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Transcriptome and metabolome 
analyses reveal new insights 
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Abstract 

Background: Ratoon sugarcane is susceptible to chlorosis, characterized by chlorophyll loss, poor growth, and a 
multitude of nutritional deficiency mainly occurring at young stage. Chlorosis would significantly reduce the cane 
production. The molecular mechanism underlying this phenomenon remains unknown. We analyzed the transcrip-
tome and metabolome of chlorotic and non-chlorotic sugarcane leaves of the same age from the same field to gain 
molecular insights into this phenomenon.

Results: The agronomic traits, such as plant height and the number of leaf, stalk node, and tillers declined in chlo-
rotic sugarcane. Chlorotic leaves had substantially lower chlorophyll content than green leaves. A total of 11,776 
differentially expressed genes (DEGs) were discovered in transcriptome analysis. In the KEGG enriched chlorophyll 
metabolism pathway, sixteen DEGs were found, eleven of which were down-regulated. Two photosynthesis pathways 
were also enriched with 32 genes downregulated and four genes up-regulated. Among the 81 enriched GO biologi-
cal processes, there were four categories related to metal ion homeostasis and three related to metal ion transport. 
Approximately 400 metabolites were identified in metabolome analysis. The thirteen differentially expressed metabo-
lites (DEMs) were all found down-regulated. The phenylpropanoid biosynthesis pathway was enriched in DEGs and 
DEMs, indicating a potentially vital role for phenylpropanoids in chlorosis.

Conclusions: Chlorophyll production, metal ion metabolism, photosynthesis, and some metabolites in the phenyl-
propanoid biosynthesis pathway were considerably altered in chlorotic ratoon sugarcane leaves. Our finding revealed 
the relation between chlorosis and these pathways, which will help expand our mechanistic understanding of ratoon 
sugarcane chlorosis.

Keywords: Ratoon sugarcane chlorosis, Chlorophyll metabolism, Photosynthesis, Metal ion metabolism, 
Phenylpropanoids biosynthesis
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Introduction
Sugarcane is a major food and energy crop globally. In 
China, sugarcane accounts for 90% of sugar production, 
contributing 6 to 8 billion RMB annually [1]. In Guangxi, 
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the leading sugar-producing province in China, ratoon 
sugarcane accounted for 60–70% of the total planting 
area [2]. Ratooning is critical for reducing crop produc-
tion costs. However, ratoon crops face various problems. 
Plantlet chlorosis is one of them which is now wide-
spread in Guangxi. Approximately 40% of the sugarcane 
cultivated area in Guangxi is now affected, causing pro-
duction loss ranging from 23 to 40% [2, 3].

In plants, leaf chlorophyll loss causes chlorosis, and 
it could be due to accelerating chlorophyll catabolism 
or reduced chlorophyll production, or by both. Chloro-
phyll metabolism involves a series of enzymes, includ-
ing HemA, HemB, chlH, chlM, por, and NOL [4]. Iron 
deficiency affects chlorophyll synthesis, causing chloro-
sis in Areca catechu (Arecaceae) [5]. Low expression of 
chlorophyll metabolism genes was found in light green 
cucumber [6]. Chlorophyll is the primary pigment that 
absorbs light energy for photosynthesis reactions [7, 8]. 
Low chlorophyll content in chlorotic leaves decreased 
photosynthesis and fresh weight in Areca catechu and 
cucumber [5, 9]. Chlorophyll biosynthesis plays a vital 
role in maintaining photosynthetic machinery [10, 11]. 
Iron is an essential micronutrient for chlorophyll synthe-
sis [12], and its deficiency is the most common cause of 
chlorosis [13]. Previous reports indicate that the chloro-
sis symptoms observed in ratoon sugarcane in Guangxi 
were similar to iron (Fe) chlorosis found in India, yet, the 
causal factors appear different [14–16]. Excessive Manga-
nese (Mn) had been found in ratoon sugarcane chlorotic 
plantlets, which are likely to be adversely affecting iron 
(Fe) uptake and consequently chlorophyll biosynthesis 
[2, 3]. Besides, metal ion homeostasis and transporta-
tion would also impact the chloroplast functions, includ-
ing photosynthesis [17]. Mechanistic understanding of 
ratoon sugarcane chlorosis may provide new perspectives 
to explore potential genetic solutions for this crop pro-
duction constraint.

The advanced omics technologies enable a compre-
hensive molecular analysis of complex biological prob-
lems such as pathogenesis and nutritional disorders 
[18]. Transcriptome analysis provides a comprehensive 
gene expression profile of a particular phenotype, while 
metabolomics help identify changes in metabolites 
involved in various pathways associated with the same 
phenotype [19, 20]. In chlorophyll metabolism, many 
metabolic pathways and genes interact in a complex way 
[6, 19]. Comparative proteomics analysis revealed 199 
and 80 proteins were down- and up-regulated in chloro-
tic leaves of ratoon sugarcane, respectively [16]. Through 
functional analysis and interaction analysis, proteins 
associated with photosynthesis, drought-response, and 
jasmonic acid biosynthesis displayed a significant cor-
relation with ratoon sugarcane chlorosis symptoms [16]. 

