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Abstract 

Background: The plant homeodomain (PHD)‑finger gene family that belongs to zinc‑finger genes, plays an impor‑
tant role in epigenetics by regulating gene expression in eukaryotes. However, inaccurate annotation of PHD‑finger 
genes hinders further downstream comparative, evolutionary, and functional studies.

Results: We performed genome‑wide re‑annotation in Arabidopsis thaliana (Arabidopsis), Oryza sativa (rice), Capsicum 
annuum (pepper), Solanum tuberosum (potato), and Solanum lycopersicum (tomato) to better understand the role 
of PHD‑finger genes in these species. Our investigation identified 875 PHD‑finger genes, of which 225 (26% of total) 
were newly identified, including 57 (54%) novel PHD‑finger genes in pepper. The PHD‑finger genes of the five plant 
species have various integrated domains that may be responsible for the diversification of structures and functions 
of these genes. Evolutionary analyses suggest that PHD‑finger genes were expanded recently by lineage‑specific 
duplication, especially in pepper and potato, resulting in diverse repertoires of PHD‑finger genes among the species. 
We validated the expression of six newly identified PHD‑finger genes in pepper with qRT‑PCR. Transcriptome analyses 
suggest potential functions of PHD‑finger genes in response to various abiotic stresses in pepper.

Conclusions: Our data, including the updated annotation of PHD‑finger genes, provide useful information for further 
evolutionary and functional analyses to better understand the roles of the PHD‑finger gene family in pepper.
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Background
Structural annotation of protein-coding genes is a funda-
mental process for obtaining essential genetic informa-
tion for further evolutionary and functional analyses [1]. 
However, previous annotations omitted numerous pro-
tein-coding genes, interfering with accurate downstream 
analyses [2, 3]. Specifically, protein-coding gene omis-
sion is frequently observed for gene families that exist 
in high copy numbers and specific species in genomes 
[4, 5]. To update annotations containing those missing 
protein-coding genes, previous studies have performed 

re-annotation of protein-coding genes in plant and ani-
mal genomes using recently developed annotation tools 
[6–10]. The results demonstrate the importance of con-
tinuous updates to the annotations, as many protein-
coding genes involved in the biological characteristics of 
a species.

The plant homeodomain (PHD)-finger proteins are 
widely distributed in eukaryotes [11], with most PHD-
finger proteins found in the nucleus [12]. PHD-finger 
proteins possess one or more PHD-finger domains, 
which comprise approximately 60 amino acids con-
sisting of the conserved Cys4-His-Cys3 zinc-binding 
motif [11, 13–15] that is stabilized by binding to two 
zinc ions [16]. Since discovery of the first PHD-finger 
protein, HAT3.1, in Arabidopsis [17], many studies 
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have revealed that PHD-finger proteins function as 
epigenetic readers that recognize and bind to histones 
with unmodified or post-translational modifications 
(PTMs), transform chromatin structure, and regu-
late the activation or repression of gene transcription 
[18–24]. In addition, PHD-finger genes are known to 
be involved in reproductive and developmental pro-
cesses. In Arabidopsis, the MALE STERILITY1 (MS1) 
and DUET proteins participate in reproduction by reg-
ulating the transcription of genes associated with male 
gametogenesis and male meiosis, respectively [25, 26]. 
PICKLE (PKL) is involved in repressing embryonic 
trait gene expression during development by remod-
eling chromatin structure [27]. PKL also plays an 
important role in response to cold and salt stress [28, 
29]. In rice, Early heading date 3 (Ehd3) and HAZ1 act 
as transcription factors involved in the regulation of 
flowering and gibberellin (GA) signaling, respectively 
[30, 31]. However, the roles of the PHD-finger gene 
family have yet to be studied in several important agri-
cultural crops.

