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Abstract 

Background: Intermediate wheatgrass (IWG) is a novel perennial grain crop currently undergoing domestication. It 
offers important ecosystem benefits while producing grain suitable for human consumption. Several aspects of plant 
biology and genetic control are yet to be studied in this new crop. To understand trait behavior and genetic charac-
terization of kernel color in IWG breeding germplasm from the University of Minnesota was evaluated for the CIELAB 
components (L*, a*, b*) and visual differences. Trait values were used in a genome-wide association scan to reveal 
genomic regions controlling IWG’s kernel color. The usability of genomic prediction in predicting kernel color traits 
was also evaluated using a four-fold cross validation method.

Results: A wide phenotypic variation was observed for all four kernel color traits with pairwise trait correlations 
ranging from − 0.85 to 0.27. Medium to high estimates of broad sense trait heritabilities were observed and ranged 
from 0.41 to 0.78. A genome-wide association scan with single SNP markers detected 20 significant marker-trait 
associations in 9 chromosomes and 23 associations in 10 chromosomes using multi-allelic haplotype blocks. Four of 
the 20 significant SNP markers and six of the 23 significant haplotype blocks were common between two or more 
traits. Evaluation of genomic prediction of kernel color traits revealed the visual score to have highest mean predictive 
ability (r2 = 0.53); r2 for the CIELAB traits ranged from 0.29–0.33. A search for candidate genes led to detection of seven 
IWG genes in strong alignment with MYB36 transcription factors from other cereal crops of the Triticeae tribe. Three of 
these seven IWG genes had moderate similarities with R-A1, R-B1, and R-D1, the three genes that control grain color in 
wheat.

Conclusions: We characterized the distribution of kernel color in IWG for the first time, which revealed a broad 
phenotypic diversity in an elite breeding germplasm. Identification of genetic loci controlling the trait and a proof-of-
concept that genomic selection might be useful in selecting genotypes of interest could help accelerate the breed-
ing of this novel crop towards specific end-use.
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Background
Intermediate wheatgrass [IWG, Thinopyrum interme-
dium (Host) Barkworth & D.R. Dewey subsp. interme-
dium, 2n = 6x = 42] was introduced to North America as 
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a forage crop in the 1930s [1]. The crop is a cool-season 
perennial grass species and is being domesticated as a 
novel food crop by multiple institutions including the 
University of Minnesota (UMN). Initiated in 2011, the 
UMN’s IWG breeding and domestication program has 
completed four breeding cycles and released a food-
grade IWG cultivar named ‘MN-Clearwater’ in 2019 [2, 
3]. Besides the use of IWG grain as food, the crop also 
can provide substantial services towards ecosystem pres-
ervation such as improved carbon sequestration, reduced 
nutrient runoff and leaching to groundwater, and reduced 
soil erosion [4, 5].

As a novel grain crop undergoing active domestication 
efforts, many genetic advancements are yet to be made in 
IWG. These advancements towards both the continued 
improvement of agronomic traits and the exploration 
of end-use traits will make the crop more desirable to 
farmers, processors, and consumers. Examples of these 
important traits include grain yield, seed size, plant 
height, lodging resistance, and disease resistance, and 
domestication traits such as shatter resistance and free 
grain threshing [2, 6–8]. Variation for seed color also has 
been observed in UMN populations, ranging from light 
sandy tones to deep purples. In wheat, the genes influ-
encing seed color are known to produce antioxidants that 
influence flavor, nutritional qualities [9], and seed dor-
mancy [10]. This has also been observed in corn [11], rice 
[12], and barley [13]. Thus, similar relations are expected 
in IWG, and trait characterization and genetic mapping 
of loci influencing seed color traits will help breeders 
and geneticists make informed decisions regarding these 
traits. For example, in a study by Ma et al. [14], seed color 
in wheat was found to be significantly correlated with 
antioxidant activity, phenolic, carotenoid and flavonoid 
contents, and grain weight. Purple wheat had the highest 
quantities of these phytochemicals and antioxidant activ-
ity, followed by red wheat and white wheat. However, the 
correlation between the aforementioned traits and grain 
weight was found to be negative, meaning darker grains 
had lower grain weights. Another specialty grain, purple 
corn, is currently on the market as a superfood, enticing 
consumers with a unique taste and higher antioxidant 
content than blueberries [15, 16]. The outcomes of this 
study could therefore impact the selection of ideotypes 
with desired kernel color in the University of Minnesota 
IWG breeding program and have strong implications in 
food-related use of IWG grain.