Due to post-transcriptional modification processes, the 
correlation between transcriptome and proteome could 
be low [21]. Given this situation, exploring the mecha-
nism underpinning ratoon sugarcane chlorosis requires 
both transcriptome and metabolome analyses.

Our study aimed to describe the global response of 
sugarcane to ratoon chlorosis through transcriptome 
and metabolome analyses. Genes and metabolites related 
to chlorophyll metabolism, photosynthesis, metal ion 
homeostasis, and phenylopropanoid biosynthesis were 
analyzed. The findings of this present a new perspective 
of molecular regulatory mechanisms of chlorosis occur-
ring in ratoon sugarcane.

Materials and methods
Plant materials, plant growing condition, and chlorophyll 
content determination
A locally adapted commercial sugarcane cultivar, Gui-
Tang49 (GT49) (ROC22 x Ganzhe 14), developed by 
Sugarcane Research Institute, Guangxi Academy of 
Agricultural Sciences, China [1, 22], was used for this 
study. The sugarcane experimental field was located in 
Fusui county, Chongzuo, Guangxi, China. All the study 
activities complied with the local and national legisla-
tion. For this experiment, GT49 stalks were planted on 
February 22, 2019, and the crop was harvested on Janu-
ary 31, 2021, leaving the stubbles to re-grow. When the 
ratoon sugarcane first displayed the chlorotic symptom, 
five chlorotic five non-chlorosis plants were selected 
randomly and grouped as chlorosis and control group, 
respectively. Plant height and the number of leaves and 
stalk nod number and tillers were recorded every 10 days 
for 2 months [23]. On April 18, 2021, the first expanded 
leaves(+ 1 leaves) of plantlets from both chlorosis and 
control groups were collected for further experiments.

The leaf samples from chlorosis with SPAD chlorophyll 
meter (Konica Minolta, Japan) reading less than ten were 
classified as chlorotic and used for further experiments. 
In contrast, leaf samples from the control group with a 
reading higher than 40 were grouped and used as control. 
Approximately 0.1 g of leaves were rinsed and ground in 
liquid nitrogen, and chlorophyll was extracted with 80% 
acetone for 24 h in dark. The content of chlorophyll was 
determined using a spectrophotometer [24].

Transcriptome analysis
Five leaves were included in one sample, and each group 
contained five samples (5 replicates). The total RNA was 
extracted using Trizol (Invitrogen, USA) according to the 
manufacturer’s instructions. RNA quality was assessed 
by Agilent 2100 Bioanalyzer (Agilent, USA) and aga-
rose gel electrophoresis. The mRNA, enriched by Oligo 
(dT) beads, was fragmented and reverse transcribed into 
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cDNA first-strand with random primers. After synthesiz-
ing second-strand cDNA, the total cDNA was purified 
with a QiaQuick PCR extraction kit (Qiagen, The Neth-
erlands). Sequencing adapters were ligated to the cDNA. 
Size selection and PCR amplification were performed 
before sequencing. The sequencing was operated using 
Illumina HiSeq 2500 (Illumina, USA).

Reads obtained from the sequencer were filtered before 
assembly using fastp [25]. The high-quality clean reads 
were processed to de novo assemble using the Trin-
ity method [26]. The assembled reads with overlapping 
sequences were formed as contigs. Using clustering, the 
contigs that could not be extended on either end were 
defined as unigenes. BLASTx program, with an E-value 
threshold of 1e-5, was applied to annotate the obtained 
unigenes. Four databases, including the non-redundant 
protein database (NR), the Swiss-Prot database, Kyoto 
Encyclopedia of Genes and Genomes Ortholog (KEGG) 
database, and the Clusters of Eukaryotic Ortholog 
Groups of proteins database (KOG, NCBI), were used in 
the annotation of unigenes. The completeness of assem-
bly was assessed with BUSCO (Benchmarking Universal 
Single-Copy Orthologs) [27]. Gene expression level was 
calculated using FPKM (fragments per kilobase per mil-
lion reads) method with StringTie software [28]. Analyz-
ing by DESeq software [29], genes with fold change ≥2 
and p-value ≤ 0.05 were considered as DEGs (differential 
expressed genes). GO (gene ontology) and KEGG enrich-
ment analysis was performed to depict the gene function 
and biological pathway of DEGs [30, 31].