In this study, we conducted re-annotation and com-
parative analyses of PHD-finger genes in five plant 
genomes: Arabidopsis thaliana (Arabidopsis), Oryza 
sativa (rice), Capsicum annuum (pepper), Sola-
num tuberosum (potato), and Solanum lycopersicum 
(tomato). We identified 875 PHD-finger genes, includ-
ing 225 genes (26%) that were missed in previous 
annotations. Domain architecture analysis revealed 
that integration of diverse domains could contribute to 
the structural and functional diversification of PHD-
finger genes. Based on phylogenetic analysis, PHD-
finger genes were classified into 14 subgroups with 
distinct domain architectures (G1 ~ G14). Duplication 
history analysis revealed that most of the potato and 
pepper PHD-finger genes were expanded recently via 
lineage-specific duplication. Microsynteny analysis in 
the Solanaceae species revealed that most of the G6 
genes of potato on chromosome 1 were expanded by 
recent tandem duplication, resulting in diverse copy 
number variations in Solanaceae species. We validated 
the expression of newly identified pepper PHD-finger 
genes by qRT-PCR. Expression clustering analysis and 
gene ontology (GO) enrichment testing revealed that 
pepper PHD-finger genes might be associated with 
binding or regulation-related functions in response 
to abiotic stresses. Our study demonstrates a com-
prehensive evolutionary relationship of the PHD-
finger gene family between pepper and the other four 
plant genomes, thus providing fundamental genomic 
resources that can be used to accelerate further func-
tional agricultural research.

Results and discussion
Re‑annotation of PHD‑finger gene family in pepper 
and other species
To update and construct a more accurate annotation of 
PHD-finger genes, we performed a re-annotation and 
obtained a total of 875 PHD-finger genes in five plant 
genomes. Of them, 225 genes (26%) were newly identi-
fied. Specifically, 57 (54%) pepper PHD-finger genes 
were newly annotated, indicating that the re-annotation 
process could improve previous annotations of PHD-
finger genes via new gene identification, especially in the 
pepper genome (Table  1). Many previous studies have 
addressed the importance of updating numerous omitted 
genes via re-annotation [6–10]. In this study, we updated 
more accurate annotations of protein-coding genes by 
using the novel gene annotation platform for re-anno-
tation, and downstream analysis was performed based 
on the updated annotations. The number of PHD-finger 
genes in Arabidopsis, rice, and potato was approximately 
twice those in pepper and tomato (Table 1). The length of 
PHD-finger proteins varied from 52 to 2724 amino acids, 
with an average of 541 amino acids, implying that PHD-
finger genes encoded proteins with diverse structures 
(Table 1 and Table S2).

We then analyzed the domain architecture of PHD-
finger genes (Fig.  1). In total, 98% of PHD-finger 
genes had diverse integrated domains (IDs) such as 
zf-RING_2 (PF13639), C1_2 (PF03107), and Zf_RING 
(PF16744) (Fig. 1A and Table S3). When we compared 
the proportion of IDs within the five species, PHD-fin-
ger genes shared a similar predominant ID repertoire; 
however, the detailed proportion of IDs in each species 
was distributed unevenly (Fig. 1A). In Arabidopsis, rice, 
and potato, which possess relatively more PHD-finger 
genes than other species, most of the PHD-finger genes 
contained specific IDs, such as C1_2 (PF03107) and zf-
RING_2 (PF13639). In particular, more than half the 
rice PHD-finger genes (51%) had zf_RING_2 (PF13639) 
(Fig.  1A). Notably, most IDs in newly annotated pep-
per PHD-finger genes consisted of C1_2 (PF03107) 

Table 1 The number of re‑annotated PHD‑finger genes in the 
five plants

Species Previously 
annotated genes

Newly 
annotated genes

Total

Arabidopsis 241 (553 aa) 16 (387 aa) 257 (542 aa)

Rice 147 (556 aa) 64 (363 aa) 211 (498 aa)

Pepper 49 (890 aa) 57 (507 aa) 106 (684 aa)

Potato 160 (371 aa) 49 (517 aa) 209 (405 aa)

Tomato 53 (844 aa) 39 (687 aa) 92 (777 aa)

Total 650 (558 aa) 225 (491 aa) 875 (541 aa)
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and Zf_RING (PF16744). In particular, Zn_ribbon_17 
(PF17120) was present only in newly annotated pepper 
PHD-finger genes (Fig.  1A). These results suggest that 
diverse IDs could contribute to the structural and func-
tional diversification of the PHD-finger gene family in 
these five plant species.

