during the cropping season in 2016–2017, 
2017–2018 and 2018–2019, respectively. The 879 wheat 
accessions were planted in 2019–2020. All lines were 
planted in a randomized complete block design with two 
replications for each year. Planting row width was 1.5 m 
with 20 cm between rows. A total of 30 seeds were sown 
evenly in each row. The field traits were managed follow-
ing the local normal practices.

The same phenotyping procedure were applied in each 
environment. PH and SL were measured in the field at 
21 DPA with 12 randomly selected plants and spikes per 
line. The mean value was used as the final result. Yield-
related traits, such as KL, KW and TKW, were meas-
ured in the laboratory following harvest by SC-G system 
(Hangzhou Wanshen Detection Technology Co., Ltd., 
Hangzhou, China, www.​wseen.​com). Seed dormancy 
(GR and FCGR) and seed vigor (GI and MGR) phenotype 
data were available from our previous work [10, 11].

Genome‑wide linkage mapping of QTL for PH 
and yield‑related trait
The 241 RILs, including their parents, were genotyped 
with the 90 K iSelect SNP array from CapitalBio Corpo-
ration (http://www.​capit​albio.com). SNP genotyping and 
linkage map come from Gao et al. [39]. QTL analysis was 
performed using ICIM with IciMapping 4.1 software 
[54]. Phenotypic values of all lines in each environment 
were used for QTL detection. The walking step chosen 
for all QTL was 1.0 cM, with P = 0.001 in stepwise regres-
sion. Mapping method was ICIM-ADD. A LOD thresh-
old of 2.5 was chosen for declaration of putative QTL 
[55]. The PVE was estimated through stepwise regression 
[39].

RNA‑Seq and gene co‑expression network analysis
In May 2017, during the soft dough stage of wheat (21 
DPA) from the above described field experiment, the 

whole spike of 241 lines of RILs were collected and stored 
at − 80 °C for RNA extraction. Total RNA was extracted 
using a Plant Total RNA Purification Kit (GeneMark). 
Nanodrop 2000 and the Agilent 2100 bioanalyzer were 
used to characterize RNA quality. The purified RNAs 
were used to construct libraries and sequenced on Illu-
mina HiSeqTM 4000 platform. Raw reads were examined 
using fastQC to inspect read qualities and the extent of 
adapter sequence contamination. Adapter sequences and 
reads with qualities of less than 20 were trimmed. Reads 
from a pair where only one read passed the filtering cri-
teria were omitted. After pre-processing, all remain-
ing reads were aligned to the CS genome (TGACv1, 
release-36) using TopHat [56], allowing a maximum of 
five mismatches. We calculated the number of uniquely 
mapped reads for each gene model in the CS genome 
by parsing the alignment output files from TopHat, and 
then normalized the resulting read counts by RPKM to 
measure the gene expression level. Low abundance genes 
with an expression cut off of RPKM < 0.5 in all line were 
removed from the set.

Scale-free co-expression network analysis was per-
formed based on RPKM values of expressed genes using 
the WGCNA package (v 1.51) in R with parameter min-
ModuleSize = 50 and Soft-Threshold = 16 (as determined 
by assessment of scale-free topology, Fig. S4). For net-
work construction, we used a dynamic tree cutoff 0.20 
to merge similar trees. To identify networks associated 
with trait variables, we calculated the eigen-value of each 
module, after which Spearman’s rank correlation was cal-
culated between the eigen-value (overall expression trend 
of the genes in each module) and traits. Those with a 
weight value less than 0.02 were filtered out to construct 
candidate gene network. The Cytoscape software was 
used to draw the visual network [31].

Candidate genes prediction for stable QTLs
The candidate genes for stable QTLs were predicted 
based on a combination of QTL mapping and WGCNA 
(Fig.  3). Firstly, we selected the major QTLs that were 
detected in at least two of the three environments. Sec-
ondly, based on the sequence of markers, QTLs were 
positioned to physical map, and all genes in correspond-
ing QTL interval were selected. Thirdly, the genes from 
highly associated modules or with high GS value (Includ-
ing the highest and lowest 200 genes for each trait) were 
selected based on WGCNA. Finally, the joint genes iden-
tified through the second and third procedure were con-
sidered as candidate genes.