Metabolome analysis
The freeze-dry leaf samples for metabolome analysis were 
ground using a mixer mill (MM 400, Retsch). 100 mg of 
leaf powder was extracted overnight with 1.0 ml of aque-
ous methanol containing 0.1 mg/L lidocaine as internal 
standard. The supernatant was obtained by centrifuga-
tion and filtration. The metabolite compounds were ana-
lyzed by LC-ESI-MS/MS system (QTRAP 6500, Sciex, 
USA). The chromatographic separations were per-
formed using a Waters ACQUITY C18 column (2.1 mm * 
100 mm, 18 μm, Waters, USA) under a flow rate of 0.4 ml/
min at 40 °C. The mobile phase was water (0.04% acetic 
acid) as Phase A and acidified acetonitrile (0.04% acetic 
acid) as Phase B. The separation was run in a gradient 
condition: 95:5 Phase A/Phase B for the first 10 min, 5:95 
Phase A/Phase B for the 11th to 12th min, 95:5 Phase 
A/Phase B for the 13th to 15th min. The effluent was 
detected with Sciex Triple Quad 6500 mass spectrom-
eter (Sciex, USA) in a positive ion mode. The quantifica-
tion of metabolites was performed according to multiple 
reaction monitoring methods [32]. Analyst 1.6.1 software 
was applied for data filtering, peak detection, alignment, 

and calculation. Metabolites were identified by searching 
internal and public databases (MassBank, KNApSAcK, 
HMDB, MoTo DB, and METLIN) with the m/z values, 
retention times, and fragment patterns. Metabolites with 
thresholds of variable importance in projection (VIP) ≥ 1 
and p-value ≤ 0.05 were considered to be significantly 
different between the chlorosis and control groups [33].

qRT‑PCR validation
The RNA used for transcriptome sequencing was also 
employed for qRT-PCR validation. The total RNA 
was digested by DNase, and reverse-transcribed into 
cDNA for qRT-PCR using PrimeScript RT reagent kit 
(TAKARA, Dalian, China). The ACAD gene was used as 
a reference gene to normalize the relative expression lev-
els [34]. The qRT-PCR was performed on qTOWER Real-
Time Thermal Cyclers (Analytik Jena, Germany). The 
relative expression rate was calculated with the -2ΔΔCT 
method [35]. A total of 20 genes, including up-and down-
regulated genes, were randomly selected. All the primers 
of the validation gene are listed in Table S1. The correla-
tion between transcriptome data and qRT-PCR was per-
formed using simple linear regression analysis [36].

Results
Phenotype analysis of chlorotic and green ratoon plants
The ratoon plantlets displayed distinct chlorosis symp-
toms compared with the green plants found in the 
same field at the same time (Fig.  1A). The SPAD read-
ing showed a drastic reduction in chlorophyll content 
in chlorotic leaves compared to green ones (Fig. 1B, C). 
To monitor the growth and development of the ratoon 
plants, we measured some agronomic traits. The plants 
showing chlorosis grew slower than the green ones. They 
were shorter (Fig.  2A) with fewer leaves (Fig.  2B), stalk 
nodes (Fig. 2C), and tillers (Fig. 2D).

Global overview of sugarcane leaf transcriptome 
with chlorosis
Since the ratoon sugarcane chlorosis is displayed con-
spicuously in the leaf, we hypothesized that the changes 
in leaf transcriptome might correlate with chlorotic 
responses at cellular and molecular levels. Using the 
same plantlets, we extracted the total RNA from the ten 
samples. A total of 621,045,632 reads were generated 
using Illumina HiSeq 4000. A total of 88,339 unigenes 
were de novo assembled using Trinity software. The aver-
age length of all the unigenes was 903 bp. To assess de 
novo assembled unigenes’ completeness, we took a quan-
titative measure with BUSCO (Benchmarking Universal 
Single-Copy Orthologs). The results showed the percent-
age of conserved orthologues of plants represented in our 
assembled sugarcane transcriptome. Completeness of 



Page 4 of 15Luo et al. BMC Plant Biology          (2022) 22:222 

all the unigenes resulted in a high rate of complete plant 
orthologues (75%). Of the 1440 orthologues searched 
in the BUSCO set of plants, 75% was complete, with 
the number being 1080. Of the 1080 complete BUSCO 
orthologues, 1060 were single-copy, while the other 20 
orthologues were duplicates. The proportion of frag-
mented and missing BUSCOs was 14 and 11%, respec-
tively (Fig.  3A). To annotate and classify the assembled 

unigenes, we employed four public protein databases to 
BLASTX the deduced peptides sequence of the unigenes, 
resulting in 48,816 unigenes being annotated (Table S2). 
Of all the annotated unigenes, 48,275 (98.9%) unigenes 
showed a particular hit within the Nr database (Non-
redundant protein sequence database). Those proteins 
were mainly from Zea mays, Setaria italica, and Oryza 
sativa Japonica. 5745 unigenes matched the Nr database 

Fig. 1 The sugarcane field with ratoon chlorotic and green plants (A). The green leaves (B, control) with SPAD reading higher than 40 and the 
chlorotic leaves (C) with SPAD reading lower than 10 were selected for experiments
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entries only, while KEGG, Swissprot, and COG had 218, 
176, and 35 unigenes, respectively, and they were single 
matched (Fig. 3B). A total of 17,756 unigenes were found 
in all four databases. All the Nr hit genes were from 479 
species. Of all the hits, 17,691 (36.65%) were significantly 
similar to proteins of Zea mays, and 7406 (15.34%) and 
5484 (11.36%) were from Setaria italica and Oryza sativa 
Japonica Group, respectively (Fig.  3C). According to 
some criteria (log2 fold-change > 1, p-value ≤ 0.05), we 
identified a total of 11,776 differentially expressed genes 
(DEG) between chlorosis and control groups (Fig. 3D).