Functional annotation based on GO analysis was per-
formed to characterize the putative function of PHD-fin-
ger genes in the five plant genomes. We determined GO 
terms for 760 (87%) PHD-finger genes and categorized 
them based on molecular function, biological process, 
and cellular component (Fig. 1B). The predominant terms 
for molecular function, biological process, and cellular 
component were ‘binding’ (607; 80%), ‘cellular process’ 
(531; 70%), and ‘cellular anatomical entity’ (476; 63%), 
respectively (Fig.  1B). Most of the pepper PHD-finger 
genes (96%), including newly identified pepper PHD-fin-
ger genes (93%), belonged to the ‘binding’ group. These 
findings were consistent with previously reported func-
tions of PHD-finger genes. For example, the Arabidopsis 
PHD-finger proteins SHL and EBS have been shown to 
participate in the repression of flowering by recogniz-
ing a specific epigenetic mark (H3K4me2/3) in chroma-
tin and binding to floral integrators, SUPPRESSOR OF 
OVEREXPRESSION OF CO1 (SOC1) and FLOWER-
ING LOCUS T (FT) [32, 33]. Our results suggest that 
most of the newly identified pepper PHD-finger genes 
may also be involved in a binding function. Besides these 
GO terms, PHD-finger genes were annotated to various 
GO terms, such as metabolic process, catalytic activity, 
biological regulation, indicating that PHD-finger genes 
might be implicated in diverse functions. Taken together, 
our analyses demonstrate that updating the annotation 
of PHD-finger genes could provide more comprehen-
sive information for more accurate downstream analyses, 
especially in pepper.

Phylogenetic analysis of PHD‑finger genes in pepper 
and other species
To explore the evolutionary relationships of PHD-finger 
genes in the five plant species, we constructed a phylo-
genetic tree using the re-annotated PHD-finger genes 
(Fig. 2A). Based on the phylogeny and domain architec-
tures, the PHD-finger gene family was classified into 14 

subgroups (Fig.  2A). Most of the Arabidopsis and rice 
PHD-finger genes were specifically clustered in G7 and 
G14, respectively (Fig.  2B). We observed many of pep-
per PHD-finger genes of G1 and most of them were 
newly identified pepper PHD-finger genes, indicating 
that PHD-finger genes in G1 were expanded in pepper 
(Fig. 2B). To date, only a few PHD-finger genes were iden-
tified in previous functional studies in plants. Functional 
PHD-finger genes in Arabidopsis and rice are known to 
be involved in the developmental process [25–27, 30, 31]. 
As shown in Fig. 2A, all except one (PKL) clustered in the 
same subgroup (G12) even though the PHD-finger genes 
diverged from various lineages (Fig. 2A). Considering the 
phylogenetic tree, our findings suggest that the re-anno-
tated PHD-finger genes derived from different lineages 
could be novel resources for exploring the distinct roles 
of PHD-finger genes across various plant species.

Furthermore, we found that PHD-finger genes clus-
tered in the same subgroup exhibited similar domain 
architectures, sharing a major integrated domain (ID). 
This suggests that the majority of PHD-finger genes in 
the same subgroup had expanded after domain integra-
tion. We observed specific IDs that consisted mainly of 
seven subgroups (G6, G7, G9, G10, G11, G13, and G14) 
(Fig.  2C and Table S3). The PHD-finger genes with zf_
RING_2 (PF13639) were most abundant, found in 93%, 
85%, and 92% of the total PHD-finger genes in G10, 
G13, and G14, respectively (Fig. 1A and 2C). The PHD-
finger genes with the second most ID, C1_2 (PF03107), 
were clustered in G6 and G7 (Fig. 1A and 2C). In addi-
tion, SAP (PF02037) and Alfin (PF12165) were observed 
in most of PHD-finger genes belonging to G9 and G11, 
respectively (Fig.  2C). These results suggest that PHD-
finger genes having specific IDs were lineage-specifically 
expanded and preserved in specific subgroups.