The functional classification of candidate gene was 
based on sequence BLAST with the Nr, KO and GO 
database using EggNOG (http://​eggno​g5.​embl.​de/). For 
unannotated candidate genes, we used Batch CD-Search 

http://www.wseen.com
http://www.capitalbio
http://eggnog5.embl.de/
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of NCBI (https://​www.​ncbi.​nlm.​nih.​gov/) to search their 
conserved domains and define their function.

Quantitative RT‑PCR
RNA samples used for qRT-PCR were isolated from the 
whole spike at soft dough stage (21 DPA) of wheat that 
collected from three biological replicates. Gene-specific 
primers were designed using Primer Premier 5.0 soft-
ware and are listed in Table S6. The first-strand cDNA 
was synthesized by using a FastQuant RT Kit (TIAN-
GEN, Beijing) according to the manufacturer’s protocol. 
Amplification via PCR was done following the instruc-
tions of the KAPA SYBR® FAST qPCR Kit (Sigma, USA), 
performed following the fluorescent quantitative PCR 
amplification instrument (EppendorfMaster™ ep real-
plex, Germany). Gene expression was calculated using 
the 2-ΔΔCt methods with TaActin as an internal control. 
Non-specific products were identified by melting curve 
analysis. Each sample included three technical replicates.

Molecular marker development and association analysis
Sequence variation were detected for candidate genes 
between Zhou8425B and CS using sanger sequenc-
ing of PCR products. After sequencing, the sequences 
were aligned by DNAMAN (http://​www.​lynnon.​com/). 
The marker BJ-P2010K and BJ-P2010 were developed to 
discriminate the two haplotypes at TaSL1 between CS 
and Zhou8425B. For BJ-P2010K, Hap-Z that is the hap-
lotype of Zhou8425B has a deletion of 416 bp at posi-
tion − 3.6 Kbp, Thus, marker BJ-P2010K was developed 
based on PCR product size. Genome specific primer 
set BJ-P2010K-F/R were used to amplify fragments in 
all lines. The fragments length of Hap-CS was 1142 bp, 
whereas Hap-Z was 728 bp (Figs.  6 A, C and S6). Simi-
larly, BJ-6840 marker was developed to discriminate the 
two haplotypes at its locus (Fig. 5 B, C). The CAPS marker 
BJ-P2010 was developed based on the SNP (T/G) at posi-
tion − 46 bp. The 460 bp specific fragment was amplified 
using primer set BJ-P2010-F/R, of which, Hap-Z could 
be cleaved by restriction endonuclease SmaI (222 bp and 
238 bp, Fig.  5 A, C). In addition, seven additional indels 
on both sides of marker BJ-6840 based on sequence dif-
ference between Zhou8425B and CS were developed as 
gene markers. The detailed information of each molecu-
lar marker and primer is shown in Table S6.

Young leaves of wheat were used for DNA extraction 
with CTAB method [57]. All ten markers at QTL TaSL1 
were used to performed association analysis using the 
265 wheat landraces from around the world (Table S5). 
The phenotypic mean values were used as phenotypic 
data. Two-tailed T-test was used for exam whether the 
two haplotypes (Hap-CS and Hap-Z, and Hap-CS is the 
haplotype of CS) were different from one another for 

traits. The marker BJ-6840 and BJ-P2010 were used to 
investigate TaSL1 application in wheat improvement (A 
total of 429 cultivars were used for China and 334 varie-
ties were used for other zones).

Statistical analysis
Numerical values were presented as means ± SE. Statisti-
cal analysis was performed using one-way ANOVA. The 
phenotypic correlation was analyzed using the rcorr tool 
in the Hmisc package of R with type = “pearson”. Two-
sample F-test for variances was used to determine if the 
variances of the two haplotypes are equal, and two-tailed 
t-test was used for exam whether the two haplotypes are 
different from one another for traits. The broad heredi-
tary capacity (h2) for each trait was estimated according 
to the method described by Smith et al. [58]. The ggplot2 
(https://​ggplo​t2.​tidyv​erse.​org/​index.​html) package of R 
was used for drawing.
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