Function analysis of DEGs in Chlorosis sugarcane
Gene ontology (GO) analysis was employed to emphasize 
the function of DEGs. GO enrichment analysis revealed 
that DEGs were most enriched in GO cell component cat-
egories of membrane, thylakoid and intrinsic component 
of membrane (Fig. 4A, Table S3). In molecular function 
categories, tetrapyrrole binding, cellulose synthase activ-
ity and catalytic activity were the most enriched terms 
(Fig.  4B, Table S3). For the biological processes, glu-
can metabolic process (GO:0044042), cellular metal ion 
homeostasis (GO:0006875) and cellular transition metal 
ion homeostasis (GO:0046916) exhibited the highest 
association with DEGs of the chlorosis symptom (Fig. 4C, 
Table S3). To map the metabolic pathways of DEGs, we 
annotated these genes using KEGG analysis. A total of 31 
pathways were significantly enriched from all the DEGs 

(Table S4). Among them, 27 pathways were related to 
metabolism, while two environmental information pro-
cessing pathways and two organismal systems pathways 
were observed. Biosynthesis of secondary metabolisms, 
Metabolic pathways and plant-pathogen interaction were 
the top three enriched pathways (Fig. 4D).

Expression of genes related to chlorophyll metabolism 
in chlorosis sugarcane
The KEGG analysis indicated that DEGs involved in 
the chlorophyll metabolism pathway were enriched 
(p-value = 0.0224, Table S5). To further investigate this 
pathway, we found that sixteen genes were differently 
expressed in the chlorosis group compared to the con-
trol group, which included eleven down-regulated genes 
and five up-regulated genes (Fig.  5A). The down-regu-
lated genes encode enzymes covered almost the whole 
process of chlorophyll biosynthesis, including glutamyl 
– tRNA reductase (hemA, EC: 1.2.1.70), coproporphy-
rinogen III oxidase (hemF, EC: 1.3.3.3), protoporphyrino-
gen/coproporphyrinogen III oxidase (hemY, EC: 1.3.3.4), 
magnesium chelatase subunit H (chlH, EC: 6.6.1.1), Mg 
– protoporphyrin IX monomethyl ester cyclase (chlE, 
EC: 1.14.13.81), protochlorophyllide reductase (por, 
EC: 1.3.1.33) and chlorophyll b reductase (NOL, EC: 
1.1.1.294). The up-regulated genes encode uroporphy-
rinogen decarboxylase (hemE, EC: 4.1.1.37), chlorophyl-
lase (EC: 3.1.1.14) and chlorophyll a synthase (chlG, EC: 

Fig. 2 Plant height (A), and the number of leaves (B), stalk nodes (C), and tillers number (D) of plants with and without chlorosis. The x-axis 
represents the date of sampling
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2.5.1.62). Also, the content of chlorophyll in chlorosis 
samples (average 0.40 mg/g) was significantly lower than 
control samples (3.03 mg/g) (Fig.  5B). The gene expres-
sion pattern in the chlorophyll metabolism pathway, in 
which the majority of DEGs were down-regulated, was 
consistent with the reduction of chlorophyll content in 
chlorosis samples.

Photosynthesis was adversely affected in chlorosis ratoon 
sugarcane
Chlorophyll is the primary pigment to capture light 
energy. Considering the lack of chlorophyll in the chloro-
sis group, we noticed that two photosynthesis pathways, 
including photosynthesis-antenna proteins and photo-
synthesis, were also enriched by KEGG analysis (Table 
S6). There were 36 DEGs related to KEGG photosynthe-
sis pathways, including nine genes related to photosystem 
I (PSI), seven related to photosystem II (PSII), one related 
to cytochrome b6/f complex, three related to photosyn-
thetic electron transport, two related to F-type ATPase, 

five related to light-harvesting chlorophyll protein com-
plex I (LHCI) and nine related to LHCII (Fig. 6 A and B). 
Additionally, 32 genes, among the 36 DEGs of photosyn-
thesis pathways, were significantly down-regulated in the 
chlorosis group, while only four genes showed up-regu-
lated expression patterns (Fig. 6C).