Duplication history of PHD‑finger genes
Gene duplication is one key mechanism that contrib-
utes to the diversification of gene repertoires through the 
expansion of the copy number of genes [34]. To infer the 
duplication period of PHD-finger genes in five plants, we 
estimated the gene duplication time based on Ks values 
between duplicated gene pairs in each subgroup (Fig. 3A). 
Distinctly, the Ks values of many PHD-finger genes in 

(See figure on next page.)
Fig. 1 Characterization of the PHD‑finger gene family in five plant species. A, B The proportion of PHD‑finger genes for each species is shown in 
different colors. The proportion of newly identified PHD‑finger genes is shown in opaque colors. A Integrated domain repertoires of PHD‑finger 
genes. The portion of PHD‑finger genes that contained the top 15 integrated domains (IDs) is shown in the bar plot. B Distribution of gene 
ontology (GO) terms of PHD‑finger genes. The three main GO categories are listed on the left side of the bar plot. The top five GO terms in each 
category are shown in bar plot
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potato were less than 0.1, indicating that these genes 
emerged by recent gene duplication after speciation with 
tomato (Fig. 3A) [35]. Despite the relatively low number 
of PHD-finger genes in pepper, a high proportion of these 
genes also underwent gene duplication recently (Fig. 3A). 
These results suggest that those recently duplicated 
PHD-finger genes in potato and pepper are species-spe-
cific and contributed to the diversification of PHD-finger 
gene repertoires in each species. We further investigated 
the distribution of Ks values of the duplicated PHD-fin-
ger genes in 14 subgroups (Fig. 3B). Most of the recently 
duplicated PHD-finger genes in potato and pepper were 
clustered in specific subgroups (Fig. 3B). In pepper, these 
genes were newly identified from the re-annotation anal-
ysis conducted in this study and were mainly clustered in 
the G1 subgroup (Fig. 3B). In potato, most of the recently 
duplicated PHD-finger genes were clustered in G6 and 
G10 (Fig. 3B). These results indicate that a large propor-
tion of potato and pepper PHD-finger genes in specific 
subgroups recently emerged by lineage-specific duplica-
tion, leading to expansion of the PHD-finger gene family, 
especially in potato.

When we investigated the chromosomal location of 
PHD-finger genes, we found that, except for genes in spe-
cific subgroups, most were evenly distributed through-
out the chromosomes. Pepper PHD-finger genes in G1, 
which had recently expanded, were located on chro-
mosomes 1, 2, 3, 4, 6, 7, and 12 (Fig. S1). Several of the 
potato PHD-finger genes were positioned on chromo-
some 1 where they formed a tandem array in the long 
arm, but most were contained in G6 (Fig.  4A). We also 
observed that the PHD-finger genes in G6 of pepper and 
tomato were clustered in the corresponding regions of 
chromosome 1 as PHD-finger genes in potato (Fig. 4A). 
In these regions, the PHD-finger genes were detected in 
the different number of gene copies in pepper (9), potato 
(21), and tomato (8), indicating that copy number varia-
tions of PHD-finger genes of G6 located on chromosome 
1 occurred in these species (Fig. 4A). We further investi-
gated the syntenic genes in these regions and identified 
three pairs of putative orthologous genes, all preserved 
in chromosome 1 of all three Solanaceae species dur-
ing evolution (Fig.  4B). Of the PHD-finger genes in the 
syntenic region, several genes in pepper (3), potato (12), 
and tomato (2) had no orthologous genes among the 
three genomes, indicating that a large number of potato-
specific PHD-finger genes were clustered in the syntenic 

region. Altogether, our results from microsynteny analy-
sis combined with duplication time demonstrate that the 
PHD-finger genes belonging to G6 were derived from 
expansion via recent tandem duplication in the potato 
genome, leading to a diversity in copy number variations 
in the Solanaceae species.