In a diverse breeding population such as the one dis-
cussed in this study, the methodology predominantly 
used to uncover the genetic architecture controlling 
a trait is association mapping, and is typically imple-
mented in the form of a genome-wide association study 
(GWAS). For a comprehensive and successful GWAS, 

it is preferable to have abundant markers distributed 
across the genome that represent the overall genomic 
diversity. Such discovery can be used to select individu-
als with preferred genetic makeup and also to discover 
candidate genes in genomic regions controlling the 
trait [17]. The availability of a high-quality, annotated 
genome sequence is therefore a major determinant in 
discovery of abundant, quality genome-wide mark-
ers (often SNPs, single nucleotide polymorphisms) 
and success of GWAS. Because of their abundance in 
a genome, SNPs can be used to infer the genome-wide 
allelic diversity and LD structure, which are instrumen-
tal in conducting robust and accurate GWAS along 
with the identification of causative loci and candidate 
genes [18]. In addition to SNPs, haplotype blocks are 
also recommended for GWAS [19, 20]. Haplotypes are 
combinations of many SNP alleles that tend to be co-
inherited. While SNPs are the smallest genetic units 
used in GWAS for mapping, larger units such as hap-
lotype blocks are also increasingly being used in gene 
mapping studies as they provide multi-allelic informa-
tion whereas SNPs only provide bi-allelic information 
[21]. Haplotype blocks therefore enable a better inves-
tigation of complex mechanisms of causal genes, gene 
sets or pathways, rather than a single locus [22].

Genomic selection is an in vivo marker-based selection 
approach where information across the whole genome is 
used to evaluate a population of interest. Statistical mod-
els, often known as genomic prediction models, compute 
the influence of genome-wide markers in traits of interest 
and have been shown to be a robust method to improve 
genetic gain and breeding efficiency in crops [23, 24] 
including IWG [8, 25]. Genomic selection can also be an 
effective tool to select superior genotypes when select-
ing for quantitative traits and traits controlled by several 
loci of small to medium effects [26]. In our IWG breed-
ing program, we have demonstrated the usefulness of 
genomic prediction models to predict yield and yield 
component traits [7], domestication-related traits [27], 
and disease resistance traits [6]. Thus, if effective in pre-
dicting IWG kernel color, genomic prediction models 
can save time and resources by predicting the trait in 
large breeding populations and greatly reduce the need 
for field trials and phenotyping.

We therefore conducted this study with the primary 
goal of uncovering the genetic architecture of kernel 
color in IWG. Towards this goal, we evaluated our elite 
breeding germplasm for four kernel color traits and 
investigate the relationships among these traits, and 
their distributions and heritabilities. We used single 
SNP markers and multi-allelic haplotype blocks to iden-
tify genomic regions controlling kernel color in IWG. 
We also evaluated the feasibility of genomic selection in 
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selecting IWG genotypes for kernel color traits by using a 
genomic prediction model to predict the trait value.

Results
Trait distribution and properties
Phenotypic data on IWG kernel color was obtained from 
ImageJ (CIELAB values) and visual rating of the grain 
(Fig.  1). A broad variability for the four kernel color 
traits was observed in in the UMN_C4 IWG popula-
tion (Fig.  2). The mean BLUE values for L*, a*, b*, and 
V* were 87.3, 6.0, 31.0, and 2.0, respectively. Broad sense 
trait heritability estimates (H) were medium to high with 
the highest for visual score: H = 0.78. For the CIELAB 
traits L*, a*, and b*, H estimates were 0.45, 0.53, and 0.41, 
respectively. Narrow-sense heritability estimates were 
overall high for all four traits with averages of 0.84, 0.81, 
0.77, and 0.70 for V, b*, a*, and L*, respectively. Variance 
components used in estimation of H as well as narrow-
sense heritabilities are provided in Additional File 1.

The strongest pairwise trait correlation was observed 
between L* and a* (r = − 0.85, Table 1). The CIELAB trait 
b* had relatively weak yet positive and significant correla-
tion with L* (r = 0.27) and negative but significant corre-
lation with V (r = − 0.12). Visual scores (V) was positively 

and significantly correlated with L* but had negative rela-
tionship with both a* and b*.

Genome‑wide association analysis
A genome-wide association analysis using single SNP 
markers with GAPIT’s FARMCPU method discovered 20 
significant marker-trait associations (MTAs) in 9 chro-
mosomes (Table  2, Fig.  3). The number of MTAs dis-
covered per chromosome ranged from 1 to 3 with three 
chromosomes (2, 6, and 20) having three MTAs each. 
The largest MTA, i.e. MTA with highest proportion of 
phenotypic variance  (R2) explained, was observed for a* 
(R2 = 11.2% for marker S20_145384739). Five MTAs had 
 R2 ≥ 10% and the average  R2 among all MTAs was 6.7% 
(median = 5.3%). Ten of the 20 MTAs contributed posi-
tive allelic effect towards the traits with largest allelic 
effect observed for b* (0.9, marker S13_128050590) and 
smallest allelic effect was observed for a* (− 1.8, marker 
S02_183514050). The mean minor allele frequency 
(MAF) of all significant SNP markers was 0.27. Four of 
the 20 significant SNP markers were common between 
two or more traits:

1. S02_183514050 among L*, a*, and b*,
2. S06_485505428 between L* and b*,

Fig. 1 A Range of kernel colors observed in the University of Minnesota’s IWG breeding program. Seed are from mother plants of the fourth 
breeding cycle population grown in St. Paul, 2020. Numbers below each column of seed show a visual scale (V) of manual color assignment. B The 
process of image analysis and extraction of L*, a*, and b* values using ImageJ. The L*, a*, and b* values were measured for each seed in each sample
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3. S14_228811555 between L* and V, and
4. S20_145384739 between a* and V.