Metal ion homeostasis and transport processes 
under chlorosis ratoon sugarcane
Among the 81 enriched GO biological processes, there 
were four categories related to metal ion homeostasis and 
three categories related to metal ion transport (Fig.  7A, 
Table S7). In the to metal ion homeostasis category, 
including cellular metal ion homeostasis (GO: 0006875), 
cellular transition metal ion homeostasis (GO: 0046916), 
transition metal ion homeostasis (GO: 0055076) and 
metal ion homeostasis (GO: 0055065), there were 10 
DEGs with six down- and four up-regulated. Of the 
31 DEGs found among the three metal ion transport 
processes, 15 were down- and 16 were up-regulated 

Fig. 3 Summary of the transcriptome of sugarcane in ratoon chlorosis leaves and planted plantlet green leaves. Transcriptome de novo assembly 
completeness analysis using BUSCO alignment (A). Complete orthologues include a single copy (blue) and duplicated copies (green). Incomplete 
orthologues are fragmented (yellow). The missing (red) copies are not found in the BUSCO database. The Venn diagram of aligned and annotated 
assembly using multi databases (B). The distribution of species annotation unigenes (C). The volcano plot of expression unigenes (D). The up-and 
down-regulated genes are represented as red and yellow dots, while the light blue dots indicate the unigenes without significant changes. The 
unigenes with a fold change higher than 2 and a p-value lower than 0.05 are determined as DEGs
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(Fig. 7B). Homeostasis and transport processes had seven 
genes in common; they were two FER1 (unigene0002936, 
unigene0029675), Unidentified gene (unigene0019302), 
NHX2 (unigene0040569), DTX42 (unigene0056614), 
HMA1 (unigene0064621) and HCC1 (unigene0083098). 
Three genes, including TMN6 (unigene0036726), YS1 
(unigene0055240) and IRO2 (unigene0085997), were only 
found in processes related to metal ion homeostasis.

Metabolome analysis of the changes in chlorosis 
sugarcane
To determine the differences of metabolites in ratoon 
chlorosis sugarcane, we performed metabolome analysis 
using LC-ESI-MS/MS system. A total of 598 compounds 
were identified and quantified (Table S8). Thirteen com-
pounds with VIP value ≥1 and p-value < 0.05 were clas-
sified as significantly differentially expressed metabolites 
(DEMs) between the chlorosis and control groups. All 
these metabolites, including six phenolic acids, three 
lipids, one alkaloid, one organic acid and one other 

compound, were down-regulated in the chlorosis group 
(Table  1). Among them, the compound with the great-
est variation in content was coniferyl alcohol with a fold 
change of − 2.9. KEGG pathway analysis demonstrated 
that the phenylpropanoid biosynthesis pathway was the 
most and only enriched pathway among the different 
metabolites (p-value = 0.0088). The three compounds 
that belonged to the phenylpropanoid biosynthesis were 
coniferyl alcohol, ferulic acid and 5-O-caffeoyl shikimic 
acid.

The correlation of transcriptome and metabolome 
associated with phenylopropanoid biosynthesis
To understand the changes of chlorosis in ratoon sugar-
cane, we further analyzed the correlation between metab-
olome and transcriptome. The only enriched pathway in 
differentially expressed metabolites, the phenylopropa-
noid biosynthesis pathway, was the fifth enriched path-
way in DEGs of the transcriptome. A total of 92 genes 
were involved with the phenylpropanoid biosynthesis 

Fig. 4 GO and KEGG pathway enrichment analysis of DEGs. The 10 most enriched GO terms in cellular component (A), molecular function (B), and 
biological process (C). The number of X axial represents the ratio of DEGs in each term. The circle size denotes gene number. The 10 most enriched 
KEGG pathways (D). The number near each column represents the gene number and percent of that pathway, respectively. High and low p-values 
are denoted in red and blue, respectively
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pathway among the 11,776 DEGs, while three out of 13 
differential metabolites belonged to this pathway. Sixty-
two genes out of the 92 DEGs, were down-regulated 
(Fig.  8, Table S9). In our transcriptome, the POD gene, 
encoded a peroxidase, was identified expressed by 31 
DEGs with 23 down-regulated and 8 up-regulated. Also, 
DEGs encoded HCT, PTAL, C3H, CCR , F5H, BGLU were 
mainly down-regulated in the chlorosis group. In con-
trast, we observed more up-regulation in CAD and 4CL. 
The down-regulation of the two essential genes, PTAL 
and C3H, could largely explain the low accumulation 
of ferulic acid and 5-O-caffeoyl shikimic acid (Table  1). 
Furthermore, the low accumulation of coniferyl-alcohol 

and down-regulation of POD and F5H indicated that the 
lignin biosynthesis was also impaired.

qRT‑PCR analysis
To validate the DEGs expression pattern, we randomly 
selected 20 genes, including up-and down-regulated ones 
with high and low expression rates, for quantitative real-
time (qRT)-PCR assays. The primary expression trend of 
the 20 genes was consistent (Fig. 9A). The value of tran-
scriptome and qRT-PCR showed a significant positive 
correlation with the Pearson r-value of 0.9867. The linear 
regression of correlation analysis was conducted, result-
ing in the goodness of fit with an R square value of 0.9513 