Expression analyses of PHD‑finger genes in pepper 
under abiotic stress
We first validated the expression of six of the newly iden-
tified pepper PHD-finger genes by performing quan-
titative real-time PCR (qRT-PCR). Our data revealed 
expression of those genes under abiotic stress treatment 
after 6 and 12 h (Fig. 5), indicating that these genes are 
truly expressed under abiotic stress conditions. We then 
conducted RNA-Seq analysis to investigate the putative 
function of pepper PHD-finger genes in response to abi-
otic stress conditions. We estimated expression profiles 
of PHD-finger genes in pepper using RNA-Seq under 
cold, heat, salt, and mannitol stresses (Fig. S2). Overall, 
the pepper PHD-finger genes in G11 and G12 were highly 
expressed under abiotic stress (Fig. S2) while most of the 
PHD-finger genes in G6 were expressed at low levels (Fig. 
S2). Pepper PHD-finger genes in G1 also expressed at 
lower levels in all abiotic stresses except CaPHD94 (Fig. 
S2).

Next, we then identified differentially expressed 
genes in pepper, including the newly identified PHD-
finger genes, in response to abiotic stresses such as 
cold (14,698), heat (14,217), salt (12,549), and mannitol 
(12,513). Our analysis identified 43, 47, 32, and 34 PHD-
finger differentially expressed genes (DEGs) in pepper 
in response to cold, heat, salt, and mannitol treatment, 
respectively. We conducted expression clustering analy-
sis and grouped these DEGs into four clusters based on 
their expression pattern under abiotic stress (Fig.  6A). 
A large proportion of the PHD-finger DEGs were found 
in G4, and these genes were enriched in a specific clus-
ter for each stress, such as cold cluster 3 (5; 11.6%), heat 
cluster 4 (3; 6.4%), salt cluster 2 (6; 18.8%), and mannitol 
cluster 2 (5; 14.7%) (Fig. 6B). These results indicate that, 
in response to abiotic stress, many PHD-finger DEGs in 
G4 could participate with other pepper DEGs in specific 
clusters.

We also performed GO enrichment test of clusters 
that contained an abundant number of PHD-finger 
genes (Fig.  6C). Our analyses showed that the pepper 

Fig. 2 Phylogenetic relationship of PHD‑finger genes and characteristics of the 14 subgroups. A The phylogenetic tree of PHD‑finger genes in the 
five plant species is depicted. The colored bars outside of the tree represent divided subgroups. Different colors at branch tips indicate different 
species. Known functional genes are labeled on the outer edge. B The numbers of PHD‑finger genes in each subgroup are shown in a heatmap. C 
Major integrated domains in subgroups. Colored bars indicate groups with more than 75% integrated domains. Each bar is colored with the same 
colors of subgroups in phylogenetic tree. Pfam IDs of the main integrated domain are labeled in the bar plot

(See figure on next page.)
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DEGs are associated with diverse functions, includ-
ing cellular anatomical entity (GO:0110165), cel-
lular process (GO:0009987), and metabolic process 
(GO:0008152) (Fig.  6C). This suggests that these pep-
per PHD-finger genes could play a variety of roles in 
response to various abiotic stress conditions. Specifi-
cally, binding- or regulation-related GO terms were 
abundant in some clusters (Fig.  6C). Mannitol cluster 
3 included many pepper DEGs related to binding func-
tion (GO:0005488) (Fig. 6C). Binding-related GO terms, 
such as protein binding (GO:0005515) and purine ribo-
nucleoside triphosphate binding (GO:0035639), were 
also found under heat and salt stress (Fig.  6C). These 
results suggest that many pepper PHD-finger genes 
could be involved in regulation of stress-related gene 
expression by binding to histone modifications under 
abiotic stress conditions, consistent with a previously 