Fifteen of the 20 significant SNP markers were also 
binned into 10 haplotype blocks in 11 chromosomes 
(Table  2, column ‘Hb’). Of the 10 haplotype blocks, 
three were in significant association with the kernel 
color traits.

Genome-wide association analysis using multi-allelic 
haplotype blocks resulted in discovery of 23 significant 
haplotype-trait associations (HTAs) in 10 chromosomes 
(Table 3, Fig. 3). Chromosome 06 had the largest number 
of HTAs (5) followed by chromosome 17 (3). The larg-
est HTA, i.e. HTA with the largest  R2 value = 15% was 
Chr14-Hb.64 and was located in chromosome 14. This 
block included the marker S14_228811555 which was 
common between L* and V in the single marker analy-
sis (Table  2). Nine HTAs had  R2 ≥ 10% and the average 
 R2 among all MTAs was 8.3% (median = 7.4). The cor-
relation between  R2 and the allelic effect of haplotype 
blocks was 0.51 and found to be significantly different 
(P = 0.003) from zero at α = 0.05. Six of the 23 significant 
HTAs were common between two or more traits:

1. Chr02-Hb.145 between L* and a*,
2. Chr06-Hb.193 among L*, b*, and V,
3. Chr14-Hb.64 between L* and a*,
4. Chr16-Hb.2 between L* and a*,
5. Chr17-Hb.74 between L* and a*, and
6. Chr21-Hb.125 between L* and a*.

Fig. 2 Kernel color trait values, i.e. best linear unbiased estimates (BLUEs), in the UMN_C4 intermediate wheatgrass breeding population. Four traits 
were measured: three according to the CIELAB (L*, a*, b*) system and one visually (V). The vertical dashed red lines indicate trait median and solid 
red lines indicate trait mean values

Table 1 Pairwise Pearson correlation coefficients among the 
four kernel color traits in the UMN_C4 intermediate wheatgrass 
population. Three traits (L*, a*, b*) were measured according to 
the CIELAB system and one was assessed visually (V). The symbol 
* next to the correlation coefficient values indicates significance 
at α = 0.05

Traits L* a* b*

a* −0.85*

b* 0.27* 0.02

V 0.22* −0.04 −0.12*
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Of the 24 significant HTAs, seven contained significant 
SNPs based on the single marker analysis (Table  3, col-
umn ‘SigSNP).

Genomic prediction of kernel color
Genomic prediction of the kernel color traits in the 
UMN_C4 population carried out using four-fold cross 
validation showed that the visual score trait (V) had the 
overall best prediction ability, average r2 = 0.53. (Fig.  4). 
Mean predictive abilities for the CIELAB traits L*, a*, and 
b* ranged from 0.29–0.33.

Identification and phylogeny of candidate genes
A total of 260 protein coding sequences ≥100 bp were 
detected within 0.46 Mbp of all significant SNP markers 
and haplotype blocks in the T. intermedium v2.1 anno-
tated genome. Of 260, 209 sequences had significant 
alignments (i.e. % identity ≥80% and E-value ≤1E-10) 
with protein sequences from other species following a 
BLAST search (Additional File 1). Further filtering of the 
alignments for functions associated with involvement in 
anthocyanin biosynthesis pathway resulted in discovery 
of seven unique T. intermedium protein coding sequences 
in three chromosomes (Table 4). Four of the seven IWG 
genes were discovered within 207 kilobase pairs (kbp) 

of the significant SNP marker S04_76206640; two were 
discovered within 39 kbp of the significant haplotype 
locus Chr16-Hb.2; and one (Thint.16G0006900.1.p) was 
located within 0.5 kbp of the significant SNP marker 
S06_485505428. An additional BLAST-search using 
the genes controlling grain color in wheat, R-A1, R-B1, 
and R-D1, found the genes Thint.16G0006900.1.p and 
Thint.16G0007100.1.p, both located within Chr16-Hb.2, 
to have weak resemblance to the wheat genes with % 
identity of 50–55% (Additional File 1). A phylogenetic 
analysis that used genes involved in MYB transcription 
factors revealed that the IWG genes: 1) from same chro-
mosome clustered together, and 2) grouped closer to 
genes from other species with similar functions (Fig. 5).