Fig. 5 The diagram of the chlorophyll metabolism pathway. A The chlorophyll metabolism pathway is presented in a way of successive reaction 
steps. The circle denotes a chemical compound. The gene name upon the arrow denotes RNA or protein. The normalized gene expression is 
shown in a box with colors. The direction of the arrow means activation. Colour gradients from green to red represents the Log2FC of the genes. 
B The chlorophyll concentrations in sugarcane leaves of control and chlorosis samples. Each value represents a sample. The red line indicates 
the mean value of each group. An unpaired t-test was used to compare the differences between the two groups. p-value = 0.024. ** denotes 
highly significant. hemA, glutamyl-tRNA reductase; hemL, glutamate-1-semialdehyde 2,1-aminomutase; hemB, porphobilinogen synthase; hemE, 
uroporphyrinogen decarboxylase; hemF, coproporphyrinogen III oxidase; hemY, protoporphyrinogen/coproporphyrinogen III oxidase; chlH, 
magnesium chelatase subunit H; bchM, magnesium-protoporphyrin O-methyltransferase; chlE, magnesium-protoporphyrin IX monomethyl ester 
(oxidative) cyclase; por, protochlorophyllide reductase; DVR, divinyl chlorophyllide a 8-vinyl-reductase; chlG, chlorophyll/bacteriochlorophyll a 
synthase; CLH, chlorophyllase; HCAR, 7-hydroxymethyl chlorophyll a reductase; NOL, chlorophyll (ide) b reductase; CAO, chlorophyllide a oxygenase
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(Fig. 9B). These results indicated that the transcriptome 
was reliable.

Discussion
Ratooning is a cultivation method in sugarcane produc-
tion [37]. Ratoon sugarcane chlorosis, despite reporting 
several decades ago, is still a severe problem, causing 
a significant economic loss in China [3, 16]. The main 
reason for ratoon sugarcane chlorosis is considered to 
be the imbalance between Fe and Mn concentration, 
which may be induced by acidic soil, intense leaching, 
and continuous cultivation [2, 3]. Although causes and 
treatments have been studied previously, the associated 
regulatory mechanisms of ratoon sugarcane chlorosis 

remain unclear. In this study, RNA-Seq was employed to 
demonstrate the global transcriptomic changes of ratoon 
sugarcane with chlorosis. DEGs related to chlorophyll 
metabolism, photosynthesis, and metal ion homeosta-
sis were significantly affected by chlorosis. In addition, 
combining metabolome analysis, DEGs and DEMs were 
enriched in the phenylopropanoid biosynthesis pathway.

Chlorophyll is the primary source of pigment in plant 
leaves, which is correlated with the green color [38]. 
The well-studied chlorophyll synthesis pathway involved 
many essential genes [4, 39]. HemA, which catalyzes the 
glutamy-tRNA to L-Glutamate 1-semialdehyde, is the 
initial enzyme of chlorophyll synthesis that regulates 
the chlorophyll accumulation during de-etiolation [40]. 

Fig. 6 DEGs related to the photosynthesis pathways. A The KEGG pathway map of photosynthesis. B The KEGG pathway map of 
photosynthesis-antenna protein. The images were obtained from the KEGG database. The DEGs expression pattern was used to annotate and 
generate a corresponding map. The green box with gene symbols denotes down-regulated expression in the chlorosis group, while the red box 
denotes up-regulated expression. The genes without significant change were displayed with a grey box. C Expression profile of genes related to 
photosynthesis pathways. The vertical column represents a sample. The horizontal row represents a gene. The expression ratios are based on log2 
RPKM value and normalized at row level. Each gene is presented with gene ID and gene name. PsbA-Psb27, photosystem II structure proteins; 
PsaA-PsaX, photosystem I structure proteins; PetB-PetG, cytochrome b6/f complex proteins; PetF, ferredoxin; beta, fF-type H+/Na + −transporting 
ATPase subunit beta; a, F-type H + -transporting ATPase subunit a; Lhca1-Lhca5, light-harvesting complex I chlorophyll a/b binding protein; 
Lhcb1-Lhcb7, light-harvesting complex II chlorophyll a/b binding protein 1
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Fig. 7 KEGG enrichment analysis and expression profiles of DEGs related to metal ion homeostasis or transport. A The seven enriched pathways 
related to metal ion homeostasis or transport (p-value < 0.05). The number near each column represents the gene number and percent of that 
pathway, respectively. High and low p-values are denoted in red and blue, respectively. B Heat map of the expression profile of genes related to 
metal ion homeostasis or transport

Table 1 Differentially expressed metabolites between chlorosis and control groups

a VIP variable importance in projection

Class Compounds Chlorosis Control VIPa p-value Log2_Fold change

Alkaloids p-Hydroxymandelonitrile 430,394 608,420 1.10959687 0.02027379 −0.4994096

Lipids Octadeca-11E,13E,15Z-trienoic acid 3,844,200 4,741,460 2.56435704 0.00846175 −0.302648

Eicosadienoic acid 461,728 577,134 1.01768916 0.00513142 −0.3218631

LysoPC 16:0 4,335,720 6,566,380 4.19556532 0.03436214 −0.5988267

Organic acids 2-Hydroxycinnamic  acida 319,370 545,734 1.15424233 0.02310167 −0.7729691