known function of PHD-finger genes [28]. Moreo-
ver, regulation-related GO terms such as biological 
regulation (GO:0065007), regulation of biological pro-
cess (GO:0050789), and regulation of cellular process 
(GO:0050794) were concentrated in heat cluster 1, salt 
cluster 2, and salt cluster3 (Fig. 6C). In particular, most 
of the PHD-finger genes in salt cluster 2 were con-
tained in G4, a subgroup containing Arabidopsis PKL 
(Fig.  2A). A previous study showed that Arabidopsis 
pkl mutants were sensitive to salt stress, decreasing 
cotyledon greening and root elongation [28]. This sug-
gests that the PHD-finger genes in salt cluster 2 could 
be involved in regulation of response mechanisms of 
pepper when exposed to salt stress. In addition, a pre-
vious study suggested that Arabidopsis PKL regulates 
the expression of cold-responsive (COR) genes under 
cold stress [28, 29]. Taken together, our results suggest 
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that the pepper PHD-finger genes could be involved in 
diverse response mechanisms to various abiotic stresses 
by interacting with other pepper genes.

Conclusions
High-quality annotation of protein-coding genes is 
extremely important and serves as a foundation for com-
parative analyses of gene families [2, 3]. Because previous 
annotations contained many of omitted protein-coding 
genes, a re-annotation process is essential for enabling 
accurate downstream analysis [4, 5]. In this study, we 
conducted re-annotation and comparative analyses of 
PHD-finger gene family in five plant species. Our study 
provides an improved annotation of PHD-finger genes in 
these plant genomes, including the identification of 225 
(26% of total) novel PHD-finger genes. Notably, over half 
(54%) of PHD-finger genes in pepper were newly identi-
fied in this study, indicating that the re-annotation pro-
cess could facilitate the discovery of new gene models 
missing in previous annotations.

In general, evolutionarily conserved domains in pro-
tein-coding genes are considered to be significantly 
related to gene function [36]. When we investigated the 
domain architecture of re-annotated PHD-finger genes, 
we found that various structures and functions could be 
inferred in the PHD-finger genes as a result of integrat-
ing diverse domains. Based on the phylogenetic analysis, 
PHD-finger genes in the five species were clustered into 
14 subgroups with distinct domain architectures, indicat-
ing that the PHD-finger gene family have diverged from 
various lineages and expanded lineage specifically with 
specific integrated domains. Estimation of the duplica-
tion time in duplicated PHD-finger gene pairs suggests 
that recently duplicated PHD-finger genes in potato and 
pepper were expanded lineage-specifically in specific 
subgroups. Solanaceae PHD-finger genes in syntenic 
regions of chromosome 1 have been derived from recent 
tandem duplication, leading to diverse gene repertoires 
in the PHD-finger gene family of the Solanaceae species. 
Our findings could serve as a novel resource for investi-
gating new functions of PHD-finger genes, especially in 
Solanaceae plants, for which functional studies have yet 
to be conducted.

We verified via qRT-PCR that newly annotated PHD-
finger genes are expressed. Transcriptome analyses and 
GO enrichment test suggest that many pepper PHD-
finger DEGs could participate in binding- or regulation-
related functions in response to heat, salt, or mannitol 
stress.

Taken together, we provide: i) updated genomic 
resources, containing previously omitted PHD-finger 
genes in five plant genomes including pepper and ii) a 

more comprehensive understanding of the structure and 
function of pepper PHD-finger genes.

Materials and methods
Re‑annotation of PHD‑finger gene family in five plant 
genomes
We obtained the genome sequences of Arabidopsis 
thaliana [37], Oryza sativa [38], Capsicum annuum 
[39], Solanum tuberosum [40], and Solanum lycopersi-
cum [41], including genome assemblies and annotations 
(Table S1). Then, we performed a re-annotation analysis 
of PHD-finger genes using TGFam-Finder v1.20 [8]. The 
downloaded genome assemblies and protein sequences 
were used as ‘TARGET_GENOME’ and ‘PROTEIN_
FOR_DOMAIN_IDENTIFICATION’, respectively. TSV 
files containing functional domain information were gen-
erated using InterProScan 5 [42] and used as ‘TSV_FOR_
DOMAIN_IDENTIFICATION’. The target domain ID of 
PHD-finger domain was ‘PF00628’ according to the Pfam 
database (http:// pfam. xfam. org/).