Discussion
We quantified and genetically characterized kernel 
color in the fourth recurrent selection cycle (UMN_C4) 
population of intermediate wheatgrass at the Univer-
sity of Minnesota using the CIELAB method and visual 
rating. Visual scores (V) had higher broad-sense herit-
ability estimate (H = 0.78) compared to L*, a*, and b* (H 
ranged from 0.41–0.53). As higher heritability value sug-
gests that trait variation is largely influenced by genetic 
components, selection made using V will likely respond 

Table 2 Single nucleotide polymorphism (SNP) markers in significant association with the CIELAB color traits L*, a*, b*, and V (visual 
score) for kernel color in the UMN_C4 intermediate wheatgrass population. The column ‘MAF’ lists minor allele frequency of the marker, 
‘R2’ is the proportion of phenotypic variance explained by the significant SNP marker, and ‘Hb’ lists the haplotype block where the SNP 
marker was binned

Trait SNP marker Chr Pos (Mbp) Alleles MAF LOD R2 Allelic effect Hb

L* S02_183514050 2 183.51 G/A 0.23 19.00 8.84 0.35 Chr02-Hb.145

L* S06_485505428 6 485.51 C/G 0.50 6.80 4.26 −0.84 Chr06-Hb.193

L* S14_228811555 14 228.81 T/C 0.49 18.46 10.50 −0.27 Chr14-Hb.64

L* S16_133923040 16 133.92 A/G 0.21 6.66 4.70 −0.68 NA

L* S20_435904483 20 435.90 G/A 0.15 6.16 4.35 0.69 NA

a* S02_183514050 2 183.51 G/A 0.23 20.02 9.47 −1.84 Chr02-Hb.145

a* S07_494007600 7 494.01 T/C 0.39 7.07 4.98 0.16 Chr07-Hb.208

a* S13_272249905 13 272.25 T/C 0.44 8.33 5.84 −0.17 NA

a* S20_145384739 20 145.38 G/A 0.20 19.57 11.19 −1.31 Chr20-Hb.107

b* S02_183514050 2 183.51 G/A 0.23 16.03 10.94 0.43 Chr02-Hb.145

b* S04_76206640 4 76.21 A/T 0.31 8.36 5.87 0.65 Chr04-Hb.82

b* S04_105922911 4 105.92 T/C 0.18 5.85 4.14 0.83 NA

b* S06_485505428 6 485.51 C/G 0.50 6.02 4.26 −0.76 Chr06-Hb.193

b* S13_128050590 13 128.05 C/T 0.12 7.61 5.35 0.93 Chr13-Hb.106

V S06_286239143 6 286.24 G/A 0.18 6.34 4.48 0.20 Chr06-Hb.116

V S07_353011546 7 353.01 G/A 0.14 7.25 5.11 −0.17 Chr07-Hb.114

V S10_457351151 10 457.35 A/C 0.07 6.02 4.26 −0.21 NA

V S14_228811555 14 228.81 T/C 0.49 15.37 10.52 0.44 Chr14-Hb.64

V S16_386540604 16 386.54 C/T 0.20 7.51 5.29 0.19 Chr16-Hb.184

V S20_145384739 20 145.38 G/A 0.20 14.57 10.00 −0.76 Chr20-Hb.107
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in population mean shifting towards the desired direc-
tion. Additionally, V was easier and faster to rate than the 
CIELAB components. As genomic predictions were also 
higher for V, it might be practical for a breeding program 
to use a visual method of phenotyping to select IWG 
genets for a specific kernel color or a range of colors. It 
should be noted however that higher genomic prediction 
estimates are often observed for traits with higher herit-
abilities, including in IWG [8, 27].

Association mapping and genomic selection
Our GWAS discovered 20 single markers (SNPs) and 
23 haplotype blocks associated with kernel color traits 
in IWG with few loci shared among the traits as well as 
between the two methods (Tables 2 and 3). The identified 
quantitative trait loci (QTL) explained small to medium 
proportions of observed trait distribution as the variance 
explained  (R2) ranged from 4 to 11% for SNPs and 4–15% 

for haplotype blocks. Compared to other members of 
the Poaceae family, these values are similar to those 
reported in rice [12], barley [28], and durum wheat [29]. 
Since we identified genetic loci influencing kernel color 
traits in IWG for the first time, we were unable to com-
pare our findings with other similar studies. However, 
we did compare the MTA and HTA positions with previ-
ously reported QTL in IWG to investigate if any loci were 
pleiotropic. We did not find any significant marker dis-
covered in this study within the LD block (0.46 Mbp [3];) 
of previously reported markers in IWG. Additionally, as 
the QTL were of small to medium effects, several cycles 
of breeding and selection are likely necessary to increase 
the frequency of alleles conferring deep purple color to 
the grain, and fix them in the breeding population. The 
time needed to reach such milestone could be shortened 
by conducting recurrent selection simultaneously with 
marker-assisted selection and genomic selection [26].