Others (S)-2-Phenyloxirane 896,878 1,115,572 1.19133863 0.02950794 −0.3148

Phenolic acids Phthalic anhydride 710,886 857,740 1.05578543 0.02138151 −0.2709222

Vanillina 1,562,940 1,941,380 1.53827326 0.00423727 −0.3128201

2-(Formylamino) benzoic acid 506,076 742,464 1.12174147 0.00254916 −0.552967

Coniferyl alcohol 79,553 231,474 1.08262447 0.00357173 −1.5408619

Ferulic acid 285,570 545,394 1.34644681 0.01281337 −0.9334544

Dibutyl  phthalatea 13,661,400 16,021,600 4.31621733 0.02367218 −0.2299129

5-O-Caffeoylshikimic acid 207,131.2 406,682 1.18067851 0.01341248 −0.9733563
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HemY catalyzes the protoporphyrinogen-IX to protopor-
phyrin-IX, which is predominant in chlorophyll synthesis 
[41]. The magnesium chelatases subunit H, named chlH, 
catalyzes the magnesium ion and protoporphyrin-IX to 
form Mg-protoporphyrin-IX, which was found induced 
by light [42]. Knock-down of chlE, an Mg-protoporphy-
rin-IX monomehyl ester cyclase, resulted in retarded 
growth and chloroplast developmental defects in Arabi-
dopsis [43]. The protochlorophyllide reductase (por), the 
enzyme that promotes a photoreduction of protochloro-
phyllide to chlorophyllide, plays a vital role in the green-
ing stage [44]. NOL, a chlorophyll b reductase, plays 
a role in chlorophyll b degradation [45]. In this study, 
twelve down-regulated DEGs, including three hemA, one 
hemF, two hemY, two chlH, one chlE, two por, and one 
NOL, were found associated with the chlorophyll synthe-
sis pathway (Fig. 5). Compared to the four up-regulated 
DEGs, including one hemF, one hemE, one chlG, and one 

CLH, the down-regulated genes in this pathway were in 
the majority. The same phenomenon was observed in 
wheat yellow leaves and light green cucumber [6, 46]. 
These results indicate the direct relation between ratoon 
sugarcane chlorosis and the dysfunction of chlorophyll 
synthesis.

Leaf photosynthesis is positively correlated with chlo-
rophyll content [47]. In A. thaliana, photosynthetic 
efficiency reduction was accompanied by a decrease in 
chlorophyll content [48]. In wheat yellow leaves wheat, 
five genes encoding photosynthesis related proteins were 
significantly down-regulated [46]. Transcriptome and 
proteome analysis of a wheat mutant with albino leaves 
showed that the expression levels of both genes and pro-
teins related to photosynthesis were lower than wild-
type green wheat [49]. Likewise, we observed similar 
results in this study. There were 36 DEGs found in pho-
tosynthesis pathway, of which 32 were down-regulated 

Fig. 8 The diagram of the phenylpropanoid synthesis pathway. The names in light-type letters are metabolites compounds. The DEGs are 
exhibited in a bold-type letter upon the arrow. The fold change of DEGs and metabolites is shown in heatmap style. Square denotes DEGs, 
while the circle denotes the DEMs. Colour gradients from green to red represents the Log2FC of the genes or metabolites. PTAL, phenylalanine/
tyrosine ammonia-lyase; C4H, trans-cinnamate 4-monooxygenase; C3H, 5-O-(4-coumaroyl)-D-quinate 3′-monooxygenase; COMT, caffeic acid 
3-O-methyltransferase; 4CL, 4-coumarate--CoA ligase; HCT, shikimate O-hydroxycinnamoyltransferase; CCoAOMT, caffeoyl-CoA O-methyltransferase; 
CCR, cinnamoyl-CoA reductase; CAD, cinnamyl-alcohol dehydrogenase; POD, peroxidase; F5H, ferulate-5-hydroxylase; EC:1.14.13.14, trans-cinnamate 
2-monooxygenase; EC:2.4.1.114, 2-coumarate O-beta-glucosyltransferase; BGLU, beta-glucosidase
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(Fig.  6). The light-harvesting chlorophyll protein com-
plexes (LHC) binds chlorophyll to function in the pho-
tosynthesis system [50]. Lack of the LHC would affect 
plants’ photosynthetic rate and growth [51]. In chloro-
sis sugarcane, we found that all the DEGs of LHC were 
down-regulated (Fig.  6), suggesting that the formation 
of photosynthesis’s antenna proteins would be affected. 
Photosynthesis occurs in the chloroplast, which com-
prises chloroplast membrane, thylakoid, and matrix. 
The multi subunits complexes, including PSI, PSII, 
cytochrome b6/f complex, and photosynthetic electron 

transport, are embedded in the thylakoid membrane [52]. 
DEGs of these complexes were significantly repressed in 
chlorosis sugarcane (Fig.  6). The GO enrichment analy-
sis of cellular components showed that five GO terms, 
including thylakoid, thylakoid part, photosystem, photo-
synthetic membrane, and plastid thylakoid, were among 
the top 10 enriched (Fig. 4A). These results agreed with 
previous reports in wheat where yellow leaf mutant was 
caused by abnormal chloroplast development [53].