We assigned new gene names for re-annotated PHD-
finger genes instead of locus tag names in the published 
annotations that we used. If PHD-finger genes were 
already given a gene name, we used the same published 
name [43, 44]. We designated new names for the other 
genes based on the order in which they appear on the 
chromosome.

Identification of integrated domains in PHD‑finger genes
To identify integrated domains (IDs) of PHD-finger 
genes, we used TSV files generated by InterProScan 5 
[42] according to the Pfam database (http:// pfam. xfam. 
org/). Domains, except for the PHD-finger domain 
(PF00628), were considered as integrated domains. The 
bar plots in Fig. 1A were visualized using ggplot2 [45] in 
the R software.

Functional annotation using GO analysis
To predict the putative function of PHD-finger genes, 
GO annotation was performed using OmicsBox (version 
1.4, https:// www. biobam. com/ omics box/). The PHD-
finger protein sequences were aligned to the NCBI non-
redundant proteins database (nr v5) using BLASTP with 
an e-value cutoff (<  10–3). BLAST results were mapped to 
and annotated with GO terms using default parameters. 
The GO terms of each PHD-finger protein were classified 
into three main categories: biological process, molecular 
function, and cellular component. We selected the GO 
results at level 2 and visualized them using ggplot2 [45] 
in the R software.

http://pfam.xfam.org/
http://pfam.xfam.org/
http://pfam.xfam.org/
https://www.biobam.com/omicsbox/
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Phylogenetic analysis of PHD‑finger genes
For phylogenetic analysis, multiple sequence alignment 
was performed with the re-annotated PHD-finger pro-
tein sequences using MAFFT v7.470 [46]. The align-
ments were trimmed by trimAL v1.4 (-gappyout) [47] to 
delete poorly aligned sequence regions. The phylogenetic 
tree was constructed from alignments, excluding any 
sequences containing only gaps, using the maximum-
likelihood method with 1000 ultrafast bootstrap repli-
cates in IQ-TREE v2.0.6 [48]. The tree was mid-point 
rooted and visualized using Interactive Tree of Life (iToL) 
v5 (http:// itol. embl. de). Based on the tree, the PHD-
finger proteins were clustered and divided into 14 sub-
groups (G1 ~ G14).

Gene duplication analysis
To estimate the duplication time of PHD-finger genes, 
we identified recently duplicated PHD-finger gene pairs 
using DupGen_Finder [49]. The coding sequences of each 
gene pair were aligned using PRANK (-codon) [50]. To 
estimate duplication times of PHD-finger genes, synony-
mous substitution rates (Ks) were calculated using KaKs_
Calculator 2.0 (-m MYN) [51].

Chromosomal location and microsynteny analysis 
of PHD‑finger genes
Chromosomal location of PHD-finger genes was 
obtained using GFF files from the re-annotation results 
of TGFam-Finder v1.20 [8] and visualized using Map-
Chart [52]. With the exception of PHD-finger genes in 
the nongroup, the re-annotated genes were marked with 
the same subgroup colors in the phylogenetic tree.

Microsynteny analysis was conducted with genes in G6 
located on chromosome 1 of pepper, potato, and tomato. 
All-by-all comparison for these genes was performed 
using BLASTP [53] to identify putative orthologous gene 
pairs. The genomic positions of syntenic genes were visu-
alized using ChromoMap v0.2 [54] in the R software.