Fig. 3 Distribution of SNP markers and haplotype blocks in significant association with the CIELAB kernel color traits L*, a*, b*, and visual score (V). 
Red colored bars and letters show positions of SNP markers and black underlined bars and letters show positions of haplotype blocks. The scale on 
the left shows physical marker positions in mega base pairs (Mbp) and black horizontal bars are marker positions
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Genomic selection is being increasingly used in crop 
breeding programs because of its potential in improv-
ing genetic gain per unit time while reducing cost [30]. 
Intermediate wheatgrass breeding programs in the US 
have adopted genomic selection based breeding and 
observed an overall positive trends in trait improvement 
[25, 27]. In this study we evaluated the possibility of using 
genomic selection to select for kernel color in an IWG 
population. The prediction models we implemented for 
this task showed that visual scores were predicted well 
in all environments whereas the L*, a*, and b* estimates 
varied by environment (Fig. 4). Using newer models, pos-
sibly ones that take into consideration genotype by envi-
ronment (GxE) interaction, could further increase these 
predictions.

Candidate genes and phylogeny
A search for candidate genes led to the discovery of 
four predicted protein sequences in IWG that had sig-
nificant alignment to genes involved in regulation of the 
flavonoid synthesis pathway in other species (Table  4). 
Flavonoids are secondary metabolites in plants and 

contribute to various functions related to development 
and defense including fruit and flower colors and aroma, 
stress response, and disease resistance [31]. We discov-
ered seven IWG genes located within a relatively short 
distance (< 210 kbp) that could potentially be involved in 
biosynthesis of MYB (myeloblastosis) transcription factor 
and anthocyanin 3′-O-beta-glucosyltransferase (3’GT). 
The MYB transcription factors are known to regulate 
flavonoid biosynthesis and are key determinants of pig-
mentation in seed/kernel, flower, and fruit [31, 32]. Simi-
larly, anthocyanin 3’GT is involved in synthesis of blue 
anthocyanin in flower and grain including cereals [33, 
34]. In particular, the IWG genes Thint.16G0006900.1.p 
and Thint.16G0007100.1.p, both positioned within the 
haplotype block Chr16-Hb.2, were found to resemble the 
genes R-A1, R-B1, and R-D1 that control grain color in 
wheat (Additional File 1) [35]. It may therefore be pos-
sible that the significant haplotype locus Chr16-Hb.2 har-
bors genes involved in anthocyanin biosynthesis pathway. 
Additional research is needed to definitively elucidate the 
function of these genes and the extent of their relation-
ship with grain color expression in IWG.

Table 3 Haplotype blocks significantly associated with the CIELAB color traits L*, a*, b*, and V (visual score) for kernel color in the 
UMN_C4 intermediate wheatgrass population. The column ‘LOD’ is a -log10*P-value of marker-trait association, ‘R2’ is the proportion of 
phenotypic variance explained by the significant SNP marker, ‘SigSNP’ shows if a SNP marker binned in the significant haplotype block 
was also significant in the single marker analysis