Studies of ratoon sugarcane chlorosis in Guangxi sug-
gest that the excessive Mn accumulation in parent stalks 

Fig. 9 The validation of transcriptome using qRT-PCR. A The 20 genes expression pattern of transcriptome and qRT-PCR. The columns in black and 
grey denote the expression value of transcriptome and qRT-PCR, respectively. The value represents the log2 fold change in the chlorosis group 
compared with the control group. B Correlation of transcriptome (x-axis) and qRT-PCR (y-axis) data
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was the main reason for chlorosis [3]. At the same time, 
the active Fe deficiency in plantlets played a second-
ary role [3]. The subsequent investigation revealed that, 
in the progression of the greening of chlorotic seedling, 
the leaf Mn content decreased significantly, whereas Fe 
content increased [54]. Mn shares similar chemical prop-
erties with Fe and Mn, and Fe interaction was observed 
in several physiological processes [55]. Mn transport is 
partially mediated by Fe transporter [56], and thus Mn 
accumulation in ratoon sugarcane may play a role in Fe 
deficiency. These findings are consistent with our results 
on metal ion metabolism disorder related gene expres-
sion in chlorosis sugarcane. Our GO analysis has shown 
that seven categories related to metal ion homeostasis 
and transport were significantly enriched (Fig.  7A). A 
total of 34 DEGs were found in these categories (Fig. 7B). 
Iron-phytosiderophore transporter (YS1) and transcrip-
tion factor bHLH100 (IRO2) were up-regulated by iron 
deficiency [57, 58]. Ferritin 1 (FER1), important for iron 
homeostasis, stores iron in a soluble form, is up-regu-
lated by iron overload treatment [59]. In our study, two 
genes, YS1(unigene0055240) and IRO2(unigene0085997), 
were significantly increased with log2 FC higher than 
8, while FER1 (unigene0002936, unigene0029675) were 
down-regulated with log2 FC lower than − 6 (Table S7). 
Also, MRS2-B (Unigene0000001), a magnesium trans-
porter, was found down-regulated in the chlorosis group 
(Fig.  7B, Table S7). These results indicated that the dif-
ferential regulation of metal ion metabolism genes agreed 
with the imbalance of Fe and Mn. However, whether the 
asymmetry of metal ion induces differential gene expres-
sion or do the differentially expressed genes lead to iron 
deficiency in the leaf remains unclear.

In a previous study, the phenylpropanoid biosynthesis 
pathway was enriched in both transcriptome and metab-
olome analysis of chlorosis A. catechu L. [5]. Combining 
transcriptome and metabolome analyses, we found 62 
DEGs and 3 DEMs (differentially expressed metabolites) 
belong to the phenylpropanoid biosynthesis pathway 
(Fig.  8, Table S9, and Table  1). Interestingly, phenylpro-
panoid biosynthesis was the only enriched pathway in 
DEMs. These results indicate that phenylpropanoid bio-
synthesis could be involved in ratoon sugarcane chlorosis 
development. Phenylpropanoids contribute significantly 
to plants’ response towards biotic and abiotic stresses 
[60]. In chlorotic tea leaves, genes and metabolites related 
to phenylpropanoids biosynthesis showed lower expres-
sion than green leaf [61]. In an iron deficiency chlorosis 
tolerant soybean, genes in the phenylpropanoid biosyn-
thesis were up-regulated in low Fe condition [62]. Syn-
thesis of coumarins is part of Fe acquisition machinery 
in Arabidopsis [63]. We noticed the BGLU, a beta-glu-
cosidase coding gene, was down-regulated in chlorosis 

sugarcane (Fig.  8). This result suggests that the phenyl-
propanoid biosynthesis was altered at the transcripts and 
metabolites level in chlorotic ratoon sugarcane. Given 
the central role of phenylpropanoid biosynthesis in plant 
growth and development [60, 64], two secondary meta-
bolic pathways, including flavonoids and phenylalanine, 
were found enriched in KEGG analysis (Fig.  4D, Table 
S4).

Conclusions
Here we studied transcriptome and metabolome 
responses of chlorotic and non-chlorotic sugarcane 
leaves. Our results provide more insights into chloro-
phyll synthesis, photosynthesis, metal ion metabolism, 
and phenylpropanoids biosynthesis in ratoon chloro-
sis sugarcane. Gene regulation dysfunction in metal ion 
homeostasis and transportation likely leads to Mn toxic-
ity and Fe deficiency, which may cause ratoon chlorosis 
in sugarcane [3]. The reduction of chlorophyll content is 
likely due to the decreased chlorophyll synthesis path-
way. Furthermore, the photosynthesis related genes 
were also affected significantly. The consistent results 
of metabolome and transcriptome of phenylpropanoids 
biosynthesis pathway suggest that the alteration in sec-
ondary metabolism plays a vital role in ratoon sugarcane 
chlorosis.
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