Quantitative real‑time PCR (qRT‑PCR) analysis
We conducted qRT-PCR to validate the expression of 
newly identified PHD-finger genes using cDNA isolated 
from abiotic-stressed pepper leaves [55]. Primers (Table 
S4) were designed with the Primer3Plus online web tool 
(https:// www. bioin forma tics. nl/ cgi- bin/ prime r3plus/ 
prime r3plus. cgi). The pepper ubiquitin gene (UBI-3) was 
used as a reference gene [56]. We selected six novel PHD-
finger genes from pepper based on their high expression 
levels under abiotic stresses. qRT-PCR was carried out 
on a Mic qPCR Cycler (Bio Molecular System, Australia) 
using TB Green Premix Ex Taq II (Takara, Japan) with 
three technical replicates. PCR conditions were set as 

follows: 95 °C for 30 s for activation followed by 40 cycles 
of 95 °C for 5 s and 60 °C for 30 s. The relative expression 
values were calculated and normalized using the  2−ΔΔCt 
method [57]. The bar plots in Fig. 5 were visualized with 
ggplot2 [45] in the R software.

Expression analyses of pepper PHD‑finger genes 
under abiotic stress
To analyze the expression of pepper PHD-finger genes 
under abiotic stress, we first downloaded previously 
reported RNA-Seq data from pepper leaves treated with 
various stresses [55]. These data contained results from 
four types of abiotic treatments (cold, heat, salt, and man-
nitol) at different time points (3, 6, 12, 24, and 72 h) with 
three biological replicates. Raw data were trimmed with 
CLC Assembly Cell (CLC Bio, Aarhus, Denmark) to filter 
out low-quality reads. The cleaned RNA-Seq data were 
mapped to the pepper genome using HISAT2 [58] (-dta 
-x). Expression levels of whole genes with newly identi-
fied PHD-finger genes in pepper were quantified and 
FPKM (Fragment Per Kilobase of transcript per Million 
mapped reads) values were calculated using StringTie 
[59] (-e -B -G). The overall expression profiles of the pep-
per PHD-finger genes under the various abiotic stresses 
were visualized with log2(FPKM + 1) values using pheat-
map v1.0.12 (https:// cran.r- proje ct. org/ web/ packa ges/ 
pheat map/ index. html) in the R software. We then identi-
fied DEGs with a p-value < 0.05 using Ballgown [60] from 
 log2-transformed fold-change values that were calculated 
from averaged FPKM values.

To further investigate the expression pattern of pep-
per PHD-finger genes, we conducted clustering analysis 
with the DEGs using Mfuzz [61] in the R software. The 
number of clusters was set to four based on the k-means 
algorithm. Then, GO annotation of pepper DEGs in each 
cluster was performed using Omicsbox (version 1.4, 
https:// www. biobam. com/ omics box/). Enrichment test 
of GO terms in each cluster was performed using Fisher’s 
exact test (false discovery rates corrected p-value ≤ 0.01).

Abbreviations
PHD: Plant homeodomain; ID: Integrated domain; GO: Gene ontology; qRT‑
PCR: Quantitative real‑time PCR; FPKM: Fragment Per Kilobase of transcript per 
Million mapped reads; DEG: Differentially expressed gene; FDR: False discovery 
rate.
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Additional file 1: Supplementary Figures. Figure S1. Chromosomal 
locations of PHD‑finger genes in the five genomes. (A‑E) Gene names 
are listed next to each chromosome bar and written in the same colors 
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(A) Arabidopsis (230), (B) rice  (191), (C) pepper (84), (D) potato (192), and 
(E) tomato (87) are mapped to chromosomes,  respectively. Figure S2. 
Expression profiles of PHD‑finger genes under various abiotic stresses.  
Normalized expression values (log2(FPKM +1)) are shown as a heat map. 
The colored  scale bars in the upper right side of the heat map represents 
normalized expression values:  red indicates high level of expression and 
green indicates low level of expression. Gene  names are matched with 
subgroup colors in phylogenetic tree.

Additional file 2: Supplementary Tables. Table S1. List of the five plant 
genomic resources. Table S2. Detailed information on the re‑annotated 
PHD‑finger genes. Table S3. Description of integrated domain. Table S4. 
List of primers used in qRT‑PCR.
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