Trait Hb Chr SNPs in block LOD R2 Allelic effect SigSNP

L* Chr02-Hb.145 Chr02 2 12.93 12.08 −12.75 S02_183514050

L* Chr06-Hb.193 Chr06 4 5.90 6.48 3.81 S06_485505428

L* Chr06-Hb.212 Chr06 2 5.90 6.48 −8.57 NA

L* Chr07-Hb.132 Chr07 7 6.11 11.98 −14.71 NA

L* Chr13-Hb.231 Chr13 2 9.40 7.63 −8.34 NA

L* Chr14-Hb.64 Chr14 4 11.41 14.89 −11.84 S14_228811555

L* Chr16-Hb.2 Chr16 3 9.21 7.08 −6.72 NA

L* Chr17-Hb.74 Chr17 4 11.83 13.34 −15.35 NA

L* Chr21-Hb.125 Chr21 2 12.98 10.52 −14.38 NA

a* Chr02-Hb.145 Chr02 2 6.10 6.28 2.29 S02_183514050

a* Chr14-Hb.64 Chr14 4 6.64 10.17 3.32 S14_228811555

a* Chr16-Hb.2 Chr16 3 11.56 8.21 −7.68 NA

a* Chr17-Hb.74 Chr17 4 6.01 7.95 3.51 NA

a* Chr21-Hb.125 Chr21 2 5.15 4.28 3.01 NA

b* Chr06-Hb.193 Chr06 4 6.61 6.08 −3.98 S06_485505428

b* Chr20-Hb.191 Chr20 2 5.23 5.53 −4.12 NA

V Chr04-Hb.134 Chr04 2 12.72 12.35 −0.42 NA

V Chr04-Hb.154 Chr04 2 10.83 10.19 −0.97 NA

V Chr06-Hb.142 Chr06 2 5.61 6.08 −1.32 NA

V Chr06-Hb.193 Chr06 4 5.25 10.17 2.88 S06_485505428

V Chr07-Hb.60 Chr07 2 5.40 4.63 −2.05 NA

V Chr17-Hb.30 Chr17 2 5.43 5.91 −1.00 NA

V Chr20-Hb.114 Chr20 2 5.58 6.05 0.04 NA
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As multiple IWG genes aligned to genes encoding 
for MYB transcription factors from other plant species, 
we explored the phylogenetic relationship among the 
MYB ortholog genes. A Neighbor-Joining tree revealed 
that the IWG genes from same chromosomes grouped 
together. We also observed that the IWG genes clustered 

based on functional similarity, i.e. they grouped with 
non-IWG genes than with other IWG genes from differ-
ent chromosomes. In regards to evolutionary movement, 
it could be stated that the IWG genes presented in Fig. 5 
are more divergent from other IWG genes based on 
their functional differences, despite all genes putatively 

Fig. 4 Predictive ability values (mean) for kernel color in IWG with the CIELAB kernel color traits L*, a*, b*, and visual score (V)

Table 4 A summary of BLAST-search results showing significant alignments between intermediate wheatgrass candidate gene 
sequences and known genes in other species. In case of multiple alignments of an IWG gene to other genes in the NCBI database, the 
best alignment is shown per gene

IWG candidate gene GWAS locus Distance (kbp) 
from GWAS 
locus

Subject % identity E‑value

NCBI Gene ID Species Description

Thint.04G0153000.1.p S04_76206640 207.21 AEV91153.1 Triticum carthlicum R2R3-MYB protein 92.7 0.0

Thint.04G0153000.2.p S04_76206640 207.21 AEV91153.1 Triticum carthlicum R2R3-MYB protein 92.5 0.0

Thint.04G0153000.3.p S04_76206640 207.21 AEV91153.1 Triticum carthlicum R2R3-MYB protein 92.6 0.0

Thint.04G0153000.5.p S04_76206640 207.21 AEV91153.1 Triticum carthlicum R2R3-MYB protein 88.3 0.0

Thint.06G0531100.1.p S06_485505428 0.51 XP_044453837.1 Triticum aestivum anthocyanin 3′-O-beta-
glucosyltransferase-like

95.9 0.0

Thint.16G0006900.1.p Chr16-Hb.2 38.77 XP_020186660.1 Aegilops tauschii subsp. 
strangulata

transcription factor 
MYB36

87.5 0.0

Thint.16G0007100.1.p Chr16-Hb.2 38.77 XP_020186660.1 Aegilops tauschii subsp. 
strangulata

transcription factor 
MYB36

90.6 0.0
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characterized as being involved in pigment production 
pathways. In other words, there appears to be a strong 
evidence in favor of a speciation-like event among the 
IWG genes based on their functional differences.

Implications in food applications and breeding
Fruits, vegetable, and edible grain with purple pigmenta-
tion are rich in anthocyanins that have a wide range of 
health benefits [36]. In grains, anthocyanin-rich maize 
has long been used by different cultures for their ben-
eficial effects in human diets and also for ornamental 
purpose [37]. Purple wheat has been reported to have 
higher antioxidant and anti-inflammatory activity and 
could be used as a superior source of anthocyanin as well 
as a natural food colorant [36, 38]. As a novel grain crop 
with proven advantages in sustainable and regenerative 
agriculture, blue or purple IWG could also be a compo-
nent in human dietary requirements. Already known to 
be high in protein content, carotenoids, and antioxidant 
content [39], IWG grain and flour have a combination of 
desirable features needed in making food products with 
a broad commercial reach. For example, pigmented bran 
and flour of mainstream annual crops such as wheat, bar-
ley, rice, and maize have been used to produce food prod-
ucts with blue/purple/black coloration [40–42]. Given 
the unique combination of flavor, nutritional profile, and 

functional characteristics of IWG grain [43], the prospect 
of developing colored IWG varieties for niche food appli-
cations and markets is highly appealing.

The University of Minnesota IWG breeding program 
currently does not select for a specific kernel color while 
making selection decisions and advancing generations. 
A separate breeding scheme could be implemented to 
select and maintain IWG germplasm with desired kernel 
color in case of a strong interest expressed by the food 
industry and consumers. One approach towards creation 
of such germplasm with improved frequency of causative 
alleles that contribute towards preferred kernel pigmen-
tations could be the implementation of genomic selection 
as discussed earlier. Given the identification of potential 
candidate genes, as well as other significant loci influ-
encing kernel color in IWG, a marker-assisted selection 
could also assist in identification of parental genotypes 
harboring beneficial alleles followed by crossing to accu-
mulate these beneficial alleles.

Conclusions
Our study genetically characterized kernel color traits in 
intermediate wheatgrass, which is the first study of this 
nature for this novel perennial grain crop. A broad range 
of phenotypic distribution was observed with medium to 
high heritability estimates. We identified 20 single SNP 

Fig. 5 A Neighbor-Joining tree depicting the evolutionary relationships among protein coding sequences for MYB transcription factors in 
intermediate wheatgrass and other cereal species. Evolutionary distances displayed on the branches (i.e. branch lengths) are in the units of number 
of amino acid substitutions per site. The % values next to the branches indicate the proportion of replicate trees in which the associated taxa 
clustered together in the bootstrap test
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markers and 24 multi-allelic haplotype-based markers 
associated with kernel color traits measured visually and 
characterized by L*, a*, and b* values; several of these sig-
nificant markers were shared among the traits. Genomic 
prediction of these traits suggested that a genomic selec-
tion based breeding approach to identify candidates for 
desired kernel color may be possible. In particular, as a 
perennial crop with a long cropping cycle, intermedi-
ate wheatgrass can benefit from application of genomic 
selection in selecting genotypes prior to their field-eval-
uation. Selection of candidates in this manner can poten-
tially help in development of a separate pool of genotypes 
with desired kernel color with niche food applications.

Methods
Plant material
A population of 637 IWG genets was used in this study. 
A genet is defined as a genetically unique organism and 
refers to individual plants in an outcrossing species such 
as IWG [8]. The population, part of the fourth breed-
ing selection cycle (referred to as UMN_C4 hereafter), 
is owned by the University of Minnesota and has been 
described in a previous report [3]. Briefly, UMN_C4 was 
obtained from open-pollination of 73 cycle 3 (UMN_
C3) genets that were selected based on their superior 
genomic estimated breeding values (GEBVs) for larger 
seed size, better threshability, reduced seed shattering, 
higher grain yield, and reduced plant height. From each 
of the 73 mother plants, nine random seeds were germi-
nated, cloned into two replicates, and transplanted in the 
field during June–September 2018 at two MN locations: 
Crookston and St. Paul. The transplants were distanced 
approximately 0.91 m (3 ft) apart and were surrounded 
on all sides with border IWG plants. The population was 
first harvested in August 2019 and then for a second time 
in August 2020 at both sites. The location and year com-
binations are abbreviated as follows in the text: Crk19: 
Crookston 2019, Crk20: Crookston 2020, StP19: St. Paul 
2019, StP20: St. Paul 2020.

SNP genotyping and haplotype construction
The population was genotyped following a reduced-
representation sequencing method using the enzymes 
PstI and MspI [44] and sequenced on Illumina’s Novaseq 
600. Sequenced reads were filtered for minimum read 
quality Q > 30 and aligned to the IWG reference genome 
v2.1 [45] using the ‘mem’ command in Burrows-Wheeler 
Aligner 0.7.5a [46]. Allele-calling was done using default 
parameters in SAMtools 1.6 and BCFtools 1.6 [47]. SNPs 
were filtered to keep those with minimum read depth per 
SNP site ≥5, minor allele frequency (MAF) of ≥3% and 
missing data ≤20%. This resulted in 25,909 genome-wide 

SNPs that were imputed using default parameters in Tas-
sel 5.2.71 [48] using the LD-kNNi method [49].

The process of haplotype discovery has also been pre-
viously described [3]. In short, HAPLOVIEW 4.2 [50] 
was implemented to construct haplotype blocks for each 
chromosome and blocks were constructed using a con-
fidence interval algorithm [51]. Haplotype blocks were 
converted to multi-allelic markers by assuming that 
allelic combinations in each block are independent alleles 
and blocks were numbered in ascending order (1,2,3 … n) 
if a block was not previously observed.

Phenotyping and data analysis
To characterize kernel color in UMN_C4, mature spikes 
were harvested per plant and dried at 32 °C for 72 h. A 
Wintersteiger LD 350 (Wintersteiger Inc., Salt Lake City, 
USA) was used to thresh the spikes. Approximately 25 
de-hulled seeds from each genet were first given a visual 
rating of 1–5 where 1 was assigned to the lightest color 
and 5 to the darkest color (Fig. 1). The same grains were 
then photographed using a Canon EOS Rebel T7 under 
ambient light conditions indoors. Kernel color in each 
seed was measured using the CIELAB method, which 
is recommended by the International Commission on 
Illumination (Commission Internationale de l’eclairage, 
CIE) for its perceptually uniform color space [52]. In 
this method, three numerical values are estimated as L* 
(lightness/darkness), a* (redness/greenness), and b* (yel-
lowness/blueness) which was done using ImageJ 1.53e 
[53]; values were averaged among all seed per genet. The 
process of image analysis and measurement of L*, a*, and 
b* values in ImageJ is also shown in Fig. 1 and the macro 
used as well as obtained phenotypic data are available in 
Additional File 1.

For each trait, the best linear unbiased estimates 
(BLUEs) were calculated across all trials, i.e. combina-
tions of two locations in 2 years, using the following 
model:

where,  Yij is the trait observation for genet i at location 
j in year k, μ is the mean,  Gi is the main effect for genet 
I, Lj is the main effect at location j,  Yk is the main effect 
in year k, (GL) ij is the genotype by location interaction 
effect for genet i at location j, (GY) ij is the genotype by 
year effect for genet i in year k, (LY) ij is the location 
by year effect at location j in year k, and  Eijk is the error 
effect. The BLUEs were calculated using the R pack-
age ‘lme4’ and were used in all analyses, i.e. phenotypic 
correlations among the traits, association mapping, and 
genomic prediction.

Broad-sense heritability (H) on a genet-mean basis 
were estimated using:

Yijk = µ+Gi + Lj + Yk + (GL)ij + (GY)ik + (LY)jk + Eijk
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where, σG
2 is the genetic variance, σGL

2 is the genotype by 
location variance, σGY

2 is the genotype by year variance, 
σE

2 is the residual variance, L is number of locations, and 
Y is number of years.

Association analysis
Genome-wide association study (GWAS) with single 
SNP marker data was done with the ‘FarmCPU’ method 
in R 4.0.2 [54, 55]. Association analysis with multi-allelic 
haplotype data was carried out in Tassel 3 with a mixed 
linear model with optimum compression level and 
variance component estimated using the P3D method 
(population parameters previously determined) [48]. To 
control for population structure during the GWAS with 
both SNP markers and haplotype data, a kinship matrix 
was used in the GWAS models. Additional need to con-
trol for population structure was evaluated using up to 10 
PCs using the ‘Model.selection’ option. Results showed 
that the optimal number of PCs to use in the model was 
zero (Additional File 1) and therefore no PCs were used 
in the final GWAS models.

Significant quantitative trait loci (QTL) were declared 
at default Bonferroni thresholds at α = 0.05, i.e.

A. At α/no. of total observations = 0.05/25909 = P value 
of 1.93E-06 or LOD equivalent of 5.71 for single SNP 
markers

B. At α/no. of total observations = 0.05/5379 = P value 
of 9.30E-06 or LOD equivalent of 5.03 for multi-
allelic haplotype blocks/markers

The percentage of phenotypic variation explained by 
significant markers  (R2) in both GWAS analyses were 
calculated using the method of Sen and Churchill [56] as 
implemented in the ‘qtl’ R package [57].

Candidate gene search and phylogenetic analysis
To search for candidate genes in regions surrounding 
the significant SNP markers and haplotype blocks, puta-
tive protein coding sequences within 0.46 megabase 
pairs (Mbp) of the significant loci were obtained from 
the T. intermedium v2.1 annotation [45]. The distance 
of 0.46 Mbp was used because the genome-wide aver-
age linkage disequilibrium in UMN_C4 was found to 
be 0.23 Mbp [3]. A protein BLAST-search was car-
ried out on NCBI’s website [58] using the T. interme-
dium protein coding sequences with % identity > 80% 
and E-value ≤1E-10; only the best 10 alignments per 
T. intermedium protein coding sequence were retained 

H = σG
2/

(

σG
2
+ σGL

2/L+ σGY
2/Y + σE

2/LY
) for further analysis. These alignments were then filtered 

to scan for candidate genes known to control color pig-
mentation in cereal grains, e.g. MYB (myeloblastosis) 
transcription factors and anthocyanin-related enzymes. 
In this study, we focus on MYB transcription factors 
because of their role in the anthocyanin biosynthesis 
pathway that render blue or purple grain control in 
small grains [59, 60]. An additional BLAST-search was 
done using the protein sequences of three wheat genes 
R-A1, R-B1, and R-D1 that are known to control grain 
color in this crop [35].

Evolutionary analyses and tree construction among the 
candidate gene sequences were done in MEGA7 with 
10,000 bootstrap steps [61]. Evolutionary distances among 
the protein coding sequences were estimated using the 
Poisson correction method [62] assuming substitution 
rates among sites were uniform. After removal of posi-
tions with gaps and missing information during the analy-
sis, a total of 353 positions were used in the final dataset.

Evaluation of genomic prediction
The effectiveness of genomic prediction models in pre-
dicting IWG kernel color was evaluated using the R pack-
age ‘rrBLUP’ [63]. Correlations (r) between predicted 
trait value and BLUEs were calculated using a four-fold 
cross-validation method where 75% of the UMN_C4 
panel was used as the training set and the remaining 25% 
was used as the validation set. The training and validation 
sets were sampled randomly without replacement and 
correlations were averaged from 100 replications.
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